首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lau OL  Murr DP  Yang SF 《Plant physiology》1974,54(2):182-185
Auxin-induced ethylene production by mung bean (Phaseolus mungo L.) hypocotyl segments was markedly inhibited by 2,4-dinitrophenol regardless of whether or not kinetin was present. Uptake of indoleacetic acid-2-14C was also inhibited in the presence of 2,4-dinitrophenol. Segments treated only with indoleacetic acid rapidly converted indoleacetic acid into indole-3-acetylaspartic acid with time whereas kinetin suppressed indoleacetic acid conjugation. Formation of indole-3-acetylaspartic acid was significantly reduced when 2,4-dinitrophenol was present. The suppression of indoleacetic acid conjugation by kinetin and 2,4-dinitrophenol appeared to be additive, and the free indoleacetic acid level in segments treated with 2,4-dinitrophenol in the presence of indoleacetic acid or indoleacetic acid plus kinetin was remarkably higher than in corresponding segments which received no 2,4-dinitrophenol.  相似文献   

2.
In the presence of nitroaromatic and haloaromatic derivatives,Rhodobacter capsulatus E1F1 growth was affected in different degrees depending on the nitrogen source used. Phototrophic growth on glutamate or ammonium was not inhibited by 2,4-dinitrophenol (2,4-DNP), 4-nitrophenol (4-NP), 2-amino-4-nitrophenol (2,4-ANP), 4-aminophenol (4-AP), or 4-chlorophenol (4-CIP), whereas 2,4-dinitrophenol and 4-chlorophenol partially inhibited bacterial growth in nitrate, nitrite, and dinitrogen. On the other hand, although photosynthetic nitrate uptake was significantly inhibited by 2,4-dinitrophenol, 4-chlorophenol inhibited it to a lesser extent. Nitrogen fixation was severely inactivated in vivo by 2,4-dinitrophenol, but nitrate reductase activity was activated in vivo by 2,4-dinitrophenol, 4-nitrophenol, and 4-chlorophenol. Similar effects were found in cells growing with nitrate and 2,4-dinitrophenol under dark and aerobiosis conditions. None of the enzymatic activities related to inorganic nitrogen assimilation were affected by xenobiotics in vitro.  相似文献   

3.
The rate of proton transfer between the octanol -OH group and water dissolved in octanol after partition equilibrium was determined by 1H-NMR spectrometry. The rate was found to depend on the pH of the aqueous phase, being minimal at about pH 11. The uncoupler of oxidative phosphorylation 2,4-dinitrophenol at about 10?3 M accelerated proton transfer several-fold. Its effect was shown to depend on the concentration of the neutral form of 2,4-dinitrophenol in the octanol phase, irrespective of the pH of the aqueous phase. This effect is suggested to be based on the catalytic action of the phenolic -OH group in 2,4-dinitrophenol. The importance of this effect in the uncoupling action of 2,4-dinitrophenol is discussed.  相似文献   

4.
Rhodococcus erythropolis HL 24-1 isolated as a 2,4-dinitrophenol-degrading organism can utilize 2-chloro-4,6-dinitrophenol as the sole nitrogen, carbon, and energy source under aerobic conditions. This compound is metabolized with liberation of stoichiometric amounts of chloride and nitrite. Under anaerobic conditions, 2,4-dinitrophenol was transiently accumulated in the culture fluid, indicating a reductive elimination of chloride. During aerobic bioconversion of 2-amino-4,6-dinitrophenol by R. erythropolis HL 24-1, a reductive elimination of nitrite leading to 2-amino-6-nitrophenol was observed. Elimination of chloride or nitrite by the initial formation of a hydride Meisenheimer complex is discussed. A methyl group in the ortho position of the 2,4-dinitrophenol gives rise to an extensive reduction of the aromatic ring under aerobic conditions. Thus, 2-methyl-4,6-dinitrophenol was shown to be converted to the two diastereomers of 4,6-dinitro-2-methylhexanoate as dead-end metabolites which were identified by spectroscopic methods.  相似文献   

5.
Two Rhodococcus erythropolis strains, HL 24-1 and HL 24-2, were isolated from soil and river water by their abilities to utilize 2,4-dinitrophenol (0.5 mM) as the sole source of nitrogen. Although succinate was supplied as a carbon and energy source during selection, both isolates could utilize 2,4-dinitrophenol also as the sole source of carbon. Both strains metabolized 2,4-dinitrophenol under concomitant liberation of stoichiometric amounts of nitrite and 4,6-dinitrohexanoate as a minor dead-end metabolite.  相似文献   

6.
Two Rhodococcus erythropolis strains, HL 24-1 and HL 24-2, were isolated from soil and river water by their abilities to utilize 2,4-dinitrophenol (0.5 mM) as the sole source of nitrogen. Although succinate was supplied as a carbon and energy source during selection, both isolates could utilize 2,4-dinitrophenol also as the sole source of carbon. Both strains metabolized 2,4-dinitrophenol under concomitant liberation of stoichiometric amounts of nitrite and 4,6-dinitrohexanoate as a minor dead-end metabolite.  相似文献   

7.
Oligomycin, antimycin, and 2,4-dinitrophenol, compounds that are known to inhibit oxidative phosphorylation by different mechanisms, inhibit the production of prostaglandins by serum-stimulated MC5-5 cells. The prostaglandin production that is stimulated by thrombin and bradykinin is inhibited by 2,4-dinitrophenol. Prostaglandin synthesis by MC5-5 cells from exogenously-supplied arachidonic acid, however, is not affected by 2,4-dinitrophenol. Antimycin and 2,4-dinitrophenol also inhibit the serum-stimulated release of arachidonic acid from the cellular lipids, suggesting that it is the expression of phospholipase activity, a prerequisite for synthesis of prostaglandins by MC5-5 cells, that is dependent on oxidative phosphorylation.  相似文献   

8.
Modification of replicon operation in HeLa cells by 2,4-dinitrophenol   总被引:3,自引:0,他引:3  
Cycloheximide causes inhibition of semiconservative DNA replication in HeLa cells by reducing the average rate of DNA chain elongation. 2,4-Dinitrophenol inhibits semiconservative DNA replication (50 to 80% inhibitions at 10?3 to 5 × 10?3 M-2,4-dinitrophenol) without affecting the average rate of DNA chain elongation. Therefore, at any given time the number of replicating sections of DNA per DNA-synthesizing (S-phase) cell appears to be reduced in the presence of 2,4-dinitrophenol.Radioactivity profiles of pulse-labeled DNA in alkaline sucrose gradients suggest that 2,4-dinitrophenol modifies initiation and termination patterns of replicating sections, most of which are found to be 10 to 80 μm (mode: 15 to 30 μm) under control conditions. DNA synthesized in the presence of 2,4-dinitrophenol has the density of control DNA, is metabolically stable, and after mitosis, functions normally as a template in the next round of replication.  相似文献   

9.
The cellular electrical activity of diaphragm from F1B normal and BIO 14.6 dystrophic hamsters has been investigated using microelectrodes. Resting membrane potentials and action potentials were recorded from control muscles and from muscles exposed to 2,4-dinitrophenol. The action potentials of normal and dystrophic diaphragms were similar in amplitude and configuration. Treatment with 2,4-dinitrophenol caused the action potential amplitude of both diaphragms to decline by similar amounts. The control resting membrane potential of diaphragm from dystrophic hamsters is not significantly different from that of normal hamsters. Treatment with 2,4-dinitrophenol caused a linear decrease in the resting membrane potentials of both groups of muscles. Dystrophic muscle, however, showed a more rapid decline in excitability when exposed to 2,4-dinitrophenol. This suggests that adenosine triphosphate production in dystrophic muscle is partially inhibited as has been suggested by other workers.  相似文献   

10.
Two hydrogenation reactions in the initial steps of degradation of 2,4,6-trinitrophenol produce the dihydride Meisenheimer complex of 2,4,6-trinitrophenol. The npdH gene (contained in the npd gene cluster of the 2,4,6-trinitrophenol-degrading strain Rhodococcus opacus HL PM-1) was shown here to encode a tautomerase, catalyzing a proton shift between the aci-nitro and the nitro forms of the dihydride Meisenheimer complex of 2,4,6-trinitrophenol. An enzyme (which eliminated nitrite from the aci-nitro form but not the nitro form of the dihydride complex of 2,4,6-trinitrophenol) was purified from the 2,4,6-trinitrophenol-degrading strain Nocardioides simplex FJ2-1A. The product of nitrite release was the hydride Meisenheimer complex of 2,4-dinitrophenol, which was hydrogenated to the dihydride Meisenheimer complex of 2,4-dinitrophenol by the hydride transferase I and the NADPH-dependent F(420) reductase from strain HL PM-1. At pH 7.5, the dihydride complex of 2,4-dinitrophenol is protonated to 2,4-dinitrocyclohexanone. A hydrolase was purified from strain FJ2-1A and shown to cleave 2,4-dinitrocyclohexanone hydrolytically to 4,6-dinitrohexanoate.  相似文献   

11.
Summary Rabbit bone marrow mitochondria isolated by differential centrifugation showed typical oxypolarographic tracings with glutamate oxidation with ADP:O ratio of 2.9. Similar results were obtained with liver mitochondria of the same animal. When marrow mitochondria were oxydizing a substrate such as glutamate, added MgCl2 markedly stimulated state-4 respiration giving a respiratory rate identical to that of state-3. In contrast, no Mg2+-stimulation was observed with liver mitochondria. Oligomycin completely blocked the stimulation by Mg2+ but further addition of 2,4-dinitrophenol reactivated the oxygen consumption by uncoupling. Further purification of marrow mitochondria by density gradient centrifugation in Percoll provided identical oxypolarographic results. Moreover, when marrow mitochondria were incubated without Mg2+, they showed a low ATPase activity that was stimulated by 2,4-dinitrophenol and blocked by oligomycin. The presence of Mg2+ in the incubation medium uncovered an additional ATPase activity which was resistant to oligomycin and apparently unaffected by 2,4-dinitrophenol. It is concluded that bone marrow mitochondria possess two types of ATPase activity distinguished on the basis of their reactivity with oligomycin, 2,4-dinitrophenol and Mg2+.Abbreviations EDTA ethylenediamine tetraacetate - DNP 2,4-dinitrophenol - BSA bovine serum albumin - BMM bone marrow mitochondria - LM liver mitochondria - Oligo. oligomycin - Anti A antimycin A Howard Hughes Investigator.  相似文献   

12.
Changes in phosphate metabolism were explored in discs from tobacco (Nicotiana tabacum) leaves of three contrasting types: green leaves which were fully expanded and attached to the plant, leaves which had yellowed following excision and dark starvation, and leaves which had yellowed while attached to the plant. 2,4-Dinitrophenol at 10−5m stimulated the respiration rate of discs from green and yellow-detached leaves only slightly, but markedly stimulated that of discs from yellow-attached leaves. Following a 10-minute uptake period the incorporation of 32P-orthophosphate into phosphate esters and lipids of discs from yellow-detached leaves was resistant to 2,4-dinitrophenol, whereas in discs from green and yellow-attached leaves it was inhibited by 2,4-dinitrophenol. Incorporation into a salt-soluble fraction containing unidentified nucleotide material showed converse behavior in that it was stimulated by 2,4-dinitrophenol in discs from green and yellow-attached leaves; in discs from yellow-detached leaves it was resistant to 2,4-dinitrophenol. In discs from yellow-detached and yellow-attached leaves there was a shift in the labeling pattern of phosphate esters toward increased label in hexose phosphates at the expense of adenine nucleotides, 3-phosphoglycerate, and phosphoenolpyruvate. It is concluded that incorporation into phosphate esters in discs from yellow-detached leaves is by substrate level phosphorylation coupled to enhanced aerobic glycolysis. In discs from yellow-attached leaves, on the other hand, incorporation depends on oxidation phosphorylation, and it is suggested that the shift in labeling pattern is caused by senescence-induced changes in activity of glycolytic enzymes.  相似文献   

13.
A mutant of the hymenomyceteSchizophyllum commune was isolated which, owing to an extranuclear mutation, did not utilize acetate as the sole carbon source for growth. The growth of the mutant on glucose minimal medium was completely inhibited by sodium azide but was resistant to the effect of 2,4-dinitrophenol or oligomycin. Its endogenous respiration was cyanide-sensitive and was stimulated by 2,4-dinitrophenol to a considerably smaller degree than that of the wild-type strain. The experimental results obtained with this mutant suggest a defect in aerobic phosphorylation.  相似文献   

14.
Nucleic acids and protein synthesis in synchronously growing Chlorella cells were inhibited by 2,4-dinitrophenol. RNA and protein synthesis decreased gradually from about 100% at 0.1 mM to almost 0% at 10 mM dinitrophenol. DNA synthesis was strongly inhibited at 0.5 mM but less at 1 mM concentration of the inhibitor. Beyond 1 mM the inhibitory effect increased again. A transient exposure to 0.5 and 10 mM dinitrophenol was fully reversible and cell division after the inhibition proceeded normally except for a slight delay.Abbreviation DNP 2,4-dinitrophenol  相似文献   

15.
Kaempferol inhibitions of corn mitochondrial phosphorylation   总被引:3,自引:3,他引:0       下载免费PDF全文
Kaempferol (3, 5, 7, 4′tetrahydroxyflavone) inhibited the rate of state 3 substrate oxidation, but not the state 4 rate. This, along with the kaempferol inhibition of substrate-driven calcium-phosphate deposition, provided evidence that kaempferol was acting specifically on the phosphorylation mechanism and not on electron transfer. Kaempferol, however, did not inhibit ATP-driven contraction while oligomycin did. Comparisons of kaempferol with mersalyl indicated that kaempferol did not inhibit phosphorylation by blocking phosphate transport. Both kaempferol and 2,4-dinitrophenol inhibited calcium-phosphate transport, but kaempferol did not stimulate respiration to the extent that 2,4-dinitrophenol did under acceptorless conditions. Kaempferol had no effect on NADH-driven contraction in a potassium chloride reaction medium. The site of kaempferol effect is thus seen to be unique from oligomycin and more like aurovertin, likely acting before the formation of the phosphorylated high energy intermediate, but not as an uncoupler in the traditional 2,4-dinitrophenol mode.  相似文献   

16.
Godfrey Maina 《BBA》1974,333(3):481-486
1. Reserpine, like the uncoupling agent, 2,4-dinitrophenol prevents oxidative phosphorylation but stimulates the rate at which oxygen is reduced.

2. Both reserpine and 2,4-dinitrophenol fail to stimulate oxygen uptake by isolated mitochondria in the presence of arginine.

3. Both 2,4-dinitrophenol and reserpine induce proton permeability in the mitochondrial membrane so that H+ is absorbed from the suspending medium.

4. When the reaction system contains reserpine, accumulation of Ca2+ by mitochondria is inhibited.

5. Reserpine decreases both ADP:O and P:O ratios which strongly suggest that reserpine is an uncoupling agent.  相似文献   


17.
Two hydrogenation reactions in the initial steps of degradation of 2,4,6-trinitrophenol produce the dihydride Meisenheimer complex of 2,4,6-trinitrophenol. The npdH gene (contained in the npd gene cluster of the 2,4,6-trinitrophenol-degrading strain Rhodococcus opacus HL PM-1) was shown here to encode a tautomerase, catalyzing a proton shift between the aci-nitro and the nitro forms of the dihydride Meisenheimer complex of 2,4,6-trinitrophenol. An enzyme (which eliminated nitrite from the aci-nitro form but not the nitro form of the dihydride complex of 2,4,6-trinitrophenol) was purified from the 2,4,6-trinitrophenol-degrading strain Nocardioides simplex FJ2-1A. The product of nitrite release was the hydride Meisenheimer complex of 2,4-dinitrophenol, which was hydrogenated to the dihydride Meisenheimer complex of 2,4-dinitrophenol by the hydride transferase I and the NADPH-dependent F420 reductase from strain HL PM-1. At pH 7.5, the dihydride complex of 2,4-dinitrophenol is protonated to 2,4-dinitrocyclohexanone. A hydrolase was purified from strain FJ2-1A and shown to cleave 2,4-dinitrocyclohexanone hydrolytically to 4,6-dinitrohexanoate.  相似文献   

18.
Both Alcaligenes eutrophus JMP 134 and its plasmid-free derivative Alcaligenes eutrophus JMP 222 utilize 2,6-dinitrophenol as sole source of carbon, energy, and nitrogen. In the presence of ammonia resting cells of these strains release two mol of nitrite per mol of 2,6-dinitrophenol. Alcaligenes eutrophus JMP 222-1D, a mutant of strain JMP 222 obtained by transposon (Tn5) mutagenesis, is able to use 2,6-dinitrophenol as nitrogen source but not as source of carbon and energy. Resting cells of this mutant liberate only one mol of nitrite per mol of 2,6-dinitrophenol. A single metabolite was detected by high-pressure liquid chromatography and identified as 2-hydroxy-5-nitropenta-2,4-dienoic acid from the mass spectrum, the 1H-, and 13C-NMR spectra. Strain JMP 222-1S, a spontaneous mutant of strain JMP 222-1D, accumulates 4-nitropyrogallol which was identified as the initial metabolite of 2,6-dinitrophenol degradation.Non-standard abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 2,6-DNP 2,6-dinitrophenol - HNMA 2-hydroxy-5-nitromuconic acid - HNPA 2-hydroxy-5-nitropenta-2,4-dienoic acid - NB nutrient broth - NMR nuclear magnetic resonance - NPG 4-nitropyrogallol - O.D. optical density - tR retention time - UV/Vis ultraviolet/visible  相似文献   

19.
Abstract This study was initiated to establish whether inhibition of growth of yeasts by medium-chain fatty acids resembled that caused by weak-acid preservatives or uncouplers. Unlike sorbic acid and 2,4-dinitrophenol, decanoic acid caused rapid cell death at its inhibitory concentration. This suggested a mode of action by medium-chain fatty acids, distinct from both weakacid preservatives and uncouplers. Sorbic acid and 2,4-dinitrophenol both increased lag and doubling times, reduced cell yields and inhibitory concentrations of both were highly pH sensitive. The possibility is discussed as to whether weak-acid preservatives and uncouplers share common modes of inhibition.  相似文献   

20.
The properties of the adenosine triphosphatase activity associated with tightly coupled, time-stable mung bean (Phaseolus aureus Roxb.) mitochondria resemble those of intact animal mitochondria. Induction of adenosine triphosphatase activity by 2,4-dinitrophenol was inhibited by oligomycin, oxidizable substrates, and high concentrations of sucrose. Upon sonication, high rates of endogenous adenosine triphosphate hydrolysis resulted, an absolute requirement for Mg2+ was manifested, stimulation by 2,4-dinitrophenol and inhibition by sucrose were eliminated, but sensitivity to oligomycin was retained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号