首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu Y  Pei Y  Qin Y 《Cell and tissue research》2011,344(2):355-363
Currently, no reports exist concerning the expression patterns and developmental changes of heat shock proteins (HSPs) in the reproductive system of the male rabbit. In the present study, the testes of rabbits were collected at post-natal months 1, 2, 3, 4, 5, and 40. HSP60, HSC70, HSP90, and HSPA2 were detected by both Western blot and immunohistochemical methods. The expression levels of HSP60 and HSC70 showed no apparent change during the developmental progress. HSP90 increased at the second month; prior to the third month, HSPA2 was expressed at a low level. Immunohistochemistry localized HSP60 in the cytoplasm of all of the cell types in the testis and in the apical pole of the spermatids. The distribution pattern of HSC70 and HSP90 was similar, both being mainly located in the spermatids of stage VII-VIII and in the cytoplasm of the spermatogonium. HSPA2 staining was mainly observed in the cytoplasm of pachytene spermatocytes and spermatids in testes of 3-, 4-, 5-, and 40-month-old rabbits. These results provide a basic reference point for studying the functions of HSPs in the male rabbit reproductive system and should be beneficial for the future determination of the mechanisms of heat shock on male rabbit fertility.  相似文献   

2.
Heat shock protein 70 (HSP70) is one of the most abundant and best characterized heat shock protein family that consists of highly conserved stress proteins, expressed in response to stress, and plays crucial roles in environmental stress tolerance and adaptation. The present study was conducted to identify major types of genes under the HSP70 family and to quantify their expression pattern in heat- and cold-adapted Indian goats (Capra hircus) with respect to different seasons. Five HSP70 gene homologues to HSPA8, HSPA6, HSPA1A, HSPA1L, and HSPA2 were identified by gene-specific primers. The cDNA sequences showed high similarity to other mammals, and proteins have an estimated molecular weight of around 70 kDa. The expression of HSP70 genes was observed during summer and winter. During summer, the higher expression of HSPA8, HSPA6, and HSPA1A was observed, whereas the expression levels of HSPA1L and HSPA2 were found to be lower. It was also observed that the expression of HSPA1A and HSPA8 was higher during winter in both heat- and cold-adapted goats but downregulates in case of other HSPs. Therefore, both heat and cold stress induced the overexpression of HSP70 genes. An interesting finding that emerged from the study is the higher expression of HSP70 genes in cold-adapted goats during summer and in heat-adapted goats during winter. Altogether, the results indicate that the expression pattern of HSP70 genes is species- and breed-specific, most likely due to variations in thermal tolerance and adaptation to different climatic conditions.  相似文献   

3.
4.
The localization of yellow fluorescent protein (YFP)-tagged HSP70 proteins was employed to identify stress-sensitive sites in human neurons following temperature elevation. Stable lines of human SH-SY5Y neuronal cells were established that expressed YFP-tagged protein products of the human inducible HSP70 genes HSPA6 (HSP70B′) and HSPA1A (HSP70-1). Following a brief period of thermal stress, YFP-tagged HSPA6 and HSPA1A rapidly appeared at centrioles in the cytoplasm of human neuronal cells, with HSPA6 demonstrating a more prolonged signal compared to HSPA1A. Each centriole is composed of a distal end and a proximal end, the latter linking the centriole doublet. The YFP-tagged HSP70 proteins targeted the proximal end of centrioles (identified by γ-tubulin marker) rather than the distal end (centrin marker). Centrioles play key roles in cellular polarity and migration during neuronal differentiation. The proximal end of the centriole, which is involved in centriole stabilization, may be stress-sensitive in post-mitotic, differentiating human neurons.  相似文献   

5.
Classic semiquantitative proteomic methods have shown that all organisms respond to a mild heat shock by an apparent massive accumulation of a small set of proteins, named heat-shock proteins (HSPs) and a concomitant slowing down in the synthesis of the other proteins. Yet unexplained, the increased levels of HSP messenger RNAs (mRNAs) may exceed 100 times the ensuing relative levels of HSP proteins. We used here high-throughput quantitative proteomics and targeted mRNA quantification to estimate in human cell cultures the mass and copy numbers of the most abundant proteins that become significantly accumulated, depleted, or unchanged during and following 4 h at 41 °C, which we define as mild heat shock. This treatment caused a minor across-the-board mass loss in many housekeeping proteins, which was matched by a mass gain in a few HSPs, predominantly cytosolic HSPCs (HSP90s) and HSPA8 (HSC70). As the mRNAs of the heat-depleted proteins were not significantly degraded and less ribosomes were recruited by excess new HSP mRNAs, the mild depletion of the many housekeeping proteins during heat shock was attributed to their slower replenishment. This differential protein expression pattern was reproduced by isothermal treatments with Hsp90 inhibitors. Unexpectedly, heat-treated cells accumulated 55 times more new molecules of HSPA8 (HSC70) than of the acknowledged heat-inducible isoform HSPA1A (HSP70), implying that when expressed as net copy number differences, rather than as mere “fold change” ratios, new biologically relevant information can be extracted from quantitative proteomic data. Raw data are available via ProteomeXchange with identifier PXD001666.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-015-0583-2) contains supplementary material, which is available to authorized users.  相似文献   

6.
Heat shock proteins (HSPs) are a family of cellular proteins involved in a variety of biological functions including chaperone activity. HSPs are classified based on their molecular weight and each family has several isoforms in eukaryotes. HSP40 is the most diverse family acting as a co-chaperone for the highly conserved HSP70 family. Some of the isoforms are reported to be induced during heat stress. Few studies have also highlighted the diverse role of some isoforms in different stress conditions including viral infections. But till date, no study has comprehensively examined the expression profile of different HSP40 and 70 isoforms in either heat stress or HIV-1 infection, a virus that is responsible for the pandemic of AIDS. In the present study, we have compared the mRNA expression profile of HSP40 and HSP70 isoforms during heat stress and HIV-1 infection in a T-cell line and also validated the HIV-1 stress results in peripheral blood mononuclear cells. In case of HSP70, we observed that three isoforms (HSPA1A, HSPA1B, and HSPA6) are highly upregulated during heat stress, but these isoforms were found to be downregulated during the peak of HIV-1 infection. While in case of HSP40, we found that only DNAJA4, DNAJB1, and DNAJB4 showed significant upregulation during heat stress, whereas in HIV-1 infection, majority of the isoforms were induced significantly. Stress-dependent differential expression observed here indicates that different HSP40 and HSP70 isoforms may have specific roles during HIV-1 infection and thus could be important for future studies.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-020-01185-y.  相似文献   

7.
Few studies have focused on the expression of heat shock proteins (HSPs) after chronic heat stress. The objective of this study was to investigate the effect of chronic high temperature–humidity index treatment on the expressions of HSP60, HSP70, HSP90, HSPA2 and HSC70, in the Rex rabbit testis and the expressions of these proteins after recovery from the chronic heat shock. Thirty mature male rabbits of the same age were randomly divided into three groups: control, heat stress, and recovery. The western blot results showed that the expressional levels of HSP60, HSP90, and HSC70 increased significantly and HSPA2 was elevated slightly after a 9-week heat treatment. HSP70 was absent in the control testis and had a high level of expression after heat stress. All of these proteins partially reverted back to normal levels after a 9-week recovery. The immunohistochemical results indicated that the expression patterns of HSP60, HSP90, HSPA2, and HSC70 did not change.  相似文献   

8.
9.
Heat shock protein A12B (HSPA12B) is the newest member of a recently defined subfamily of proteins distantly related to the 70-kDa family of heat shock proteins (HSP70) family. HSP70s play a crucial role in protecting cells, tissues, organs and animals from various noxious conditions. Here we studied the dynamic expression changes and localization of HSPA12B after middle cerebral artery occlusion (MCAO) with reperfusion induced ischemic insult processes in adult rats. Apoptosis, as indicated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, was also increased in the peri-ischemic cortex compared to non-ischemic hemisphere. The expression of HSPA12B was strongly induced in the ischemic hemisphere of MCAO reperfusion rats in vivo. In vitro studies indicated that the up-regulation of HSPA12B may be involved in oxygen-glucose deprivation-induced PC12 cell death. And knockdown of HSPA12B in cultured differentiated PC12 cells by siRNA showed that HSPA12B inhibited the expression of active caspase-3. Collectively, these results suggested that HSPA12B may be required for protecting neurons from ischemic insults.  相似文献   

10.
Heat shock proteins (HSP) are critical elements for the preservation of cellular homeostasis by participating in an array of biological processes. In addition, HSP play an important role in cellular protection from various environmental stresses. HSP are part of a large family of different molecular mass polypeptides, displaying various expression patterns, subcellular localizations, and diversity functions. An unexpected observation was the detection of HSP on the cell surface. Subsequent studies have demonstrated that HSP have the ability to interact and penetrate lipid bilayers by a process initiated by the recognition of phospholipid heads, followed by conformational changes, membrane insertion, and oligomerization. In the present study, we described the interaction of HSPA8 (HSC70), the constitutive cytosolic member of the HSP70 family, with lipid membranes. HSPA8 showed high selectivity for negatively charged phospholipids, such as phosphatidylserine and cardiolipin, and low affinity for phosphatidylcholine. Membrane insertion was mediated by a spontaneous process driven by increases in entropy and diminished by the presence of ADP or ATP. Finally, HSPA8 was capable of driving into the lipid bilayer HSP90 that does not display any lipid biding capacity by itself. This observation suggests that HSPA8 may act as a membrane chaperone.  相似文献   

11.
12.
Human HSPA2 is a member of the HSPA (HSP70) family of heat-shock proteins, encoded by the gene originally described as testis-specific. Recently, it has been reported that HSPA2 can be also expressed in human somatic tissues in a cell-type specific manner. The aim of the present study was to find out whether HSPA2 can increase the resistance of somatic cells to the toxic effect of heat shock, proteasome inhibitors, and several anticancer cytostatics. We used a Chinese hamster fibroblast V79 cell line because these cells do not express the HSPA2 and cytoprotective HSPA1 proteins under normal culture conditions and show limited ability to express HSPA1 in response to heat shock and proteasome inhibitors. We established, by retroviral gene transfer, a stable V79/HSPA2 cell line, which constitutively overexpressed HSPA2 protein. The major observation of our study was that HSPA2 increased long-term survival of cells subjected to heat shock and proteasome inhibitors. We found, that HSPA2 confers resistance to bortezomib-induced apoptosis. Thus, we showed for the first time that in somatic cells HSPA2 can be a part of a system protecting cells against cytotoxic stimuli inducing proteotoxic stress.  相似文献   

13.
In the present study we determined the expression pattern of HSPA1 and HSPA2 proteins in various normal human tissues by tissue-microarray based immunohistochemical analysis. Both proteins belong to the HSPA (HSP70) family of heat shock proteins. The HSPA2 is encoded by the gene originally defined as testis-specific, while HSPA1 is encoded by the stress-inducible genes (HSPA1A and HSPA1B). Our study revealed that both proteins are expressed only in some tissues from the 24 ones examined. HSPA2 was detected in adrenal gland, bronchus, cerebellum, cerebrum, colon, esophagus, kidney, skin, small intestine, stomach and testis, but not in adipose tissue, bladder, breast, cardiac muscle, diaphragm, liver, lung, lymph node, pancreas, prostate, skeletal muscle, spleen, thyroid. Expression of HSPA1 was detected in adrenal gland, bladder, breast, bronchus, cardiac muscle, esophagus, kidney, prostate, skin, but not in other tissues examined. Moreover, HSPA2 and HSPA1 proteins were found to be expressed in a cell-type-specific manner. The most pronounced cell-type expression pattern was found for HSPA2 protein. In the case of stratified squamous epithelia of the skin and esophagus, as well as in ciliated pseudostratified columnar epithelium lining respiratory tract, the HSPA2 positive cells were located in the basal layer. In the colon, small intestine and bronchus epithelia HSPA2 was detected in goblet cells. In adrenal gland cortex HSPA2 expression was limited to cells of zona reticularis. The presented results clearly show that certain human tissues constitutively express varying levels of HSPA1 and HSPA2 proteins in a highly differentiated way. Thus, our study can help designing experimental models suitable for cell- and tissue-type-specific functional differences between HSPA2 and HSPA1 proteins in human tissues.  相似文献   

14.
15.
16.
17.
18.
19.
A common defect encountered in the spermatozoa of male infertility patients is an idiopathic failure of sperm–egg recognition. In order to resolve the molecular basis of this condition we have compared the proteomic profiles of spermatozoa exhibiting an impaired capacity for sperm-egg recognition with normal cells using label free mass spectrometry (MS)-based quantification. This analysis indicated that impaired sperm–zona binding was associated with reduced expression of the molecular chaperone, heat shock 70 kDa protein 2 (HSPA2), from the sperm proteome. Western blot analysis confirmed this observation in independent patients and demonstrated that the defect did not extend to other members of the HSP70 family. HSPA2 was present in the acrosomal domain of human spermatozoa as a major component of 5 large molecular mass complexes, the most dominant of which was found to contain HSPA2 in close association with just two other proteins, sperm adhesion molecule 1 (SPAM1) and arylsulfatase A (ARSA), both of which that have previously been implicated in sperm-egg interaction. The interaction between SPAM1, ARSA and HSPA2 in a multimeric complex mediating sperm-egg interaction, coupled with the complete failure of this process when HSPA2 is depleted in infertile patients, provides new insights into the mechanisms by which sperm function is impaired in cases of male infertility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号