首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA (cytosine-5) methylation represents one of the most widely used mechanisms of enduring cellular memory. Stable patterns of DNA methylation are established during development, resulting in creation of persisting cellular phenotypes. There is growing evidence that the nervous system has co-opted a number of cellular mechanisms used during development to subserve the formation of long term memory. In this study, we examined the role DNA (cytosine-5) methyltransferase (DNMT) activity might play in regulating the induction of synaptic plasticity. We found that the DNA within promoters for reelin and brain-derived neurotrophic factor, genes implicated in the induction of synaptic plasticity in the adult hippocampus, exhibited rapid and dramatic changes in cytosine methylation when DNMT activity was inhibited. Moreover, zebularine and 5-aza-2-deoxycytidine, inhibitors of DNMT activity, blocked the induction of long term potentiation at Schaffer collateral synapses. Activation of protein kinase C in the hippocampus decreased reelin promoter methylation and increased DNMT3A gene expression. Interestingly, DNMT activity is required for protein kinase C-induced increases in histone H3 acetylation. Considered together, these results suggest that DNMT activity is dynamically regulated in the adult nervous system and that DNMT may play a role in regulating the induction of synaptic plasticity in the mature CNS.  相似文献   

2.
利用甲基化敏感扩增多态性(MSAP)方法,对欧石楠大田苗、胚性愈伤组织和再生苗的DNA甲基化进行了研究。从64对选扩增引物中筛选出19对,共扩增得到506条带,统计显示,大田苗、胚性愈伤组织和再生苗的全基因组DNA甲基化水平分别为31.42%、27.86%和29.05%,3种试材发生甲基化变异的有175条带,变异率为34.58%。体细胞胚诱导形成胚性愈伤组织过程中,甲基化水平降低,而在再生苗中有所恢复,与大田苗接近。在外侧胞嘧啶甲基化水平上,胚性愈伤组织的甲基化水平有所增加,且在再生苗中可部分维持。另外,在175条变异带中,再生苗恢复到大田苗DNA甲基化模式的有62条,占总变异条带的35.43%,而与胚性愈伤组织维持相同DNA甲基化模式的有59条,占33.71%。回收部分甲基化变异条带,最终得到8条有效的基因组DNA序列。BLASTnI:对分析表明,在欧石楠基因组中,包括抗性基因、蛋白激酶、质体基因等在内的多种DNA序列均存在DNA基化修饰现象。  相似文献   

3.
During differentiation and development cells undergo dramatic morphological and functional changes without any change in the DNA sequence. The underlying changes of gene expression patterns are established and maintained by epigenetic processes. Early mechanistic insights came from the observation that gene activity and repression states correlate with the DNA methylation level of their promoter region. DNA methylation is a postreplicative modification that occurs exclusively at the C5 position of cytosine residues (5mC) and predominantly in the context of CpG dinucleotides in vertebrate cells. Here, three major DNA methyltransferases (Dnmt1, 3a, and 3b) establish specific DNA methylation patterns during differentiation and maintain them over many cell division cycles. CpG methylation is recognized by at least three protein families that in turn recruit histone modifying and chromatin remodeling enzymes and thus translate DNA methylation into repressive chromatin structures. By now a multitude of histone modifications have been linked in various ways with DNA methylation. We will discuss some of the basic connections and the emerging complexity of these regulatory networks. J. Cell. Biochem. 108: 43–51, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
5.
Cells are constantly exposed to genotoxic events that can damage DNA. To counter this, cells have evolved a series of highly conserved DNA repair pathways to maintain genomic integrity. The ATM protein kinase is a master regulator of the DNA double-strand break (DSB) repair pathway. DSBs activate ATM’s kinase activity, promoting the phosphorylation of proteins involved in both checkpoint activation and DNA repair. Recent work has revealed that two DNA damage response proteins, the Tip60 acetyltransferase and the mre11-rad50-nbs1 (MRN) complex, co-operate in the activation of ATM in response to DSBs. MRN functions to target ATM and the Tip60 acetyltransferase to DSBs. Tip60’s chromodomain then interacts with histone H3 trimethylated on lysine 9, activating Tip60’s acetyltransferase activity and stimulating the subsequent acetylation and activation of ATM’s kinase activity. These results underscore the importance of chromatin structure in regulating DNA damage signaling and emphasize how histone modifications co-ordinate DNA repair. In addition, human tumors frequently exhibit altered patterns of histone methylation. This rewriting of the histone methylation code in tumor cells may impact the efficiency of DSB repair, increasing genomic instability and contributing to the initiation and progression of cancer.  相似文献   

6.
7.
8.
Proper establishment and faithful maintenance of epigenetic information is crucial for the correct development of complex organisms. For mammals, it is now accepted that DNA methylation is an important mechanism for establishing stable heritable epigenetic marks. The distribution of methylation in the genome is not random, and patterns of methylated and unmethylated DNA are well regulated during normal development. The molecular mechanisms by which methylation patterns are established and maintained are complex and just beginning to be understood. In this review, we summarize recent progress in understanding the regulation of mammalian DNA methylation patterns, with an emphasis on the emerging roles of several protein and possible RNA factors. We also revisit the stochastic model of maintenance methylation and discuss its implications for epigenetic fidelity and gene regulation.  相似文献   

9.
Kinases are downstream modulators and effectors of several cellular signaling cascades and play key roles in the development of neoplastic disease. In this study, we aimed to evaluate SRC, LYN and CKB protein and mRNA expression, as well as their promoter methylation, in gastric cancer. We found elevated expression of SRC and LYN kinase mRNA and protein but decreased levels of CKB kinase, alterations that may have a role in the invasiveness and metastasis of gastric tumors. Expression of the three studied kinases was also associated with MYC oncogene expression, a possible biomarker for gastric cancer. To understand the mechanisms that regulate the expression of these genes, we evaluated the DNA promoter methylation of the three kinases. We found that reduced SRC and LYN methylation and increased CKB methylation was associated with gastric cancer. The reduced SRC and LYN methylation was associated with increased levels of mRNA and protein expression, suggesting that DNA methylation is involved in regulating the expression of these kinases. Conversely, reduced CKB methylation was observed in samples with reduced mRNA and protein expression, suggesting CKB expression was found to be only partly regulated by DNA methylation. Additionally, we found that alterations in the DNA methylation pattern of the three studied kinases were also associated with the gastric cancer onset, advanced gastric cancer, deeper tumor invasion and the presence of metastasis. Therefore, SRC, LYN and CKB expression or DNA methylation could be useful markers for predicting tumor progression and targeting in anti-cancer strategies.  相似文献   

10.
The DNA damage checkpoint regulates DNA replication and arrests cell cycle progression in response to genotoxic stress. In Saccharomyces cerevisiae, the protein kinase Rad53 plays a central role in preventing genomic instability and maintaining viability in the presence of replication stress and DNA damage. Activation of Rad53 depends on phosphorylation by the upstream kinase Mec1, followed by autophosphorylation on multiple residues. Also critical for cell viability, the molecular mechanism of Rad53 deactivation remains incompletely understood. Rad53 dephosphorylation after repair of a persistent double strand break in G(2)/M has been shown to depend on the presence of the PP2C-type phosphatases Ptc2 and Ptc3. More recently, the PP2A-like protein phosphatase Pph3 has been shown to be required to dephosphorylate Rad53 after DNA methylation damage in S phase. However, we show here that Ptc2/3 are dispensable for Rad53 deactivation after replication stress or DNA methylation damage. Pph3 is also dispensable for the deactivation of Rad53 after replication stress. In addition, Rad53 kinase activity is still deactivated in pph3 null cells after DNA methylation damage, despite persistent Rad53 hyperphosphorylation. Finally, a strain in which the three phosphatases are deleted shows a severe defect in Rad53 kinase deactivation after DNA methylation damage but not after replication stress. In all, our results suggest that distinct phosphatases operate to return Rad53 to its basal state after different genotoxic stresses and that a yet unidentified phosphatase may be responsible for the deactivation of Rad53 after replication stress.  相似文献   

11.
DNA methylation is an essential enzymatic modification in mammals. This common epigenetic mark occurs predominantly at the fifth carbon of cytosines within the palindromic dinucleotide 5'-CpG-3'. The majority of methylated CpGs are located within repetitive elements including centromeric repeats, satellite sequences and gene repeats encoding ribosomal RNAs. CpG islands, frequently located at the 5' end of genes, are typically unmethylated. DNA methylation also occurs at imprinted genes which exhibit parent-of-origin-specific patterns of methylation and expression. Imprinted methylation at differentially methylated domains (DMDs) is one of the regulatory mechanisms controlling the allele-specific expression of imprinted genes. Proper control of DNA methylation is needed for normal development and loss of methylation control can contribute to initiation and progression of tumorigenesis (reviewed in Plass and Soloway, 2002). Because patterns of imprinted DNA methylation are highly reproducible, imprinted loci make useful models for studying regulation of DNA methylation and may provide insights into how this regulation goes awry in cancer. Here, we review what is currently known about the mechanisms regulating imprinted DNA methylation. We will focus on cis-acting DNA sequences, trans-acting protein factors and the possible involvement of RNAs in control of imprinted DNA methylation.  相似文献   

12.
DNA methylation plays an important role in gene expression regulation during biological development in plants. This study adopted methylation sensitive amplification polymorphism (MSAP) to compare the levels and patterns of cytosine methylation at CCGG sites in maize genome. The tissues assayed included seedlings and tassels of C-type cytoplasmic male sterility (C Huang Zao Si, C 48-2) and its maintainer lines. For each tissue, both C Huang Zao Si and C 48-2 were more methylated than their corresponding maintainers not only on MSAP ratios, but also on the full methylation levels. In different nuclear backgrounds, the two tissues were more methylated in Huang Zao Si than in 48-2, although the two lines shared the same cytoplasm. Full methylation of internal cytosine was the dominant type in the maize genome. In addition, four different classes of methylation patterns were identified in tassels between C-CMS lines and their maintainer lines; these were specific-methylation, demethylation, hypo-methylation, and hyper-methylation. The results obtained demonstrated the power of the MSAP technique for large-scale DNA methylation detection in the maize genome, and suggested the possible association between DNA methylation polymorphism and C-type cytoplasmic male sterility.  相似文献   

13.
14.
15.
16.
17.
18.
Silencing of genes by hypermethylation contributes to cancer progression and has been shown to occur with increased frequency at specific genomic loci. However, the precise mechanisms underlying the establishment and maintenance of aberrant methylation marks are still elusive. The de novo DNA methyltransferase 3B (DNMT3B) has been suggested to play an important role in the generation of cancer-specific methylation patterns. Previous studies have shown that a reduction of DNMT3B protein levels induces antiproliferative effects in cancer cells that were attributed to the demethylation and reactivation of tumor suppressor genes. However, methylation changes have not been analyzed in detail yet. Using RNA interference we reduced DNMT3B protein levels in colon cancer cell lines. Our results confirm that depletion of DNMT3B specifically reduced the proliferation rate of DNMT3B-overexpressing colon cancer cell lines. However, genome-scale DNA methylation profiling failed to reveal methylation changes at putative DNMT3B target genes, even in the complete absence of DNMT3B. These results show that DNMT3B is dispensable for the maintenance of aberrant DNA methylation patterns in human colon cancer cells and they have important implications for the development of targeted DNA methyltransferase inhibitors as epigenetic cancer drugs.  相似文献   

19.
20.
Zhang L  Wang Y  Zhang X  Zhang M  Han D  Qiu C  Han Z 《Plant cell reports》2012,31(1):155-165
Changes in endogenous phytohormone levels, DNA methylation patterns, and expression levels of related genes during induction of dormancy in two strawberry cultivars, Darselect and All Star, were studied under controlled environmental conditions. At 12°C, regardless of day length, potted, runner-derived plants of both cultivars gradually exhibited morphological traits typical of dormancy after treatment for 8 weeks. These morphological changes were accompanied by a synchronous significant decline in indole-3-acetic acid (IAA) level and increases in abscisic acid (ABA) content and global genomic DNA methylation in young leaves. Exposed at 15°C and a short-day photoperiod, the changes in morphology, phytohormone levels and DNA methylation of both cultivars were similar to those observed at 12°C. Slight but non-significant changes in IAA and ABA levels and genomic DNA methylation occurred in young leaves at both 15°C with long days and 18°C with short days. These results indicated that temperature alone was sufficient to induce strawberry to enter the typical dormant phase, and day length had no impact at 12°C. The higher temperature permissible for dormancy induction in strawberry was 15°C, but at this temperature dormancy induction was modified by day length. The expression patterns of FaPIN1, FaNCED1, FaDRM and FaROS1 were coincident with the changes in phytohormone levels and DNA methylation. Although the two tested cultivars have different temporal responses with the different degree of cold tolerance and depth of dormancy, both the endogenous phytohormone and DNA methylation were changed when induced by external environmental factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号