首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Cryptococcus neoformans is an encapsulated yeast-form fungus which causes pulmonary and meningeal infections preferentially in the immunocompromised host. It is thought that cell-mediated immunity is important for acquired resistance against cryptococcosis with activated macrophages as the final effector cells. However, specific polysaccharides in the capsule of C. neoformans protect the fungus from adherence to phagocytes and from subsequent phagocytosis. We have studied extracellular killing of C. neoformans by IFN-gamma-activated macrophages and their products. Murine bone marrow-derived macrophages stimulated with rIFN-gamma for 24 h were able to effectively suppress the growth of C. neoformans and the effect of IFN-gamma was augmented by LPS. Killing of C. neoformans was also achieved by cell-free supernatants from bone marrow-derived macrophages stimulated with IFN-gamma plus LPS. Our results indicate that killing of C. neoformans by activated macrophages is independent from toxic oxygen radicals and mediated by secreted protein(s) of apparent molecular mass of 15 and 30 kDa. These findings indicate that activated macrophages play a major role in host defense, although the fungus resists phagocytosis and remains in the extracellular milieu.  相似文献   

2.
Cryptococcus neoformans III. Inhibition of Phagocytosis   总被引:1,自引:0,他引:1  
Isolated nonhydrolyzed cryptococcal polysaccharide is a rather specific potent inhibitor of the phagocytosis of Cryptococcus neoformans by human leukocytes in vitro. When an encapsulated strain of C. neoformans was cultured in the nonencapsulated state, the rate of phagocytosis was three times greater than when the encapsulated form was used. Our theory that capsular material plays a role in the pathogenesis of cryptococcosis requires (i) that C. neoformans exist in soil in a nonencapsulated state and (ii) that human phagocytes be capable of killing the organisms.  相似文献   

3.
Antibody-mediated phagocytosis was discovered over a century ago but little is known about antibody effects in phagolysosomes. We explored the consequences of antibody-mediated phagocytosis for two closely related human pathogenic fungal species, Cryptococcus neoformans and Cryptococcus gattii , of which C. neoformans encompasses two varieties: neoformans and grubii. The interaction between C. neoformans varieties grubii and neoformans and host cells has been extensively studied, but that of C. gattii and macrophages remains largely unexplored. Like C. neoformans , antibody-mediated phagocytosis of C. gattii cells was followed by intracellular replication, host cell cytoplasmic polysaccharide accumulation and phagosomal extrusion. Both C. gattii and C. neoformans cells exited macrophages in biofilm-like microcolonies where the yeast cells were aggregated in a polysaccharide matrix that contained bound antibody. In contrast, complement-opsonized C. neoformans variety grubii cells were released from macrophages dispersed as individual cells. Hence, both antibody- and complement-mediated phagocytosis resulted in intracellular replication but the mode of opsonization affected the outcome of exocytosis. The biofilm-like microcolony exit strategy of C. neoformans and C. gattii following antibody opsonization reduced fungal cell dispersion. This finding suggests that antibody agglutination effects persist in the phagosome to entangle nascent daughter cells and this phenomenon may contribute to antibody-mediated protection.  相似文献   

4.
We have investigated the interaction of C1q, a subunit of the first component of complement, with human monocytes and culture-derived macrophages. Adherence of these mononuclear phagocytes to surfaces coated with C1q induced a marked enhancement of the phagocytosis of sheep erythrocytes opsonized with IgG anti-Forssman antibody (EA-IgG). This C1q-mediated enhancement of phagocytosis was dose dependent, and was specifically blocked by pretreatment of the C1q-coated surfaces with F(ab')2 anti-C1q. The augmentation of FcR-mediated phagocytosis by C1q was determined to be a result of the interaction between the C1q and the phagocytic effector cell, and was not due to interaction between the surface-bound C1q and the EA-IgG. Neither resting nor N-formyl-methionyl-leucyl-phenylalanine-stimulated polymorphonuclear leukocytes were induced by C1q to increase FcR-mediated phagocytosis. Experiments conducted with purified fragments of C1q suggest that the C1q phagocytosis enhancement signal resides in the collagen-like tail domain of the molecule. This region is the same portion of the molecule previously shown to interact with the cell surface C1q receptor. Native type I collagen was unable to enhance FcR-mediated phagocytosis by mononuclear phagocytes. It has been demonstrated that C1q can be localized to areas of inflammation, and additionally C1q can be secreted by macrophages in culture. In view of these findings and the results of our present study, we hypothesize that C1q could provide local, direct, and non-opsonic enhancement of phagocytosis by mononuclear phagocytes in areas of infection and inflammation.  相似文献   

5.
After inhalation of infectious particles, Cryptococcus neoformans resides in the alveolar spaces, where it can survive and replicate in the extracellular environment. This yeast has developed different mechanisms to avoid internalization by phagocytic cells, the main one being a polysaccharide capsule around the cell body, which inhibits the uptake of the yeast by macrophages. In addition, capsule-independent mechanisms have also been described, such as the production of antiphagocytic proteins. Despite these mechanisms, phagocytosis can occur in the presence of opsonins, and once C. neoformans is internalized, multiple outcomes are possible, including pathogen killing or intracellular replication and escape from macrophages. For this reason, C. neoformans is considered a facultative intracellular pathogen. As alveolar macrophages are the first component of the host immune system to confront C. neoformans, the outcome of this interaction could determine the degree of infection, producing either a severe disseminated disease or a latency state. In this review, we will tackle the complexity of the interaction between C. neoformans and macrophages, including the phagocytic avoidance mechanisms and all the possible outcomes that have been described for this interaction. Finally, we will discuss the consequences of the different outcomes for the type of infection produced in the host.  相似文献   

6.
Polymorphonuclear neutrophils (PMN) and mononuclear phagocytes represent an important first line and effector function in the control of Candida infections. Their relative contribution to host defence is frequently assessed by means of microbiological assays. However, reported results are divergent and might well be associated with study design-related issues. In the present study, we compared frequently used microbiological candidacidal assays, with the purpose of determining the most adequate method for assessment of phagocytosis and intracellular killing. We concluded that microbiological assays using yeast-phagocyte suspensions are inappropriate for the assessment of intracellular killing of Candida blastoconidia by murine macrophages, due to adherence or clumping of cells. In contrast, an adherent monolayer of phagocytes can be applied as a single microbiological assay to independently study the process of phagocytosis and intracellular killing, by exudate peritoneal macrophages as well as exudate peritoneal PMN.  相似文献   

7.
Initiation of a protective immune response to infection by the pathogenic fungus Cryptococcus neoformans is mediated in part by host factors that promote interactions between immune cells and C. neoformans yeast. Surfactant protein A (SP-A) contributes positively to pulmonary host defenses against a variety of bacteria, viruses, and fungi in part by promoting the recognition and phagocytosis of these pathogens by alveolar macrophages. In the present study we investigated the role of SP-A as a mediator of host defense against the pulmonary pathogen, C. neoformans. Previous studies have shown that SP-A binds to acapsular and minimally encapsulated strains of C. neoformans. Using in vitro binding assays we confirmed that SP-A does not directly bind to a fully encapsulated strain of C. neoformans (H99). However, we observed that when C. neoformans was incubated in bronchoalveolar fluid, SP-A binding was detected, suggesting that another alveolar host factor may enable SP-A binding. Indeed, we discovered that SP-A binds encapsulated C. neoformans via a previously unknown IgG dependent mechanism. The consequence of this interaction was the inhibition of IgG-mediated phagocytosis of C. neoformans by alveolar macrophages. Therefore, to assess the contribution of SP-A to the pulmonary host defenses we compared in vivo infections using SP-A null mice (SP-A-/-) and wild-type mice in an intranasal infection model. We found that the immune response assessed by cellular counts, TNFalpha cytokine production, and fungal burden in lungs and bronchoalveolar lavage fluids during early stages of infection were equivalent. Furthermore, the survival outcome of C. neoformans infection was equivalent in SP-A-/- and wild-type mice. Our results suggest that unlike a variety of bacteria, viruses, and other fungi, progression of disease with an inhalational challenge of C. neoformans does not appear to be negatively or positively affected by SP-A mediated mechanisms of pulmonary host defense.  相似文献   

8.
Expulsion of live pathogenic yeast by macrophages   总被引:4,自引:0,他引:4  
Phagocytic cells, such as neutrophils and macrophages, perform a critical role in protecting organisms from infection by engulfing and destroying invading microbes . Although some bacteria and fungi have evolved strategies to survive within a phagocyte after uptake, most of these pathogens must eventually kill the host cell if they are to escape and infect other tissues . However, we now demonstrate that the human fungal pathogen Cryptococcus neoformans is able to escape from within macrophages without killing the host cell by a novel expulsive mechanism. This process occurs in both murine J774 cells and primary human macrophages. It is extremely rapid and yet can occur many hours after phagocytosis of the pathogen. Expulsion occurs independently of the initial route of phagocytic uptake and does not require phagosome maturation . After the expulsive event, both the host macrophage and the expelled C. neoformans appear morphologically normal and continue to proliferate, suggesting that this process may represent an important mechanism by which pathogens are able to escape from phagocytic cells without triggering host cell death and thus inflammation .  相似文献   

9.
Apoptotic cells express eat-me signals which are recognized by several receptors mainly on professional phagocytes of the mononuclear phagocyte system. This “engulfment synapse” can define a safe and effective clearance of apoptotic cells in order to maintain tissue homeostasis in the entire body. We show that the expression of four genes related to apoptotic cell clearance is strongly up-regulated in human macrophages 30 min after administration of apoptotic neutrophils. Out of these the significant role of the up-regulated intercellular adhesion molecule 3 (ICAM3) in phagocytosis of apoptotic neutrophils could be demonstrated in macrophages by gene silencing as well as treatment with blocking antibodies. Blocking ICAM3 on the surface of apoptotic neutrophils also resulted in their decreased uptake which confirmed its role as an eat-me signal expressed by apoptotic cells. In macrophages but not in neutrophils silencing and blocking integrin alphaL and beta2 components of lymphocyte function-associated antigen 1 (LFA-1), which can strongly bind ICAM3, resulted in a decreased phagocytosis of apoptotic cells indicating its possible role to recognize ICAM3 on the surface of apoptotic neutrophils. Finally, we report that engulfing portals formed in macrophages during phagocytosis are characterized by accumulation of ICAM3, integrin alphaL and beta2 which show co-localization on the surface of phagocytes. Furthermore, their simultaneous knock-down in macrophages resulted in a marked deficiency in phagocytosis and a slight decrease in the anti-inflammatory effect of apoptotic neutrophils. We propose that ICAM3 and LFA-1 act as recognition receptors in the phagocytosis portals of macrophages for engulfment of apoptotic neutrophils.  相似文献   

10.
A key feature of the process of programmed cell death (apoptosis) is the efficiency with which the dying cells are recognized and engulfed by phagocytes [1]. Apoptotic cells are rapidly cleared either by neighbouring cells acting as semi-professional phagocytes or by experts of the macrophage line, so that an inflammatory response is avoided [2]. The Caenorhabditis elegans gene ced-6 is required for efficient engulfment of apoptotic cells [3] and is one of a group of genes that define two partially redundant parallel pathways for the engulfment process [4] [5]. These pathways may be conserved across evolution, as two other engulfment genes have human homologues. A CED-5 homologue is part of a human CrkII-DOCK180-Rac signaling pathway proposed to mediate cytoskeletal reorganization [6] [7] [8] and a CED-7 homologue is similar to the ABC transporters [9] [10]. Here, we report the cloning and characterization of human CED-6, a human homologue of C. elegans CED-6. The 34 kDa hCED-6 protein is expressed in most tissues, some human cancer cells, and in primary human macrophages. We developed an assay that quantitates the phagocytic activity of mammalian macrophages: the number of apoptotic cells that have been internalized is measured by the uptake of lacZ-positive apoptotic cells by adherent transgenic macrophages. The results of this assay demonstrate that overexpression of hCED-6 promotes phagocytosis only of apoptotic cells and suggest that hCED-6 is the mammalian orthologue of C. elegans CED-6 and is a part of a highly conserved pathway that specifically mediates the phagocytosis of apoptotic cells.  相似文献   

11.
The present study demonstrates that SRBC can be opsonized with untreated human serum such that lysis by active complement components is minimal but sufficient opsonization occurs to permit high rates of complement-mediated phagocytosis. Phagocytosis of SRBC opsonized with 2% whole human serum by human monocyte-derived macrophages was quantified in a colourimetric assay. Ingestion of SRBC was shown to occur solely via complement receptors because no phagocytosis was observed when SRBC were coated with heat- inactivated human serum, phagocytosis was augmented by the phorbol ester, PMA, and phagocytosis was inhibited by a protein kinase C (PKC)-specific inhibitor RO 31-8220. This method was used to demonstrate directly that HIV-1 infection of human monocyte-derived macrophages inhibits complement-mediated phagocytosis and will provide a useful tool for pharmacological investigations on complement-mediated phagocytosis by adherent macrophages.  相似文献   

12.
The C3 receptors of human peripheral blood monocytes are able to move laterally within the plasma membranes of the cells and remain mobile even when the cells develop into "macrophages" in vitro. In contrast, the C3 receptors of mouse peritoneal macrophages are immobile. To determine whether these differences are species differences or differences between cells of different stages of differentiation, we assessed the mobility of C3 receptors of mouse peripheral blood monocytes and of human pulmonary alveolar and peritoneal macrophages. The C3 receptors of mouse monocytes were mobile, whereas the C3 receptors of human tissue macrophages were immobile. The C3 receptors of macrophages mediate avid particle binding but do not normally promote ingestion. We have described a unique lymphokine that activates mouse peritoneal macrophage C3 receptors for phagocytosis by freeing them from their plasma membrane anchors. In the present experiments, we found that the lymphokine also freed the C3 receptors of human macrophages and activated them for phagocytosis. We conclude that the immobilization of C3 receptors appears to be a marker for the differentiation of human and mouse mononuclear phagocytes, that the differentiation of mononuclear phagocytes is influenced by the milieu in which the cells develop, that in vitro-differentiated macrophages may not accurately represent tissue macrophages, and that a lymphokine activates the C3 receptors of both human and mouse macrophages for phagocytosis by allowing the receptors lateral mobility within the cell plasma membrane.  相似文献   

13.
Mononuclear phagocytes are among the first immune cells activated after pathogens invasion. Although they all derive from the same progenitor in the bone marrow, their characteristics differ on the compartment from which they are derived. In this work, we investigated the contribution of phagocytosis for tumor necrosis factor (TNF) production by murine mononuclear phagocytes (monocytes, peritoneal and alveolar macrophages) in response to heat-killed Staphylococcus aureus (HKSA). Mononuclear phagocytes behaved differently, depending on their compartment of residence. Indeed, when bacterial uptake or phagosome maturation was blocked, activation through membrane receptors was sufficient for a maximal production of TNF and interleukin-10 by peritoneal macrophages. In contrast, monocytes, and to a lesser extent alveolar macrophages, required phagocytosis for optimal cytokine production. While investigating the different actors of signalization, we found that p38 kinase and phosphatidylinositol 3-kinase were playing an important role in HKSA phagocytosis and TNF production. Furthermore, blocking the α(5)β(1)-integrin significantly decreased TNF production in response to HKSA in all three cell types. Finally, using mononuclear phagocytes from NOD2 knockout mice, we observed that TNF production in response to HKSA was dependent on NOD2 for monocytes and peritoneal macrophages. In conclusion, we demonstrate that the mechanisms of activation leading to TNF production in response to HKSA are specific for each mononuclear phagocyte population and involve different recognition processes and signaling pathways. The influence of the compartments on cell properties and behavior should be taken into account, to better understand cell physiology and host-pathogen interaction, and to define efficient strategies to fight infection.  相似文献   

14.
The capsule of the human pathogenic fungus Cryptococcus neoformans presents the immune system with a formidable problem for phagocytosis. Capsule-mediated activation of the alternative complement (C) pathway results in component 3 (particularly, C3) binding to the capsule near the cell wall surface. Hence, for cells with large capsule, C3 cannot interact with the complement receptor (CR) and is not opsonic. However, C activation in either immune serum or in the presence of monoclonal antibody (mAb) to capsular polysaccharide localizes C3 to the capsular edge. When C. neoformans cells were coated with both C and antibody (Ab) opsonins, Ab bound first and promoted C3 deposition at the edge of the capsule. The mechanism for the Ab-mediated change in C3 localization to the capsule edge involved both classical C pathway activation and steric hindrance preventing C3 penetration into the capsule. The change in C3 localization changed the mode of phagocytosis in macrophages, such that localizing C3 at the edge of the capsule allowed phagocytosis through C3-CR3 and C3-CR4 interactions, which did not occur in serum without Ab. These findings reveal a new mechanism of Ab action whereby Abs affect the location of C3 and its interaction with its receptor in macrophages depending on the immunoglobulin concentration.  相似文献   

15.
16.
We developed a new in vitro model for a multi-parameter characterization of the time course interaction of Candida fungal cells with J774 murine macrophages and human neutrophils, based on the use of combined microscopy, fluorometry, flow cytometry and viability assays. Using fluorochromes specific to phagocytes and yeasts, we could accurately quantify various parameters simultaneously in a single infection experiment: at the individual cell level, we measured the association of phagocytes to fungal cells and phagocyte survival, and monitored in parallel the overall phagocytosis process by measuring the part of ingested fungal cells among the total fungal biomass that changed over time. Candida albicans, C. glabrata, and C. lusitaniae were used as a proof of concept: they exhibited species-specific differences in their association rate with phagocytes. The fungal biomass uptaken by the phagocytes differed significantly according to the Candida species. The measure of the survival of fungal and immune cells during the interaction showed that C. albicans was the more aggressive yeast in vitro, destroying the vast majority of the phagocytes within five hours. All three species of Candida were able to survive and to escape macrophage phagocytosis either by the intraphagocytic yeast-to-hyphae transition (C. albicans) and the fungal cell multiplication until phagocytes burst (C. glabrata, C. lusitaniae), or by the avoidance of phagocytosis (C. lusitaniae). We demonstrated that our model was sensitive enough to quantify small variations of the parameters of the interaction. The method has been conceived to be amenable to the high-throughput screening of mutants in order to unravel the molecular mechanisms involved in the interaction between yeasts and host phagocytes.  相似文献   

17.
Gross  N.T.  Camner  P.  Chinchilla  M.  Jarstrand  C. 《Mycopathologia》1998,144(1):21-27
The effects of a modified natural porcine surfactant (Curosurf) on phagocytosis and killing of Cryptococcus neoformans by alveolar macrophages and on the production of superoxide anions were investigated in vitro. Attachment and ingestion were evaluated separately by a fluorescent quenching technique. The nitroblue tetrazolium reduction test was used as an indirect measurement of superoxide anion production. Killing was assessed by a colony-forming assay. Surfactant induced increased ingestion of C. neoformans, unopsonized as well as opsonized with fresh serum or anticryptococcal polyclonal IgG. Surfactant had, however, no effect on the attachment or killing of unopsonized or opsonized C. neoformans by the alveolar macrophages. In addition, the enhancement of the oxidative metabolism of the macrophages after stimulation with opsonized yeast was impaired, although the killing was not affected. This study indicates that in vitro Curosurf can influence the alveolar macrophage defence against C. neoformans by enhancing its ingestion and by interacting with the superoxide anions release from alveolar macrophages stimulated with fresh serum or anticryptococcal polyclonal IgG opsonized yeast cells. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Phagocytosis of microorganisms by macrophages is an important host defense mechanism. While studying the phagocytosis of the human pathogenic fungus Cryptococcus neoformans, we noted that macrophage-like J774 cells with ingested fungal cells had frequent mitotic figures. By analyzing the relative proportion of phagocytic cells as a function of cell cycle phase, we observed an increase in S phase cells after Fc-mediated phagocytosis of polystyrene beads, live or heat-killed C. neoformans. This result was confirmed by increased nuclear BrdU incorporation after Fc-mediated phagocytosis. The induced progression to S phase was observed after both Fc- and complement-mediated phagocytosis of live yeasts. Fc-mediated stimulation of cell division did not require ingestion, because it could be triggered by incubating cells in IgG1-coated plates. Phagocytosis-mediated stimulation of replication was confirmed in vitro using primary bone marrow macrophages and in vivo for peritoneal macrophages. We conclude that phagocytosis of microbes or inert particles can stimulate macrophages to enter S phase and commence cell division. This observation suggests a potential mechanism for increasing the number of effector cells after microbial ingestion, but can also promote the spread of infection.  相似文献   

19.
20.
Morita and Perkins' method was applied to the study of the stage of ingestion and destruction of an antigen (sheep erythrocytes) in the macrophages of peritoneal exudate of rabbits and rats and in the microphages of rabbit pleural exudate. Ingestion and intracellular destruction of the antigen were accompanied by intensified respiration and glycolysis of phagocytes. Respiration of the three types of phagocytes at two stages of phagocytosis and also the digestive capacity of microphages proved to be sensitive to cyanide and colchicine. The latter failed to influence the ingestion of the antigen by the three types of phagocytes and its digestion by macrophages. The differences in the metabolism routes of macro- and microphages in intracellular destruction of the antigen was postulated. An intensification of the phagocytic activity after the immunization was characteristic of rabbit and rat macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号