首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glycosphingolipid recognition by two isolectins from Solanum tuberosum was compared by the chromatogram binding assay. One lectin (PL-I) was isolated from potato tubers by affinity chromatography, and identified by MALDI-TOF mass spectrometry as a homodimer with a subunit molecular mass of 63,000. The other (PL-II) was a commercial lectin, characterized as two homodimeric isolectins with subunit molecular masses of 52,000 and 55,000, respectively. Both lectins recognized N-acetyllactosamine-containing glycosphingolipids, but the fine details of their carbohydrate binding specificities differed. PL-II preferentially bound to glycosphingolipids with N-acetyllactosamine branches, as Galbeta4GlcNAcbeta6(Galbeta4GlcNAcbeta3)Galbeta4Glcbeta1C er. PL-I also recognized this glycosphingolipid, but bound equally well to the linear glycosphingolipid Galbeta4GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer. Neolactotetraosylceramide and the B5 pentaglycosylceramide were also bound by PL-I, while other glycosphingolipids with only one N-acetyllactosamine unit were non-binding. Surprisingly, both lectins also bound to lactosylceramide, with an absolute requirement for sphingosine and non-hydroxy fatty acids. The inhibition of binding to both lactosylceramide and N-acetyllactosamine-containing glycosphingolipids by N-acetylchitotetraose suggests that lactosylceramide is also accomodated within the N-acetylchitotetraose/N-acetyllactosamine-binding sites of the lectins. Through docking of glycosphingolipids onto a three-dimensional model of the PL-I hevein binding domain, a Galbeta4GlcNAcbeta3Galbeta4 binding epitope was defined. Furthermore, direct involvement of the ceramide in the binding of lactosylceramide was suggested.  相似文献   

2.
The carbohydrate binding preferences of the Galalpha3Galbeta4 GlcNAc-binding lectins from Marasmius oreades and Euonymus europaeus were examined by binding to glycosphingolipids on thin-layer chromatograms and in microtiter wells. The M. oreades lectin bound to Galalpha3-terminated glycosphingolipids with a preference for type 2 chains. The B6 type 2 glycosphingolipid (Galalpha3[Fucalpha2]Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) was preferred over the B5 glycosphingolipid (Galalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer), suggesting that the alpha2-linked Fuc is accommodated in the carbohydrate binding site, providing additional interactions. The lectin from E. europaeus had broader binding specificity. The B6 type 2 glycosphingolipid was the best ligand also for this lectin, but binding to the B6 type 1 glycosphingolipid (Galalpha3[Fucalpha2]Galbeta3GlcNAcbeta3Galbeta4Glcbeta1Cer) was also obtained. Furthermore, the H5 type 2 glycosphingolipid (Fucalpha2Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer), devoid of a terminal alpha3-linked Gal, was preferred over the the B5 glycosphingolipid, demonstrating a significant contribution to the binding affinity by the alpha2-linked Fuc. The more tolerant nature of the lectin from E. europaeus was also demonstrated by the binding of this lectin, but not the M. oreades lectin, to the x2 glycosphingolipid (GalNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer. The A6 type 2 glycosphingolipid (GalNAcalpha3[Fucalpha2]Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and GalNAcalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1-Cer were not recognized by the lectins despite the interaction with B6 type 2 glycosphingolipid and the B5 glycosphingolipid. These observations are explained by the absolute requirement of a free hydroxyl in the 2-position of Galalpha3 and that the E. europaea lectin can accommodate a GlcNAc acetamido moiety close to this position by reorienting the terminal sugar, whereas the M. oreades lectin cannot.  相似文献   

3.
The binding of Helicobacter pylori to glycosphingolipids was examined by binding of (35)S-labeled bacteria to glycosphingolipids on thin-layer chromatograms. In addition to previously reported binding specificities, a selective binding to a non-acid tetraglycosylceramide of human meconium was found. This H. pylori binding glycosphingolipid was isolated and, on the basis of mass spectrometry, proton NMR spectroscopy, and degradation studies, were identified as Galbeta3GlcNAcbeta3Galbeta4Glcbeta1Cer (lactotetraosylceramide). When using non-acid glycosphingolipid preparations from human gastric epithelial cells, an identical binding of H. pylori to the tetraglycosylceramide interval was obtained in one of seven samples. Evidence for the presence of lactotetraosylceramide in the binding-active interval was obtained by proton NMR spectroscopy of intact glycosphingolipids and by gas chromatography-electron ionization mass spectrometry of permethylated tetrasaccharides obtained by ceramide glycanase hydrolysis. The lactotetraosylceramide binding property was detected in 65 of 74 H. pylori isolates (88%). Binding of H. pylori to lactotetraosylceramide on thin-layer chromatograms was inhibited by preincubation with lactotetraose but not with lactose. Removal of the terminal galactose of lactotetraosylceramide by galactosidase hydrolysis abolished the binding as did hydrazinolysis of the acetamido group of the N-acetylglucosamine. Therefore, Galbeta3GlcNAc is an essential part of the binding epitope.  相似文献   

4.
A key virulence trait of pathogenic bacteria is the ability to bind to receptors on mucosal cells. Here the potential glycosphingolipid receptors of enterohemorrhagic Escherichia coli were examined by binding of 35S-labeled bacteria to glycosphingolipids on thin-layer chromatograms. Thereby a selective interaction with two nonacid glycosphingolipids of cat small intestinal epithelium was found. The binding-active glycosphingolipids were isolated and, on the basis of mass spectrometry, proton NMR spectroscopy, and degradation studies, identified as Galalpha3Galbeta4Glcbeta1Cer (isoglobotriaosylceramide) and Galalpha3Galalpha3Galbeta4Glcbeta1Cer. The latter glycosphingolipid has not been described before. The interaction was not based on terminal Galalpha3 because the bacteria did not recognize the structurally related glycosphingolipids Galalpha3Galalpha4Galbeta4Glcbeta1Cer and Galalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer (B5 glycosphingolipid). However, further binding assays using reference glycosphingolipids showed that the enterohemorrhagic E. coli also bound to lactosylceramide with phytosphingosine and/or hydroxy fatty acids, suggesting that the minimal structural element recognized is a correctly presented lactosyl unit. Further binding of neolactotetraosylceramide, lactotetraosylceramide, the Le(a)-5 glycosphingolipid, as well as a weak binding to gangliotriaosylceramide and gangliotetraosylceramide, was found in analogy with binding patterns that previously have been described for other bacteria classified as lactosylceramide-binding.  相似文献   

5.
Many bacterial toxins utilize cell surface glycoconjugate receptors for attachment to target cells. In the present study the potential carbohydrate binding of Helicobacter pylori vacuolating cytotoxin VacA was investigated by binding to human gastric glycosphingolipids on thin-layer chromatograms. Thereby a distinct binding of the toxin to two compounds in the non-acid glycosphingolipid fraction was detected. The VacA-binding glycosphingolipids were isolated and characterized by mass spectrometry and proton NMR as galactosylceramide (Galbeta1Cer) and galabiosylceramide (Galalpha4Galbeta1Cer). Comparison of the binding preferences of the protein to reference glycosphingolipids from other sources showed an additional recognition of glucosylceramide (Glcbeta1Cer), lactosylceramide (Galbeta4Glcbeta1Cer) and globotriaosylceramide (Galalpha4Galbeta4Glcbeta1Cer). No binding to the glycosphingolipids recognized by the VacA holotoxin was obtained with a mutant toxin with deletion of the 37 kDa fragment of VacA (P58 molecule). Collectively our data show that the VacA cytotoxin is a glycosphingolipid binding protein, where the 37 kDa moiety is required for carbohydrate recognition. The ability to bind to short chain glycosphingolipids will position the toxin close to the cell membrane, which may facilitate toxin internalization.  相似文献   

6.
The major neutral glycosphingolipids (GSLs) of High Five insect cells have been extracted, purified, and characterized. It was anticipated that GSLs from High Five cells would follow the arthro-series pathway, known to be expressed by both insects and nematodes at least through the common tetraglycosylceramide (Glcbeta1Cer --> Manbeta4Glcbeta1Cer [MacCer] --> GlcNAcbeta3Manbeta4Glcbeta1Cer [At(3)Cer] --> GalNAcbeta4- GlcNAcbeta3Manbeta4Glcbeta1Cer [At(4)Cer]). Surprisingly, the structures of the major neutral High Five GSLs already diverge from the arthro-series pathway at the level of the triglycosylceramide. Studies by one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and electrospray ionization mass spectrometry (ESI-MS) showed the structure of the predominant High Five triglycosylceramide to be Galbeta3Manbeta4Glcbeta1Cer, whereas the predominant tetraglycosylceramide was characterized as GalNAcalpha4Galbeta3Manbeta4- Glcbeta1Cer. Both of these structures are novel products for any cell or organism so far studied. The GalNAcalpha4 and Galbeta3 units are found in insect GSLs, but always as the fifth and sixth residues linked to GalNAcbeta4 in the arthro-series penta- and hexaglycosylceramide structures (At(5)Cer and At(6)Cer, respectively). The structure of the High Five tetraglycosylceramide thus requires a reversal of the usual order of action of the glycosyltransferases adding the GalNAcalpha4 and Galbeta3 residues in dipteran GSL biosynthesis and implies the existence of an insect Galbeta3-T capable of using Manbeta4Glcbeta1Cer as a substrate with high efficiency. The results demonstrate the potential appearance of unexpected glycoconjugate biosynthetic products even in widely used but unexamined systems, as well as a potential for core switching based on MacCer, as observed in mammalian cells based on the common LacCer intermediate.  相似文献   

7.
Glycoconjugates of the GI tract are important for microbial interactions. The expression of histo-blood group glycosyltransferases governs both the expression of blood group determinants and in part the structure and size of the glycoconjugates. Using neutral glycolipids isolated from the small intestine of a rare blood group O Le(a-b-) ABH secretor-negative (nonsecretor) individual we were able to map the "default" pathway of the individual lacking ABO, Lewis, and secretor glycosyltransferases. Structures were deduced with combined analysis of mass spectrometry (MALDI-TOF and ESI-MS/MS), and 1H NMR (500 and 600 MHz). All structures present at a level >5% were structurally resolved and included two extended structures: Galbeta4(Fucalpha3)GlcNAcbeta3(Galbeta4[Fucalpha3]GlcNAcbeta6)Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer and Galbeta3GlcNAcbeta3(Galbeta4[Fucalpha3]GlcNAcbeta6)Galbeta3GlcNAcbeta3Galbeta4Glcbeta1Cer. The first, a novel component, is based on a type 2 chain and bears the Lex glycotopes on both its branches. The second, a major component, is based on a type 1 chain, which bears a 3-linked type 1 precursor (Lec) glycotope and a 6-linked Lex glycotope on its branches. This latter structure is identical to that previously isolated from plasma and characterized by MS and GC-MS but not by NMR. Structural resolution of these structures was supported by reanalysis of the blood group H-active decaosylceramides previously isolated from rat small intestine. Other minor linear monofucosylated penta-, hepta-, and difucosylated octaosylceramides, some bearing blood group determinants, were also identified. The cumulative data were used to define a default biosynthesis pathway where it can be seen that carbohydrate chain extension, in the absence of blood group glycosyltransferases, is controlled and regulated by non-blood group fucosylation and branching with type 2 Galbeta4GlcNAc branches.  相似文献   

8.
Characterization of gangliosides from bovine erythrocyte membranes   总被引:2,自引:0,他引:2  
Two glucosamine-containing gangliosides, sialosylhexaglycosylceramides, were isolated from bovine erythrocyte membranes. Both gangliosides were hydrolyzed by neuraminidase isolated from Clostridium perfringens to become neutral hexaglycosylceramides. Based on the results of sequential enzymatic hydrolysis and gas chromatography-mass spectrometric analyses of the methylated sugars, the structures of these two gangliosides were shown to be NeuAcalpha2 leads to 3Galbeta1 leads to 4GlcNAcbeta1 leads to 3Galbeta1 leads to 4GlcNAcbeta1 leads to 3Galbeta1 leads to 4Glc-ceramide and NeuGcalpha2 leads to 3Galbeta1 leads to 4GlcNAcbeta1 leads to 3Galbeta1 leads to 4GlcNAcbeta1 leads to 3Galbeta1 leads to 4Glc-ceramide, respectively. In addition, N-acetyl- and N-glycolylneuraminosyllacto-N-neotetraosylceramides, and N-acetyl- and N-glycolylneuraminosyllactosylceramides were also found in bovine erythrocytes. The predominant fatty acids in these two gangliosides were C 22:0 and C 24:0. C-18 sphingosine was the major base detected.  相似文献   

9.
Nontypeable Haemophilus influenzae (NTHI) are a major cause of human infections. We previously demonstrated high affinity and high specificity binding of NTHI to minor gangliosides of human respiratory (HEp-2) cells and macrophages, but not to brain gangliosides. We further identified the NTHI-binding ganglioside of human macrophages as alpha2,3-sialylosylparagloboside (IV3NeuAc-nLcOse4Cer, nLM1), which possesses a neolacto core structure that is absent in brain gangliosides. This supported a hypothesis that lacto/neolacto core carbohydrates are critical for NTHI-ganglioside binding. To investigate, we determined the core carbohydrate structure of NTHI-binding gangliosides of HEp-2 cells, through multiple approaches, including specific enzymatic degradation, mass spectral analysis and gas-liquid chromatography. Our analyses denote the following critical structural attributes of NTHI-binding gangliosides: (1) a conserved lacto/neolacto core structure; (2) requisite sialylation, which may be either internal or external, with alpha2,3 (human macrophages) or alpha2,6 (HEp-2 cells) anomeric linkages; (3) internalized galactose residues. Mass spectral and gas chromatographic analyses confirm that NTHI-binding gangliosides of HEp-2 cells possess lacto/neolacto carbohydrate cores and identify the structure of the major peak as NeuAcalpha2-6Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glcbeta1-1Cer (alpha2,6-sialosylparagloboside, nLM1). Collectively, our studies denote NTHI-binding gangliosides as lacto/neolacto series structures.  相似文献   

10.
Helicobacter pylori is a bacterium that colonizes the stomach of a majority of the global human population causing common gastric diseases like ulcers and cancer. It has an unusually complex pattern of binding to various host glycoconjugates including interaction with sialylated, sulfated, and fucosylated sequences. The present study describes an additional binding epitope comprising the neolacto internal sequence of GlcNAcbeta3-Galbeta4GlcNAcbeta. The binding was detected on TLC plates as an interaction with a seven-sugar ganglioside of rabbit thymus. The glycolipid was purified and characterized as Neu5Gcalpha3Galbeta4GlcNAcbeta3Galbeta4GlcNAcbeta3-Galbeta4Glcbeta1Cer with less than 10% of the fraction carrying a repeated lacto (type-1) core chain, Galbeta3Glc-NAcbeta3Galbeta3GlcNAcbeta. After stepwise chemical and enzymatic degradation and structural analysis of products the strongest binder was found to be the pentaglycosylceramide GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1-Cer, whereas the hexa- and tetraglycosylceramides were less active, and the trihexosylceramide was inactive. Further studies revealed that the terminal GlcNAcbeta of the pentaglycosylceramide may be exchanged for either GalNAcbeta3, GalNAcalpha3, or Galalpha3 without loss of the activity. Calculated minimum energy conformers of these four isoreceptors show a substantial topographical similarity suggesting that this binding is a result of a molecular mimicry. Although the glycoconjugate composition of human gastric epithelial cells is not known in detail it is proposed that repeating N-acetyllactosamine units of glycoconjugates may serve as bacterial attachment sites in the stomach.  相似文献   

11.
Mistletoe lectin I (ML-I) is a type II ribosome-inactivating protein, which inhibits the protein biosynthesis at the ribosomal level. ML-I is composed of a catalytically active A-chain with rRNA N-glycosidase activity and a B-chain with carbohydrate binding specificities. Using comparative solid-phase binding assays along with electrospray ionization tandem mass spectrometry, ML-I was shown to preferentially bind to terminally alpha2-6-sialylated neolacto series gangliosides from human granulocytes. IV(6)Neu5Ac-nLc4Cer, VI(6)Neu5Ac-nLc6Cer, and VIII(6)Neu5Ac-nLc8Cer were identified as ML-I receptors, whereas the isomeric alpha2-3-sialylated neolacto series gangliosides were not recognized. Only marginal binding of ML-I to terminal galactose residues of neutral glycosphingolipids with a Galbeta1-4Glc or Galbeta1-4GlcNAc sequence was determined, whereas a distal Galalpha1-4Gal, GalNAcbeta1-3Gal, or GalNAcbeta1-4Gal disaccharide did not bind at all. Among the glycoproteins investigated in Western blot and microwell adsorption assays, only those carrying Neu5Acalpha2-6Galbeta1-4GlcNAc residues, exclusively, predominantly, or even as less abundant constituents in an assembly with Neu5Acalpha2-3Galbeta1-4GlcNAc-terminated glycans, displayed high ML-I binding capacity. From our data we conclude that (i) ML-I has to be considered as a sialic acid- and not a galactose-specific lectin and (ii) neolacto series gangliosides and sialoglycoproteins with type II glycans, which share the Neu5Acalpha2-6Galbeta1-4GlcNAc terminus, are true ML-I receptors. This strict preference might help to explain the immunostimulatory potential of ML-I toward certain leukocyte subpopulations and its therapeutic success as a cytotoxic anticancer drug.  相似文献   

12.
The structures of acidic glycosphingolipids in colon adenocarcinoma have been analyzed extensively using a number of conventional methods, such as thin-layer chromatography and methylation analysis, and a variety of acidic glycosphingolipids present in the tissues have been reported. However, because of a number of limitations in the techniques used in previous studies in terms of resolution, quantification, and sensitivity, we employed a different method that could be applied to small amounts of tissue. In this technique, the carbohydrate moieties of acidic glycosphingolipids from approximately 20mg of colon adenocarcinoma were released by endoglycoceramidase II and were labeled by pyridylamination. They were separated and structurally characterized by a two-dimensional HPLC mapping technique, electrospray ionization tandem mass spectrometry (ESI-MS/MS), and enzymatic cleavage. A total of 22 major acidic glycosphingolipid structures were identified, and their relative quantities were revealed in detail. They are composed of 1 sulfated (SM3), 1 lacto-series (SLe(a)), 6 kinds of ganglio-series, and 14 kinds of neolacto-series glycosphingolipids. They include most of the acidic glycosphingolipids previously reported to be present in the tissues and two previously unknown fucogangliosides sharing the same terminal structure: NeuAcalpha2-6(Fucalpha1-2)Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc, and NeuAcalpha2-6(Fucalpha1-2)Galbeta1-4GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3-Galbeta1-4Glc. Thus, this highly sensitive, high-resolution analysis enabled the identification of novel structures of acidic glycosphingolipids from small amounts of already comprehensively studied cancerous tissues. This method is a powerful tool for microanalysis of glycosphingolipid structures from small quantities of cancerous tissues and should be applicable to different types of malignant tissues.  相似文献   

13.
The B-subunits of cholera toxin (CTB) and Escherichia coli heat-labile enterotoxin (LTB) are structurally and functionally related. However, the carbohydrate binding specificities of the two proteins differ. While both CTB and LTB bind to the GM1 ganglioside, LTB also binds to N-acetyllactosamine-terminated glycoconjugates. The structural basis of the differences in carbohydrate recognition has been investigated by a systematic exchange of amino acids between LTB and CTB. Thereby, a CTB/LTB hybrid with a gain-of-function mutation resulting in recognition of blood group A and B determinants was obtained. Glycosphingolipid binding assays showed a specific binding of this hybrid B-subunit, but not CTB or LTB, to slowly migrating non-acid glycosphingolipids of human and animal small intestinal epithelium. A binding-active glycosphingolipid isolated from cat intestinal epithelium was characterized by mass spectrometry and proton NMR as GalNAcalpha3(Fucalpha2)Galbeta4(Fucalpha3)Glc NAcbeta3Galbeta4Glc NAcbeta3Galbeta4Glcbeta1Cer. Comparison with reference glycosphingolipids showed that the minimum binding epitope recognized by the CTB/LTB hybrid was Galalpha3(Fucalpha2)Galbeta4(Fucalpha3)GlcNAc beta. The blood group A and B determinants bind to a novel carbohydrate binding site located at the top of the B-subunit interfaces, distinct from the GM1 binding site, as found by docking and molecular dynamics simulations.  相似文献   

14.
We have isolated and characterised two neutral oligosaccharides, one nonfucosylated and the other monofucosylated, from human milk that are based on the doubly branched lacto-N-decaose core. Their structures have been determined by a combined use of electrospray tandem mass spectrometry (ES-MS/MS) and NMR spectroscopy. The sequences of the three branches resulted from the double-branching, including the identity and location of the blood-group-related Lewis determinant and partial linkages, were elucidated by the unique method of high sensitivity negative-ion ES-MS/MS analysis. Their full structure assignment was completed by methylation analysis and 1H NMR. The monofucosylated lacto-N-decaose, Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-6(Galbeta1-3GlcNAcbeta1-3)Galbeta1-4GlcNAcbeta1-6(Galbeta1-3GlcNAcbeta1-3)Galbeta1-4Glc is a novel sequence, whereas the nonfucosylated lacto-N-decaose, Galbeta1-4GlcNAcbeta1-6(Galbeta1-3GlcNAcbeta1-3)Galbeta1-4GlcNAcbeta1-6(Galbeta1-3GlcNAcbeta1-3)Galbeta1-4Glc, has not been isolated and identified as an individual oligosaccharide.  相似文献   

15.
The polypore mushroom Polyporus squamosus is the source of a lectin that exhibits a general affinity for terminal beta-galactosides, but appears to have an extended carbohydrate-binding site with high affinity and strict specificity for the nonreducing terminal trisaccharide sequence NeuAcalpha2 --> 6Galbeta1 --> 4Glc/GlcNAc. In considering the possibility that the lectin's in vivo function could involve interaction with an endogenous glycoconjugate, it would clearly be helpful to identify candidate ligands among various classes of carbohydrate-containing materials expressed by P. squamosus. Since evidence has been accumulating that glycosphingolipids (GSLs) may serve as key ligands for some endogenous lectins in animal species, possible similar roles for fungal GSLs could be considered. For this study, total lipids were extracted from mature fruiting body of P. squamosus. Multistep fractionation yielded a major monohexosylceramide (CMH) component and three major glycosylinositol phosphorylceramides (GIPCs) from the neutral and acidic lipids, respectively. These were characterized by a variety of techniques as required, including one- and two-dimensional (1)H- and (13)C-nuclear magnetic resonance (NMR) spectroscopy; electrospray ionization-mass spectrometry (ESI-MS, tandem-MS/collision-induced decay-MS, and ion trap-MS(n)); and component and methylation linkage analysis by gas chromatography-mass spectrometry. The CMH was determined to be glucosylceramide having a typical ceramide consisting of 2-hydroxy fatty-N-acylated (4E,8E)-9-methyl-sphinga-4,8-dienine. The GIPCs were identified as Manalpha1 --> 2Ins1-P-1Cer (Ps-1), Galbeta1 --> 6Manalpha1 --> 2Ins1-P-1Cer (Ps-2), and Manalpha1 --> 3Fucalpha1 --> 2Galalpha1 --> 6Galbeta1 --> 6Manalpha1 -->2Ins1-P-1Cer (Ps-5), respectively (where Ins = myo-inositol, P = phosphodiester, and Cer = ceramide consisting mainly of long-chain 2-hydroxy and 2,3-dihydroxy fatty-N-acylated 4-hydroxy-sphinganines). Of these GSLs, Ps-2 could potentially interact with P. squamosus lectin, and further investigations will focus on determining the binding affinity, if any, of the lectin for the GIPCs isolated from this fungus.  相似文献   

16.
The "Le(b) mouse" was established as a model for investigations of the molecular events following Le(b)-mediated adhesion of Helicobacter pylori to the gastric epithelium. By the expression of a human alpha-1,3/4-fucosyltransferase in the gastric pit cell lineage of FVB/N transgenic mice, a production of Le(b) glycoproteins in gastric pit and surface mucous cells was obtained in this "Le(b) mouse," as demonstrated by binding of monoclonal anti-Le(b) antibodies. To explore the effects of the human alpha-1,3/4-fucosyltransferase on glycosphingolipid structures, neutral glycosphingolipids were isolated from stomachs of transgenic alpha-1,3/4-fucosyltransferase-expressing mice. A glycosphingolipid recognized by BabA-expressing H. pylori was isolated and characterized by mass spectrometry and proton NMR as Fuc alpha 2Gal beta 3(Fuc alpha 4)GalNAc beta 4 Gal beta 4 Glc beta 1Cer, i.e., a novel Le(b)-like glycosphingolipid on a ganglio core. In addition, two other novel glycosphingolipids were isolated from the mouse stomach epithelium that were found to be nonbinding with regard to H. pylori. The first was a pentaglycosylceramide, GalNAc beta 3 Gal alpha 3(Fuc alpha 2)Gal beta 4 Glc beta 1Cer, in which the isoglobotetrasaccharide has been combined with Fuc alpha 2 to yield an isoglobotetraosylceramide with an internal blood group B determinant. The second one was an elongated fucosyl-gangliotetraosylceramide, GalNAc beta 3(Fuc alpha 2)Gal beta 3GalNAc beta 4Gal beta 4 Glc beta 1Cer.  相似文献   

17.
We have isolated a nonfucosylated and three variously fucosylated neutral oligosaccharides from human milk that are based on the iso-lacto-N-octaose core. Their structures were characterized by the combined use of electrospray mass spectrometry (ES-MS) and NMR spectroscopy. The branching pattern and blood group-related Lewis determinants, together with partial sequences and linkages of these oligosaccharides, were initially elucidated by high-sensitivity ES-MS/MS analysis, and then their full structure assignment was completed by methylation analysis and 1H-NMR. Three new structures were identified. The nonfucosylated iso-lacto-N-octaose, Galbeta1-3GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-6[Galbeta1-3GlcNAcbeta1-3]Galbeta1-4Glc, has not previously been reported as an individual oligosaccharide. The monofucosylated and trifucosylated iso-lacto-N-octaose, Galbeta1-3GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3) GlcNAcbeta1-6[Galbeta1-3GlcNAcbeta1-3]Galbeta1-4Glc and Galbeta1-3(Fucalpha1-4)GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-6[Galbeta1-3(Fucalpha1-4)GlcNAcbeta1-3]Galbeta1-4Glc, both containing an internal Lex epitope, are also novel structures.  相似文献   

18.
The substrate requirements, linkage specificity, and kinetic mechanism of a pure sialyltransferase from porcine submaxillary glands have been examined. The enzyme transfers sialic acid from the donor nucleotide, CMP-NeuAc, into the sequence NeuAcalpha2 leads to 3Galbeta1 leads to 3GalNAc, which is found in both glycoproteins and gangliosides. It forms only the alpha2 leads to 3 linkage with the disaccharide Gal/beta1 leads to 3GalNAc or antifreeze glycoprotein, which, along with asialoglycoproteins containing the sequence Gal/beta1 leads to 3GalNAcalpha1 leads to O-Thr/Ser, are the best acceptor substrates. Low molecular weight galactosides linked beta1 leads to 3 to glycose residues other than N-acetylgalactosamine are poor acceptors with relatively high Km values, while those in beta1 leads to 4 or beta1 leads to 6 linkages have both high Km and low Vmax. With glycoprotein and ganglioside acceptors this substrate specificity appears to be even more strict, with the sequence Gal/beta1 leads to 3GalNAc serving as the exclusive acceptor. Thus the present enzyme is not responsible either for the sequence, NeuAcalpha2 leads to 3Galbeta1 leads to 4GlcNAc, found in the asparagine-linked chains of certain glycoproteins, or for the synthesis of hematoside, NeuAcalpha2 leads to 3Galbeta1 leads to 4Glcbeta1 leads to 1Cer. Initial rate kinetic studies, with and without inhibitors, suggest that the transferase has an equilibrium random order mechanism.  相似文献   

19.
A human strain of influenza virus (A, H1N1) was shown to bind in an unexpected way to leukocyte and other gangliosides when compared with avian virus (A, H4N6) as assayed on TLC plates. The human strain bound only to species with about 10 or more sugars, while the avian strain bound to a wide range of gangliosides including the 5-sugar gangliosides. By use of specific lectins, antibodies, and FAB and MALDI-TOF mass spectrometry an attempt was done to preliminary identify the sequences of leukocyte gangliosides recognized by the human strain. The virus binding pattern did not follow binding by VIM-2 monoclonal antibody and was not identical with binding by anti-sialyl Lewis x antibody. There was no binding by the virus of linear NeuAcalpha3- or NeuAcalpha6-containing gangliosides with up to seven monosaccharides per mol of ceramide. Active species were minor NeuAcalpha6-containing molecules with probably repeated HexHexNAc units and fucose branches. This investigation demonstrates marked distinctions in the recognition of gangliosides between avian and human influenza viruses. Our data emphasize the importance of structural factors associated with more distant parts of the binding epitope and the complexity of carbohydrate recognition by human influenza viruses.  相似文献   

20.
A galactose specific lectin was isolated from the seeds of Ficus bengalensis (Moraceae) fruits and designated as F. bengalensis agglutinin (FBA). The lectin was purified by affinity repulsion chromatography on fetuin-agarose and was a monomer of molecular mass 33kDa. Like other Moraceae family lectins, carbohydrate-binding activity of FBA was independent of any divalent cation. FBA did not bind with simple saccharides, however sugar ligands with aromatic aglycons showed pronounced binding. The combining site of FBA recognized preferably Galbeta1,4GlcNAcbeta1-(II) followed by Galbeta1,3GalNAcalpha1-(Talpha) containing glycotopes. Interaction with saccharides revealed that the combining site of FBA could well accommodate a tetrasaccharide, asialo GM1 glycan (Galbeta1,3GalNAcbeta1,4Galbeta1,4Glcbeta1-), whereas polyvalent Tn (GalNAcalpha1-Ser/Thr), one of the well-recognized ligands of Moraceae family lectin, did not interact well with FBA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号