首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Post-copulatory episodes of sexual selection can be a powerful selective force influencing the reproductive success of males. In order to understand variation in male fertilisation success, we first need to consider the pattern of sperm utilisation by females following matings with more than one male. Second, we need to study those traits responsible for male success in sperm competition. Here we study both male sperm transfer characteristics as well as offspring paternity of females mated to two males in the scorpionfly Panorpa cognata. By repeatedly mating males to virgin females and interrupting copulation at defined time points, we found for all males that sperm transfer set off after approximately 40 min. During the remaining copulation, sperm transfer of individual males was continuous and with constant rate. Yet the rate of sperm transfer differed between individual males from about one sperm per minute to more than eight sperm per minute for the most successful males. In addition, we measured the fertilisation success in sperm competition of males with known sperm transfer capability. The relative number of sperm transferred by males during copulation, estimated from copulation duration and the males’ individual sperm transfer rate, explained a large proportion of variation in offspring paternity. The mode of sperm competition in this species, thus, conforms largely to a fair raffle following complete mixing of sperm prior to fertilisation. Hence, male differences in both the ability to copulate for long and of rapid sperm transfer will translate directly into differences in reproductive success.  相似文献   

2.
Abstract 1. Male Panorpa scorpionflies offer salivary masses as nuptial gifts during copulation. Previous studies have shown that there is usually a strong correlation between the number or size of salivary masses provided and copulation duration. As a result of constant sperm transfer rates, copulation duration is the most important determinant of male fitness in these species. 2. Differences in copulation durations for gift‐giving and non‐gift‐giving males of the Caucasian scorpionfly Panorpa similis have been shown to be much smaller on average than those observed in other Panorpa species. In this study, we therefore focus on the number of sperm transferred in copulations of P. similis both with and without salivary masses. 3. We find that although the average copulation duration in the presence of nuptial gifts is only twice as long as the average copulation duration without nuptial gifts, gift‐giving males transfer almost 11 times more sperm during copulations than non‐gift‐giving males. This is as a result of substantially higher sperm transfer rates (sperm/minute) in copulations in which nuptial gifts are present. 4. Implications of this finding for the interpretation of the mating system of P. similis and the question of which sex controls sperm transfer rates are discussed.  相似文献   

3.
The inhibition of female receptivity after copulation is usually related to the quality of the first mating. Males are able to modulate female receptivity through various mechanisms. Among these is the transfer of the ejaculate composed mainly by sperm and accessory gland proteins (AGPs). Here we used the South American fruit fly Anastrepha fraterculus (where AGP injections inhibit female receptivity) and the Mexican fruit fly Anastrepha ludens (where injection of AGPs failed to inhibit receptivity) as study organisms to test which mechanisms are used by males to prevent remating. In both species, neither the act of copulation without ejaculate transfer nor sperm stored inhibited female receptivity. Moreover, using multiply mated sterile and wild males in Mex flies we showed that the number of sperm stored by females varied according to male fertility status and number of previous matings, while female remating did not. We suggest female receptivity in both flies is inhibited by the mechanical and/or physiological effect of the full ejaculate. This finding brings us closer to understanding the mechanisms through which female receptivity can be modulated.  相似文献   

4.
Sexual selection in both males and females promotes traits and behaviors that allow control over paternity when female mates with multiple males. Nonetheless, mechanisms of cryptic female choice have been consistently overlooked, due to traditional focus on sperm competition as well as difficulty in distinguishing male vs. female influence over processes occurring during and after mating. The first part of this study describes morphology and transformation of Tribolium castaneum spermatophores inferred from dissecting females immediately after normal or interrupted copulations. T. castaneum males are found to transfer spermatophores as an invaginated tube that everts inside the female bursa and which is filled with sperm during copulation. This sequence of events makes it feasible for females to control the sperm quantity transferred in each spermatophore. Through manipulation of the male phenotypic quality (by starvation) and manipulation of female control over sperm transfer (by killing a subset of females), the second part of this study examines whether females use control over transferred sperm quantity as a cryptic choice mechanism. Fed males transferred significantly more sperm per spermatophore than starved males but only when mating with live females. These results suggest an active differentiation by live females against starved males and provide an evidence for the proposed cryptic female choice mechanism.  相似文献   

5.
The objective of this study was to examine the relative contributions of copula duration and sperm transfer to the inhibition of sexual receptivity of female Mediterranean fruit flies (Ceratitis capitata, Diptera: Tephritidae). Females choosing to remate had significantly fewer sperm in their spermathecae than females who chose not to remate. Duration of a female's first copulation did not affect her subsequent receptivity. Furthermore, on the first day following copulation significantly more females whose first mate was sterile and from a laboratory strain (sterile males transfer fewer sperm than wild males) chose to copulate than did females whose mate was fertile and recently derived from wild stock. Finally, we offer a synthesis of the available information on remating in this species, and suggest that while females are facultatively polyandrous, copula duration, sperm transfer and male accessory gland secretions act in succession to inhibit female receptivity.  相似文献   

6.
Luck N  Dejonghe B  Fruchard S  Huguenin S  Joly D 《Genetica》2007,130(3):257-265
Sperm competition is expected to be a driving force in sexual selection. In internally fertilized organisms, it occurs when ejaculates from more than one male are present simultaneously within the female’s reproductive tract. It has been suggested that greater sperm size may improve the competitive ability of sperm, but studies provide contradictory results depending on the species. More recently, the role of females in the evolution of sperm morphology has been pointed out. We investigate here the male and female effects that influence sperm precedence in the giant sperm species, Drosophila bifurca Patterson & Wheeler. Females were mated with two successive males, and the paternity outcomes for both males were analyzed after determining sperm transfer and storage. We found very high values of last male sperm precedence, suggesting a strong interaction between rival sperm. However, the data also indicate high frequencies of removal of the sperm of the first male from the female reproductive tract prior to any interaction with the second male. This implies that successful paternity depends mainly on successful sperm storage. Knowing what happens to the sperm within females appears to be a prerequisite for disentangling post-copulatory sexual interactions between males and females.  相似文献   

7.
Abstract.— We have investigated the effects of experimental manipulation of copulation duration on sperm displacement in Drosophila melanogaster . Both spermless and normal males were used as second (displacing) males in the experiments. Displacement induced in the absence of sperm, that is, by males that pass accessory gland fluid alone, was a relatively inefficient process and produced much lower levels of displacement than normal males. Therefore, the presence of second-male sperm is necessary (but unlikely sufficient) for the high levels of displacement commonly observed in D. melanogaster . Furthermore, when second matings were interrupted at various times after the initiation of copulation, the distribution of displacement was strongly bimodal. We conclude that sperm transfer is relatively rapid, beginning shortly after the initiation of copulation, and is essentially complete before the midpoint of copulation. Therefore, sperm transfer bears no simple relation to copulation duration. Because it would be difficult to manipulate the numbers of sperm transferred by manipulating copulation duration, methods used to study sperm displacement in other insect species are unlikely to be appropriate for D. melanogaster . We also investigated why males mate for more than twice the duration that appears to be necessary to complete sperm transfer. Experimental interruption of first matings indicated that the extra copulation time serves to delay female remating, rather than to increase that rate at which of offspring are sired before remating.  相似文献   

8.
In this paper we show that when Drosophila melanogaster females are mated twice, the semen of the second male causes a reduction of the effective number of resident sperm from the previous mating. This is demonstrated by two different kinds of experiments. In one set of experiments, mated females were remated to two different kinds of sterile males, one with normal semen and the other with deficient semen. The effect on the resident sperm was determined from the number of remaining progeny after mating to the sterile male, with the result that the normal semen reduced the amount of resident sperm in comparison with matings to the males with deficient semen. The second set of experiments employed interrupted matings. These experiments were based on the observation that semen is delivered before sperm during the first 5 min of copulation. The second matings were interrupted instantly, 2 min, and 4 min after the initiation of copulation. Compared to the instant interruptions, the two later interruptions had the effect of reducing the amount of resident sperm. The results of these two experiments clearly indicate that a sperm-incapacitation process plays a role in the well-documented phenomenon of sperm displacement (last-male advantage) in this species. Such a process could play a role in sperm displacement in the many cases where the mechanism is unknown.  相似文献   

9.
Intraspecific variation in P2 value in a coccinellid beetle (Harmonia axyridis) was investigated. The analytical method by Parker et al. (1990) predicts that sperm-flushing displacement in the spermatheca may exist in the sperm utilization pattern of this species. Long duration of sperm transfer in the second copulation resulted in high fertilization success of the second male. Large male body size itself did not have an advantage in flushing efficiency of the previously stored sperm. However, through long duration of sperm transfer and larger ejaculate, males with large body size gain high fertilization success.  相似文献   

10.
Males of the bushcricket Poecilimon veluchianus pass a large spermatophore to the female during mating. The spermatophore is eaten by the female after copulation. Because females mate with several males during their reproductive life, the competition between spermatozoa of different males affects a male's reproductive success. In order to determine the outcome of sperm competition, the paternity of the progeny of double–mated females was established by DNA fingerprinting with the oligonucleotide (GATA)4. Typical P. veluchianus DNA fingerprints consisted of 15 scoreable fragments per individual. The proportion of bands shared between presumably unrelated bushcrickets was 17%. After the second copulation the second mating male clearly predominated at fertilization. The mean proportion of eggs fertilized by the second male was 90.1%. There was no significant relationship between the level of sperm precedence and the time of ovipositions after the second mating. If female P. veluchianus increase the fitness of their offspring by the incorporation of spermatophore–derived substances in developing eggs, there is little chance for the feeding male to fertilize eggs containing his nutrients, because of the very short mating intervals of females and the observed high level of last–male sperm precedence in this species. Under such conditions the last mating male would fertilize many eggs containing nutrients from a prior male. Because nuptial gifts, like the tettigoniid spermatophore, function only as paternal investment if the donating male's progeny benefit from the gift, a paternal investment function of the P. veluchianus spermatophore seems to be unlikely.  相似文献   

11.
Males that copulate repeatedly may suffer from reduced sperm stores. However, few studies have addressed sperm depletion from both the female and male perspective. Here, we show that male Anastrepha obliqua (Diptera: Tephritidae) do not ejaculate all available sperm and are left with mature sperm in the seminal vesicles even after copulating as often as three times in half a day. Ejaculate size was not related to male mating history; time elapsed since the last mating, copulation duration, female thorax length or head width. Larval host origin did not affect the number of sperm stored by females. More sperm was found in the ventral receptacle compared to sperm stored in the three spermathecae. Males apparently do not suffer a cost of mating in terms of longevity, although we cannot rule out other fitness costs. Sperm production in this species may not be as costly as it is for other species. Results suggest that males strategically allocate similar numbers of sperm among successive mates without exhausting sperm reserves for future encounters. We discuss the role that differential sperm storage may have in mediating sperm competition and tie our results to the unique natural history of A. obliqua.  相似文献   

12.
When swallowtail butterflies, Papilio xuthus, are mated by the hand-pairing method, both types of sperm, eupyrene and apyrene sperm, are transferred from the male to the spermatheca via the spermatophore in the bursa copulatrix. This mechanism is demonstrated by two different kinds of experiments. The first set of experiments employed interrupted copulation, and the second set was examination of the sperm in the spermatophore and spermatheca after the termination of copulation. The sperm was transferred 30 min after the start of copulation. The eupyrene sperm was still in the bundle; the number of the bundles ranged from 9 to 108 (mean, 42.7; n = 27). The bundles were gradually released after the completion of copulation, and the free eupyrene spermatozoa then remained in the spermatophore at least 2 h before migrating to the spermatheca. On the other hand, about 160 000 apyrene spermatozoa were transferred to the spermatophore and remained there for more than 1 h. We observed 11 000 apyrene spermatozoa in the spermatheca 12 h after the completion of copulation, but most of this type of sperm disappeared shortly thereafter. In contrast, the eupyrene sperm arrived in the spermatheca more than 1 day after the completion of copulation and remained there at least 1 week. Therefore, these findings suggest that apyrene sperm migrate from the spermatophore to the spermatheca earlier than eupyrene sperm. Accordingly, if females mated multiply, the time difference might avoid the mixing of sperm. In addition, the predominance of sperm from the last mating session may occur not in the bursa copulatrix but in the spermatheca. Received: January 7, 2000 / Accepted: May 24, 2000  相似文献   

13.
In a manure-inhabiting predatory mite, Macrocheles muscaedomesticae (Gamasida, Macrochelidae), when the female mates with two males, the first male takes nearly perfect fertilization priority (Yasui, 1988). The present study examined whether the first-male's sperm precedence is influenced by the copula-duration of the first and second males mating with the same female, and whether males control their copulation duration by assessing the probability that the mate has been inseminated by other males. Results of the artificial interruption of copulation showed that sperm precedence value, P2 (the proportion of the offspring fathered by the second male), was negatively correlated with the copulation duration of the first male but positively correlated with that of the second male. There was a threshold (ca. 180–300 seconds) in the first-male's copulation duration beyond which P2 decreased drastically; when length of the first copulation exceeded this threshold, the second males did not fertilize eggs, whereas they fertilized more than half of the eggs when the first-copulation duration was shorter than the threshold. Almost all males copulated for a longer period (average 509.8 seconds) than this threshold if the copulation duration of the previous male had not exceeded the threshold, but if it was longer than the threshold, second males had shortened their copulation (67.6 seconds). These results suggest that males are able to assess the insemination status of their mates and to adjust their copulation duration depending on the probability of fertilizing eggs by their own sperm. A mechanistic explanation for sperm precedence (i.e., plug-formation within sperm receptive organ of the females) is proposed.  相似文献   

14.
In many animal species, mating behaviour is highly ritualised, which may allow us to relate some of its consequences, e.g. male paternity and female receptivity, to the progression of phases in the mating sequence; at the same time, ritualisation raises the question of to what extent the partners, especially the males, are able to influence the outcome of mating for their own benefit. We studied the linyphiid spider Linyphia triangularis in which mating follows a strict sequence during which the male inducts two droplets of sperm and transfers them to the female. We performed sperm competition experiments (sterile-male technique) including four treatments, in which the copulation of the first male was interrupted at prescribed phases of the mating sequence, while the second male was allowed a complete mating. Second males spent a shorter time than first males on the behaviours prior to sperm transfer, but the amount of sperm (2 droplets) and the time spent in sperm transfer were independent of the females’ mating status. The proportion of females accepting the second male depended on the mating duration of the first male, i.e. whether the first male had transferred one or two sperm droplets. After a complete first mating, most females accepted no further males. A last-male sperm precedence was apparent if only half of the first sperm droplet had been transferred by the first male, but this switched to a first male precedence if one full sperm droplet had been transferred. Thus, even in the face of sperm competition, it is sufficient for the first male to transfer one sperm droplet. The second sperm droplet and the extended copulatory courtship associated with its transfer may serve to induce a lack of receptivity in the female, but the males seem unable to enhance their reproductive success through variable copulatory tactics.  相似文献   

15.
Despite its widespread occurrence in animals, sperm competition has been studied in a limited range of taxa. Among the most neglected groups in this respect are internally fertilizing fish in which virtually nothing is known about the dynamics of sperm competition. In this study, we examined the outcome of sperm competition when virgin female guppies mated with two males. Behavioural cues were used to ensure that each male mated once (with female cooperation) and that sperm were successfully inseminated at copulation. Two polymorphic microsatellite loci were used to estimate the proportion of offspring sired by the second male (P2) and the results revealed a bimodal distribution with either first or (more often) second male priority The observed P2 distribution differed from that expected under the 'fair raffle' model of sperm competition. Random sperm mixing is therefore unlikely to account for the observed variance in P2 in this study. A further aim of our study was to identify predictors of male reproductive success. Using logistic linear modelling, we found that the best predictors of paternity were time to remating and the difference in courtship display rate between first and second males. Males that mated quickly and performed relatively high numbers of sigmoid displays obtained greater parentage than their slower and less vigorous counterparts. Since females are attracted to high-displaying males, our results suggest that female choice may facilitate sperm competition and/or sperm choice in guppies.  相似文献   

16.
Multiple matings result in varying paternity share based on mating interval and order. Thus, assessing the effect of mating interval and order on patterns of sperm usage and paternity is crucial. We designed consecutive and delayed double-mating experiments to investigate paternity variation in ladybird, Menochilus sexmaculatus (Fabricius) (Coleoptera: Coccinellidae), using two distinct morphs of the species as phenotypic markers of paternity. The time to commence mating, copulation duration and reproductive output were recorded. The morphs of the offspring from the two setups were taken as a measure of paternity accumulated by the males. The time to commence mating decreased for the second mating in the consecutive mating treatment, while the reverse was observed in the delayed mating treatment. Consecutive double matings reduced the mating duration. Fecundity increased when second mating occurred after a few days, though percent egg viability remained unaffected. The second male accrued higher paternity (P2?=?0.61) than the first male (P1?=?0.39) in the consecutive mating treatment, while in the delayed mating treatment, the overall paternity share of the first 0.49 (P1) and last male was equal 0.51 (P2). Thus, our study revealed that both mating order and the time interval between successive matings regulate the male paternity share. This finding is reported for the first time in this ladybird species.  相似文献   

17.
Copulation duration is often highly variable within and among species. Here, we explore the roles of body size, male morph, morph frequency, and alternative reproductive tactics to explain copulation duration in the damselfly Paraphlebia zoe. P. zoe has two male morphs (pigmented or hyaline wings) which differ in reproductive tactics (territorial or non‐territorial behaviors). We also analyze the effects of season as the frequencies of both morphs tend to vary along the reproductive season. In the first non‐experimental year, we found that the relationship between body size and copulation duration depended on the time of year. Early in the season, body size positively correlated with copulation duration, while late in the year, body size negatively correlated with copulation duration. In the second experimental year (when we reversed the frequency of male morphs in the middle of the season: making pigmented males less frequent than hyaline males), size influenced copulation duration as well as morph – body size positively correlated with copulation duration, and hyaline males mated for longer than pigmented males. Contrary to our prediction, changes to the relative abundances of morphs did not influence copulation duration. Hyaline males may be under selection for longer copulation durations to compensate for their reduced access to females, as long copulations potentially lead to more rival sperm to be removed from the female sperm storage organs and/or increased mate guarding. We do not discard, however, other explanations that drive variation in copulation duration such as cryptic female choice and/or predation.  相似文献   

18.
Fertilization success in sperm competition is often determined by laboratory estimates of the proportion of offspring sired by the first (P1) or second (P2) male that mates. However, inferences from such data about how sexual selection acts on male traits in nature may be misleading if fertilization success depends on the biological context in which it is measured. We used the sterile male technique to examine the paternity of the same male in two mating contexts in the burying beetle, Nicrophorus vespilloides, a species where males have alternative mating strategies based on the presence or absence of resources. We found no congruence in the paternity achieved by a given male when mating under different social conditions. P2 estimates were extremely variable under both conditions. Body size was unrelated to success in sperm competition away from a carcass but, most probably through pre-copulatory male-male competition, influenced fertilization success on a carcass. The contribution of sperm competition is therefore dependent on the conditions under which it is measured. We discuss our findings in relation to sperm competition theory and highlight the need to consider biological context in order to link copulation and fertilization success for competing males.  相似文献   

19.
In polyandrous mating systems, sperm competition and cryptic female choice (CFC) are well recognized as postcopulatory evolutionary forces. However, it remains challenging to separate CFC from sperm competition and to estimate how much CFC influences insemination success because those processes usually occur inside the female's body. The Japanese pygmy squid, Idiosepius paradoxus, is an ideal species in which to separate CFC from sperm competition because sperm transfer by the male and sperm displacement by the female can be observed directly at an external location on the female's body. Here, we counted the number of spermatangia transferred to, removed from, and remaining on the female body during single copulation episodes. We measured behavioral and morphological characteristics of the male, such as duration of copulation and body size. Although males with larger body size and longer copulation time were capable of transferring larger amounts of sperm, females preferentially eliminated sperm from males with larger body size and shorter copulation time by spermatangia removal; thus, CFC could attenuate sperm precedence by larger males, whereas it reinforces sperm precedence by males with longer copulation time. Genetic paternity analysis revealed that fertilisation success for each male was correlated with remaining sperm volume that is adjusted by females after copulation.  相似文献   

20.
Sperm competition studies typically identify copulation duration as an important predictor of paternity as it may determine the quantity of sperm transferred and thus paternity success. This study explores the relationship between copulation duration, male body size, male age and sperm transfer in the golden orb‐weaving spider, Nephila edulis. Paternity in this species is strongly associated with the relative frequency and duration of copulation, which is also influenced by male size. We determined the number of sperm transferred during copulation, by performing sperm counts in both the male copulatory organs (palps) and female sperm receptacle (spermatheca) of recently mated pairs. The total number of sperm recorded (the sum in the male palps and female spermathecae) was greater for younger males than older males, but did not vary with male body size. In general, younger males transferred more sperm and a greater proportion of their sperm supplies than older males and, among these younger males, larger individuals transferred more sperm. However, there were no significant size effects for older males. More sperm was transferred with longer copulations, but in contrast with previous studies, we found that larger males copulated for longer. The rate of sperm transferred was negatively correlated with the duration of copulation, suggesting that the variation in copulation duration in N. edulis may represent strategic investment by males to alter patterns of paternity, in addition to transferring additional sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号