首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Isolated, intact rat liver nuclei have high-affinity (Kd = 10(-9) M) binding sites that are highly specific for nonsteroidal antiestrogens, especially for compounds of the triphenylethylene series. Nuclear [3H]tamoxifen binding capacity is thermolabile, being most stable at 4 degrees C and rapidly lost at 37 degrees C. More [3H]tamoxifen, however, is specifically bound at incubation temperatures of 25 degrees C and 37 degrees C than at 4 degrees C although prewarming nuclei has no effect, suggesting exchange of [3H]tamoxifen for an unidentified endogeneous ligand. Nuclear antiestrogen binding sites are destroyed by trypsin but not by deoxyribonuclease I or ribonuclease A. The nuclear antiestrogen binding protein is not solubilized by 0.6 M potassium chloride, 2 M sodium chloride, 0.6 M sodium thiocyanate, 3 M urea, 20 mM pyridoxal phosphate, 1% (w/v) digitonin or 2% (w/v) sodium cholate but is extractable by sonication, indicating that it is tightly bound within the nucleus. Rat liver nuclear matrix contains high-affinity (Kd = 10(-9) M) [3H]tamoxifen binding sites present in 5-fold higher concentrations (4.18 pmol/mg DNA) than in intact nuclei (0.78 +/- 0.10 (S.D.) pmol/mg DNA). Low-speed rat liver cytosol (20 000 X g, 30 min) contains high-capacity (955 +/- 405 (S.D.) fmol/mg protein), low-affinity (Kd = 10.9 +/- 4.5 (S.D.) nM) antiestrogen binding sites. In contrast, high-speed cytosol (100 000 X g, 60 min) contains low-capacity (46 +/- 15 (S.D.) fmol/mg protein), high-affinity (Kd = 0.61 +/- 0.20 (S.D.) nM) binding sites. Low-affinity cytosolic sites constitute more than 90% of total liver binding sites, high-affinity cytosolic sites 0.3%-3.2%, and nuclear sites less than 0.5% of total sites.  相似文献   

2.
Isolated, intact rat liver nuclei have high-affiity (Kd=10−9 M) binding sites that are highly specific for nonsteroidal antiestrogens, especially for compounds of the triphenylethylene series. Nuclear [3H]tamoxifen binding capacity is thermolabile, being most stable at 4°C and rapidly lost at 37°C. More [3H]tamoxifen, however, is specifically bound at incubation temperatures of 25°C and 37°C than at 4°C although prewarming nuclei has no effect, suggesting exchange of [3H]tamoxifen for an unidentified endogenous ligand. Nuclear antiestrogen binding sites are destroyed by trypsin but not by deoxyribonuclease I or ribonuclease A. The nuclear antiestrogen binding protein is not solubilized by 0.6 M potassium chloride, 2 M sodium chloride, 0.6 M sodium thiocyanate, 3 M urea, 20 mM pyridoxal phosphate, 1% (w/v) digitonin or 2% (w/v) sodium cholate but is extractable by sonication, indicating that it is tightly bound within the nucleus. Rat liver nuclear matrix contains high-affinity (Kd=10−9 M) [3H]tamoxifen binding sites present in 5-fold higher concentrations (4.18 pmol/mg DNA) than in intact nuclei (0.78±0.10 (S.D.) pmol/mg DNA). Low-speed rat liver cytosol (20 000×g, 30 min) contains high-capacity (955±405 (S.D.) fmol/mg protein), low-affinity (Kd=10.9±4.5 (S.D.) nM) antiestrogen binding sites. In contrast, high-speed cytosol (100 000×g, 60 min) contains low-capacity (46±15 (S.D.) fmol/mg protein), high-affinity (Kd=0.61± 0.20 (S.D.) nM) binding sites. Low-affinity cytosolic sites constitute more than 90% of total liver binding sites, high-affinity cytosolic sites 0.3%–3.2%, and nuclear sites less than 0.5% of total sites.  相似文献   

3.
4.
The metabolic profile of benzo[a]pyrene (BP) in cumene hydroperoxide-(CHP)-dependent reaction by male rat liver microsomes was dependent on CHP concentration. At 0.05 mM CHP, 3-hydroxy-BP was the major metabolite. Increase in CHP reduced 3-hydroxy-BP formation but increased BP quinone formation simultaneously. This change in metabolic profile was reversed by preincubation with pyrene. Pyrene (PY) selectively inhibited quinone formation but enhanced 3-hydroxy-BP formation. Naphthalene (NP) had no effect on BP quinone formation but inhibited BP 3-hydroxylation. Phenanthrene (PA) and benz[a]anthracene (BA) inhibited effectively 3-hydroxy-BP formation but only slightly quinone formation. BP binding to microsomal protein correlated to quinone formation and not BP 3-hydroxylation. BP metabolism by female rat liver microsomes also depended on CHP concentration but was much less efficient than the male. Quinones were consistently predominant metabolites and their formation was also inhibited by pyrene. Our data provide evidence that regioselectivity in BP metabolism involves at least two distinct binding sites. One site recognizes the benzo region of BP in BP 3-hydroxylation and the other recognizes the pyrene region in quinone formation. The different ratios of 3-hydroxy-BP to quinone formation by male and female rat liver microsomes suggest that the two binding sites are probably located at separate cytochrome P-450 isozymes.  相似文献   

5.
In vitro incubations of non-histone proteins from rat liver nuclei with labelled L-3, 5, 3′ triiodothyronine demonstrate the existence of high affinity, limited capacity binding sites for the hormone in this protein group; the affinity was found identical for triiodothyroacetic acid and lower for L-thyroxine. Binding ability was highly temperature dependent. At 4°C, the rate constant of association was 0.9 × 107 M?1 h?1 and the rate constant of dissociation was 0.015 h?1. The dissociation constant Kd was calculated from these data or measured by Scatchard analysis and found to be between 1.6 and 5 × 10?9 M. The maximum binding capacity was 10?13 moles of L-3, 5, 3′ triiodothyronine per 100 μg non-histone proteins or 6000 hormone molecules per nucleus. Protein binding had a half-life of 20 hours at 4°C, in the absence of hormone, but was found to be very stable in the presence of hormone.  相似文献   

6.
Acetylated low density lipoprotein (acetyl-LDL) binding to hepatic membrane proteins of rats was analysed in vitro by ligand blotting. Specific binding could be demonstrated to two hepatic proteins with an apparent mol. wt. of 250 kd and 220 kd. Polyanionic competitors and maleylated bovine serum albumin inhibited the binding of acetyl-LDL effectively. To determine the sites of the catabolism of acetyl-LDL, [131I]-acetyl-LDL was injected intravenously into control rats and rats pre-treated with the known competitors of the acetyl-LDL binding. Distribution of the radiolabelled acetyl-LDL was followed by a scintillation camera. Six minutes after injection, the radioactivity was concentrated in the liver. The competitors and unlabelled acetyl-LDL but not native LDL reduced the hepatic uptake of [131I]acetyl-LDL dramatically. Thus, the sensitivity of the 220- and 250-kd membrane binding sites to the competitors for the acetyl-LDL binding resembled that of the hepatic compartment in vivo. Finally, an application of scintigraphy with radiolabelled low density lipoproteins for diagnostic evaluation of tumor compartments is presented.  相似文献   

7.
Histone binding to isolated rat liver nuclei   总被引:1,自引:0,他引:1  
Calf thymus histone H3 bound irreversibly to the isolated rat liver nuclei. The rate and extent of binding was a function of the incubation period and the concentration of both H3 and nuclei, but independent of the temperature. The binding was saturable and was inhibited by simultaneous presence of various histones. Approximately 94% of the bound H3 was associated with nuclear membrane fraction.  相似文献   

8.
Direct evidence for the binding of rat liver DPP IV to collagen in vitro   总被引:11,自引:0,他引:11  
Previous studies have shown that the tripeptide Gly-Pro-Ala, a substrate for dipeptidyl peptidase IV (DPP IV, EC 3.3.14.5), interferes with initial spreading of hepatocytes on a matrix consisting of fibronectin and denatured collagen. In the present investigation we report that the tripeptide as well as the anti-DPP IV antibody inhibits the initial spreading of hepatocytes also on native collagen. This effect appears to be due to the interaction of DPP IV from hepatocyte plasma membrane with native collagen. It is shown in vitro by immunohistochemistry, catalytic histochemistry, and by affinity chromatography of solubilized plasma membrane on collagen-Sepharose that DPP IV has a binding affinity to collagen. This binding does not affect the activity of DPP IV.  相似文献   

9.
Saturation binding of [3H]oestradiol has been determined using exchange conditions, on nuclei from DMBA tumours from rats treated prior to sacrifice with oestradiol and tamoxifen alone or in combination. Application of a model to the binding data enabled the amounts (C2) and apparent dissociation constants (Kdapp) of a second lower affinity binding component to be determined as well as the amount of a higher affinity site (C1) and its dissociation constant (Kd1). Kdapp did not change significantly with any pretreatment but 2 h after oestradiol (5 micrograms) and after tamoxifen alone there was a significant decrease in Kd compared with control. It is suggested that the difference in Kd of the higher affinity binding sites in control and 2 h oestradiol treated animals may be due to the loss of an essential co-factor, possibly cytosolic, when nuclei are isolated in the absence of ligand.  相似文献   

10.
A study of the sites of insulin binding in subcellular fractions of rat liver is reported. A method for the isolation of liver plasma membranes, which permits one to follow quantitatively the distribution of all the parameters of interest, was modified and applied to the study of the cellular topography of insulin binding. The insulin-binding capacity did not follow closely the enzyme marker (5′-nucleotidase) for plasma membranes when differential centrifugation schemes were used, and the divergence from this marker was more prominent when separations were performed on discontinuous sucrose gradients. A significant amount of insulin binding capacity was always present in fractions with higher density than those containing the majority of 5′-nucleotidase. Results of studies on linear sucrose gradients have disclosed in some of the purified membrane fractions small but consistent differences in density of the insulin binding, and plasma membrane particles. It is suggested that there may be several types of intracellular membranes to which insulin can bind besides the plasma membranes.  相似文献   

11.
Lad L  Mewies M  Raven EL 《Biochemistry》2002,41(46):13774-13781
The catalytic mechanism of recombinant soybean cytosolic ascorbate peroxidase (rsAPX) and a derivative of rsAPX in which a cysteine residue (Cys32) located close to the substrate (L-ascorbic acid) binding site has been modified to preclude binding of ascorbate [Mandelman, D., Jamal, J., and Poulos, T. L. (1998) Biochemistry 37, 17610-17617] has been examined using pre-steady-state and steady-state kinetic techniques. Formation (k1 = 3.3 +/- 0.1 x 10(7) M(-1) s(-1)) of Compound I and reduction (k(2) = 5.2 +/- 0.3 x 10(6) M(-1) s(-1)) of Compound I by substrate are fast. Wavelength maxima for Compound I of rsAPX (lambda(max) (nm) = 409, 530, 569, 655) are consistent with a porphyrin pi-cation radical. Reduction of Compound II by L-ascorbate is rate-limiting: at low substrate concentration (0-500 microM), kinetic traces were monophasic but above approximately 500 microM were biphasic. Observed rate constants for the fast phase overlaid with observed rate constants extracted from the (monophasic) dependence observed below 500 microM and showed saturation kinetics; rate constants for the slow phase were linearly dependent on substrate concentration (k(3-slow)) = 3.1 +/- 0.1 x 10(3) M(-1) s(-1)). Kinetic transients for reduction of Compound II by L-ascorbic acid for Cys32-modified rsAPX are monophasic at all substrate concentrations, and the second-order rate constant (k(3) = 0.9 +/- 0.1 x 10(3) M(-1) s(-1)) is similar to that obtained from the slow phase of Compound II reduction for unmodified rsAPX. Steady-state oxidation of L-ascorbate by rsAPX showed a sigmoidal dependence on substrate concentration and data were satisfactorily rationalized using the Hill equation; oxidation of L-ascorbic acid by Cys32-modified rsAPX showed no evidence of sigmoidal behavior. The data are consistent with the presence of two kinetically competent binding sites for ascorbate in APX.  相似文献   

12.
The endothelium may contribute to fibrinolysis through the binding of plasminogen activators or plasminogen activator inhibitors to the cell surface. Using a solid-phase radioimmunoassay, we observed that antibodies to recombinant tissue-type plasminogen activator (rt-PA) and plasminogen activator inhibitor type 1 (PAI-1) bound to the surface of cultured human umbilical vein endothelial cells (HUVEC). HUVEC also specifically bound added radiolabeled rt-PA with apparent steady-state binding being reached by 1 h at 4 degrees C. When added at low concentrations (less than 5 nM), rt-PA bound with high affinity mainly via the catalytic site, forming a sodium dodecyl sulfate-stable 105-kDa complex which dissociates from the cell surface over time and which could be immunoprecipitated by a monoclonal antibody to PAI-1. rt-PA bound to this high affinity site retained less than 5% of its expected plasminogen activator activity. At higher concentrations, binding did not require the catalytic site and was rapidly reversible. rt-PA initially bound to this site retained plasminogen activator activity. These studies suggest that tissue-type plasminogen activator and PAI-1 are expressed on the surface of cultured HUVEC. HUVEC also express unoccupied binding sites for exogenous tissue-type plasminogen activator. The balance between the expression of plasminogen activator inhibitors and these unoccupied binding sites for plasminogen activators on the endothelial surface may contribute to the regulation of fibrinolysis.  相似文献   

13.
14.
Intraperitoneal injection of sulfated cholecystokinin octapeptide (CCK-8; 10 micrograms/kg) resulted in an increase in the IC50 for isoproterenol (4.2 microM to 23.3 microM) in displacing 1 nM 3H-dihydroalprenolol binding to rat hypothalamic membranes. 3H-p-Aminoclonidine binding was also lower in membranes prepared from CCK-treated rats, but the decrease was not statistically significant. In vitro, CCK(1-100 nM) had no effect on either alpha- or beta-adrenergic binding or on the 5'-guanylylimidodiphosphate modulation of binding. The results indicate that CCK does not act directly upon adrenergic receptors, but may reduce beta-adrenergic affinity through indirect means.  相似文献   

15.
An in vitro system for the binding of estradiol to rat uterine nuclei   总被引:1,自引:0,他引:1  
  相似文献   

16.
17.
A study of the sites of insulin binding in subcellular fractions of rat liver is reported. A method for the isolation of liver plasma membranes, which permits one to follow quantitatively the distribution of all the parameters of interest, was modified and applied to the study of the cellular topography of insulin binding. The insulin binding capacity did not follow closely the enzyme marker (5'-nucleotidase) for plasma membranes when differential centrifugation schemes were used, and the divergence from this marker was more prominent when separations were performed on discontinous sucrose gradients. A significant amount of insulin binding capacity was always present in fractions with higher density than those containing the majority of 5'-nycleotidase. Results of studies on linear sucrose gradients have disclosed in some of the purified membrane fractions small but consistent differences in density of the insulin binding, and plasma membrane particles. It is suggested that there may be several types of intracellular membranes to which insulin can bind besides the plasma membranes.  相似文献   

18.
Oxygenated derivatives of cholesterol are known to exhibit a number of biological activities including the inhibition of cholesterol biosynthesis and of cell proliferation, but their mechanism of action remains unclear. Previous studies have identified a cytosolic protein which binds 25-hydroxycholesterol, as well as several other oxysterols, with high affinity, possibly mediating some of their effects. We now report the existence of a high-affinity oxysterol binding site in rat liver microsomes which is distinct from the cytosolic binding protein. Among the oxygenated sterols examined, 5 alpha-cholestan-3 beta-ol-7-one (7-ketocholestanol) had the highest affinity for this microsomal binding site (Kd = 2.7 nM). Using 7-keto[3H]cholestanol as the radioactive ligand, we found that binding of this oxysterol to the microsomal binding site was saturable and reversible and was displaceable by the following oxysterols in descending order of potency: 7-ketocholestanol greater than 6-ketocholestanol greater than 7 beta-hydroxycholesterol = 7-ketocholesterol greater than cholesten-3 beta,5 alpha, 6 beta-triol = 7 alpha-hydroxycholesterol greater than 4-cholesten-3-one. All other sterols studied, including, notably, 25-hydroxycholesterol, had little or no inhibitory effect on 7-keto[3H]cholestanol binding. Additional studies revealed that the microsomal oxysterol binding site was probably identical to the antiestrogen binding site described by other workers. First, saturation analysis and kinetic studies demonstrated that the antiestrogen tamoxifen competed directly with 7-keto[3H]cholestanol for the same binding site. Second, the ability of different oxysterols and antiestrogens to inhibit 7-keto[3H]cholestanol binding to the microsomal binding site paralleled their ability to inhibit [3H]tamoxifen binding to the antiestrogen binding site. Third, the tissue distribution of binding sites for 7-keto[3H]cholestanol was similar to that of the antiestrogen binding site. We conclude that: (1) in rat liver microsomes there are high-affinity oxysterol binding sites whose ligand specificity is different from that of the cytosolic oxysterol binding protein; and (2) the microsomal oxysterol binding site is probably identical to the antiestrogen binding site. The biological significance of these observations remains to be explored.  相似文献   

19.
20.
Steroids must traverse the nuclear envelope before exerting their action at the chromatin. However, few studies have been done to elucidate the mechanism by which steroids traverse this membrane barrier. As first steps towards investigating the mechanism, we have characterized the binding sites for dexamethasone on male rat liver nuclear envelopes. The nuclear envelopes, prepared in the presence of dithiothreitol, were isolated from purified nuclei after treatment with DNase 1 at high pH. Binding of dexamethasone to the nuclear envelopes was measured after 16 h of incubation at 0-4 degrees C. At pH 7.4, only a single high capacity, low affinity binding site for dexamethasone was identified. However, at pH 8.6, two sites were identified; a low capacity, high affinity site and a high capacity, low affinity site. Adrenalectomy of the animal before preparation of the membranes caused loss of the high affinity site and reduction in the number of the lower affinity sites. Acute dexamethasone treatment of adrenalectomized rats resulted in the reappearance of the high affinity site but long term treatment with dexamethasone was required for complete restoration of the high affinity sites and reappearance of any of the low affinity sites. The steroid specificity of these nuclear envelope binding sites was different from that of the cytosolic glucocorticoid receptor, generally showing broader specificity. However, triamcinolone acetonide, which is a potent competitor for binding to the glucocorticoid receptor, did not complete effectively. The binding sites were sensitive to protease treatment and salt extraction studies revealed that the dexamethasone binding sites do not represent proteins non-specifically bound to the nuclear envelope. The affinity and the hormone responsiveness of the high affinity site are similar to those of the nuclear glucocorticoid receptor. Therefore, the nuclear envelope may be a site of action of glucocorticoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号