首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spores of microorganisms   总被引:1,自引:0,他引:1  
A pulse incorporation of radioactive precursors into the cells was used in studying the rate of RNA and protein synthesis during postgerminative development of spores ofBacillus cereus. It was found that the extractable pool of the spores can be enriched by these precursors during swelling and preelongation. During this period of differentiation of a spore to a primary cell,14C-uracil and to a smaller extent14C-adenine are more rapidly used for RNA synthesis. Labelled14C-leucine and36S-methionine are found mostly in the extractable fraction of the cells. However, their rate of incorporation into proteins is not higher. Differences in utilization of precursors for the synthesis of macromolecules are apparently caused by different availability for the metabolic pool of the cell. Of the precursors tested14C-uracil seems to be selectively incorporated into RNA with a higher rate. This can be explained by a selective permeability into metabolic pool or by an increased need of uracil during preelongation period.  相似文献   

2.
André Rossi 《Life sciences》1975,16(7):1121-1132
Uridine is rapidly incorporated into the free pyrimidine nucleotides of the isolated perfused rabbit heart. The initial uptake depends on the concentration of precursor, following a Menten-Michaelis like pattern (apparent Km 5 μM).In a dose of 20 μmole.l−1, amounts of labelled uridine corresponding to about a third of the pool of uracil nucleotides are incorporated during the first half hour of administration. Then the rate or uridine uptake decreases with time while the uracil nucleotide pool size increases.  相似文献   

3.
4.
Labeled cytosine, adenine, and guanine are rapidly incorporated by E. coli. A fraction of the radioactivity passes directly into RNA with very little delay. The remainder enters a pool before being incorporated into RNA. The fractions entering the pool and the time constants for equilibration of the specific activity of the pool are widely different for the four RNA bases.  相似文献   

5.
Novikoff rat hepatoma cells (subline NlSl-67) in suspension culture incorporate 3H-5-uridine into the acid-soluble nucleotide pool more rapidly than into RNA, resulting in the accumulation of labeled UTP in the cells. When labeled uridine is removed from the medium after 20 minutes or 4.75 hours of labeling, the rate of incorporation of label from the nucleotide pool into RNA decreases to less than 10% of the original rate within five to ten minutes, in spite of the presence of a large pool of labeled UTP in the cells, and incorporation ceases completely if an excess of unlabeled uridine is present during the chase. Upon addition of 14C-uridine to 3H-uridine pulse-labeled, chased cells, the 14C begins to be incorporated into RNA without delay and at a rate predetermined by the concentration of 14C-uridine in the medium and without affecting the fate of the free 3H-nucleotides labeled during the pulse-period. The results are interpreted to indicate that uridine is incorporated into at least two different pools, only one of which serves as primary source of nucleotides for RNA synthesis. During active synthesis of RNA, the latter pool of free nucleotides is very small and rapidly exhausted when uridine is removed from the medium. However, UTP accumulates in this pool when cells are labeled at 4–6°, since at this temperature RNA synthesis is blocked while uridine is still phosphorylated by the cells, and the UTP is rapidly incorporated into RNA during a subsequent ten-minute chase at 37°. From these types of experiments it is estimated that only 20–25% of the total uridine nucleotides formed in the cells from uridine in the medium is directly available for RNA synthesis and that the remainder becomes available only at a slow rate. Evidence is presented which suggests that one uridine nucleotide pool is located in the cytoplasm and another in the nucleus and that mainly the nuclear pool supplies nucleotides for RNA synthesis. The size of the latter pool is under strict regulatory control, since preincubation of the cells with 0.5 mM unlabeled uridine has little or no effect on the subsequent incorporation of 3H-uridine, although it results in an increase of the overall cellular uridine nucleotide content to at least 5 mM. Other results indicate that adenosine is also incorporated into two independent nucleotide pools, whereas the cells normally appear to possess a single thymidine nucleotide pool.  相似文献   

6.
The incorporation of uracil into and excision from DNA were studied in vitro using lysates on cellophane discs made from Escherichia coli strains with defects in the enzymes dUTPase (dut) and uracil-DNA glycosylase (ung).Results with dut ung lysates indicate that dUTP is competitively incorporated with dTTP at the replication fork. Such incorporation is not due to DNA polymerase I. There is a mild discrimination (2.5-fold) against incorporation of dUTP versus dTTP. These data, together with in vivo uracil incorporation data (Tye et al., 1978) permit a rough estimate of the pool of dUTP in vivo (~0.5% of the dTTP pool).These in vitro data indicate that uracil-DNA glycosylase is the initial step in at least 90% of uracil excision events. However, in a strain defective in uracil-DNA glycosylase (ung-1), uracil-containing DNA is still more subject to single-strand scission than non-uracil-containing DNA, albeit at a rate at least tenfold less than in an ung+ strain.A number of qualitative statements may also be made about different steps in uracil incorporation and subsequent excision and repair events. When high levels of dUTP are added in vitro, a dut ung+ strain has a higher steady-state level of uracil in newly synthesized DNA than does an isogenic dut+ ung strain. Thus the dUTPase in these lysates has a higher capacity to be overloaded than does the excision system (i.e. uracil DNA glycosylase). However, the DNA sealing system (presumably DNA polymerase I and DNA ligase) apparently can handle all single-strand interruptions being introduced by uracil excision at the maximal rate, at least so that DNA synthesis can continue.  相似文献   

7.
Intact cells and cell-free extracts of E. coli convert isocytidine to isocytosine and uracil. The radioactive label of 5-[3H]isocytidine is incorporated into RNA and, DNA of growing bacteria at a rate equal to about 1.4% of that of cytidine under similar conditions; the radioactivity is found in uridylic, cytidylic and 2′-deoxythymidylic acids, while less than 0.4% of incorporated radioactive material might be due to possible incorporation of intact isocytidine. Uridine phosphorylase and cytidine deaminase apparently do not participate in the metabolic conversion of isocytidine.  相似文献   

8.
E. coli B, filamented with 5-diazouracil (DZU)-2-14C, yielded ribonucleic acid (RNA)-(DZU-2-14C) which was converted by pancreatic ribonuclease to 14C-mono-and oligo-nucleotides. The mixed 14C-mononucleotides isolated by diethylaminoethyl-cellulose fractionation were identified as cytidylic, uridylic, and hydroxyuridylic acids, by using a combination of paper chromatography and treatment with alkaline phosphatase and cytidine deaminase. Rifampin blocked incorporation of DZU-2-14C under conditions which inhibit RNA synthesis. Division inhibition by DZU-2-14C and the incorporation into Escherichia coli B were retarded by uracil but not by other RNA bases. In a pyrimidine-requiring E. coli, DZU substituted for uracil or cytosine to an extent limited by toxic effects. Cytosine and uracil retarded these effects and retarded the incorporation of DZU-2-14C into the pyrimidineless strain. A small proportion of DZU-2-14C was converted by the latter strain into hydroxyuridylic acid, but the bulk of the incorporated label was in cytidylic and uridylic acid, as in the wild strain.  相似文献   

9.
Summary The labelling of nucleic acids of growing cells of the blue-green algae Anacystis nidulans and Synechocystis aquatilis by radioactive precursors has been studies. A. nidulans cells most actively incorporate radioactivity from [2-14C]uracil into both RNA and DNA, while S. aquatilis cells incorporate most effectively [2-14C]uracil and [2-14C]thymine.Deoxyadenosine does not affect incorporation of label from [2-14C]thymidine into DNA, but weakly inhibits [2-14C]thymine incorporation into both nucleic acids and significantly suppresses the incorporation of [2-14C]uracil.The radioactivity from [2-14C]uracil and [2-14C]thymine is found in RNA uracil and cytosine and DNA thymine and cytosine. The radioactivity of [2-14C]thymidine is incorporated into DNA thymine and cytosine. These results and data of comparative studies of nucleic acid labelling by [2-14C]thymine and [5-methyl-14C]thymine suggest that the incorporation of thymine and thymidine into nucleic acids of A. nidulans and S. aquatilis is accompanied by demethylation of these precursors. In this respect blue-green algae resemble fungi and certain green algae.  相似文献   

10.
Summary The incorporation of C14-amino acids (aspartic acid, glutamic acid, threonine and proline) and C14-nucleic acid bases (adenine, guanine, cytosine and uracil) into the seedling, reproductive stage and young ear portion of rice plant was investigated. It was found that C14-aspartic acid was incorporated into the rice seedling more rapidly than C14-threonine or C14-proline; on the other hand C14-proline was found to be more rapidly incorporated than C14-aspartic acid into reproductive stage plant and young ear portion. Similarly C14-adenine was incorporated into the rice seedling more rapidly than other C14-labelled bases. On the other hand C14-uracil was preferentially incorporated to C14-adenine or C14-guanine into the reproductive stage plant and young ear portion. It is suggested from the results obtained that proline is polymerized into polypeptide or protein in the rice plant more rapidly at the reproductive stage than at the seedling stage and that a higher proportion of pyrimidine bases might be involved into the metabolic process at the reproductive stage of rice plant.  相似文献   

11.
The size of the kinetic pool of GTP used in the synthesis of RNA by stage 6 Xenopus laevis oocytes was calculated by expanding the endogenous pool by measured amounts and analysing the incorporation of [3H]GTP into RNA. In experiments on 5 animals, measurements of kinetic pools of GTP ranged from 190.3 to 314.6 pmoles/oocyte and are similar to previously obtained estimates of the chemically extractable GTP pool. Calculations of the rate of stable RNA synthesis ranged from 0.99 to 1.95 pmoles of GTP incorporated per hour per oocyte. These values were also consistent with previous measurements which were based on the assumption that the entire GTP pool provided precursors for stable RNA synthesis. Consequently, it has been concluded that the GTP pool active in RNA synthesis is indistinguishable from the total chemical pool of GTP.  相似文献   

12.
Results from kinetic studies on the incorporation of 3H-5-uridine and 3H-8-adenosine into the acid-soluble nucleotide poor and nucleic acids by Novikoff hepatoma cells (subline N1S1-67) in suspension culture indicate that the uridine transport reaction is saturated at about 100 μM and that for adenosine at about 10 μM nucleoside in the medium, and that above 100 μM simple diffusion becomes the predominant mode of entry of both nucleosides into the cell. The Km of the transport reactions is approximately 1.3 × 10?5 M for uridine and 6 × 10?6 M for adenosine. The incorporation of these nucleosides into both the nucleotide pool and into nucleic acids seems to be limited by the rate of entry of the nucleic acid synthesis from the rate of incorporation of nucleosides. Other complicating factors are a change with time of labeling in the relative proporation of nucleoside incorporated into DNA and into the individual nucleotides of RNA, the splitting of uridine to uracil by th ecells, the deamination of adenosine kto inosine and the subsequent cleavage of inosine to hypoxanthine. Various lines of evidence are presented which indicate that the overall nucleotide pools of the cells are very small under normal growth conditions. During growth in the presence of 200 μM uridine or adenosine, however, the cells continue to convert the nucleosides into intracellular nucleotides much more rapidly than required for nucleic acid synthesis. This results in an accumulation of free uridine and adenosine nucleotides in the cells, the maximum amounts of which are at least equivalent to the amount of these nucleotides in total cellular RNA.  相似文献   

13.
Ultrasound-purified minicells produced by Bacillus subtilis mutant div IV-Bl have been studied for their ability to transport and incorporate into macromolecules a variety of amino acids, uracil and thymine. Minicells transport all 12 amino acids examined, but are unable to incorporate them into macromolecules. No significant differences were found in the initial uptake rates of glutamic acid, aspartic acid, and alanine by minicells and parental cells. The uptake of methionine and proline by minicells was shown to be inhibited by metabolic poisons, indicating an energy-metabolism requirement for transport in this system. The proline pool in minicells was found to be readily exchangeable with exogenous proline. In contrast metabolically poisoned minicells only slowly lose their pool proline, indicating an energy requirement for pool maintenance. Packed-cell experiments reveal that minicells accumulate proline against a concentration gradient.In addition to amino acids, minicells are able to transport uracil but cannot incorporate uracil into acid-precipitable material (RNA). Neither thymine transport nor its incorporation into macromolecules can be demonstrated in minicells.Minicells appear to be a new system, therefore, in which transport may be studied in the absence of macromolecular biosynthesis.  相似文献   

14.
Yeast cells inhibited by benzimidazole accumulate hypoxanthine with an associated efflux of xanthine. Unlike control cells, inhibited cells contain no detectable free UMP and CMP. Benzimidazole decreases uptake of [8-14C]-hypoxanthine into the intracellular pool of hypoxanthine and xanthine but causes radioactive xanthine to accumulate in the medium. In inhibited cultures there is a threefold increase in incorporation of [8-14C]hypoxanthine into the total (intracellular plus extracellular) xanthine. Uptake of [8-14C]hypoxanthine into free nucleotides and into bound adenine and guanine was inhibited by 70%. Uptake of [U-14C]glycine into IMP, AMP, GMP, DNA and RNA was also substantially decreased. Incorporation of [2-14C]uracil into the intracellular uracil pool was inhibited by 30% and into free uridine and cytidine by over 90%. Benzimidazole inhibited incorporation of [8-3H]IMP into AMP and GMP, and decreased substantially the activity of glutamine-amidophosphoribosyltransferase (EC 2.4.2.14). Yeast cultures were shown to N-ribotylate benzimidazole. Results are consistent with benzimidazole inhibiting yeast growth by competing for P-rib-PP and so depriving other ribotylation processes such as the ‘salvage’ pathways and de novo synthesis of purines and pyrimidines.  相似文献   

15.
This study describes the kinetics of 35S-incorporation during in vivo sulfate esterification of Porphyridium aerugineum capsular polysaccharide. Techniques were developed to isolate the precursor pool (free sulfate), cell-associated product, and extracellular product. Specific radioactivities of these three fractions were monitored during pulse-chase sequences. Label rapidly appeared in the pool during the pulse, then declined asymptotically during the chase as equilibrium was approached. Efflux of small quantities of isotope from the cell during chase periods was not the result of backleakage, but the result of washing untransported isotope from the free-space. During the pulse, intracellular product was labeled at 25% of the rate at which the pool was labeled. Fully 50% of the label which left the pool was incorporated into the polysaccharide as ester sulfate, indicating that polysaccharide esterification is a major metabolic pathway for sulfate. The specific radioactivity of the extracellular product increased slowly throughout pulse and chase periods.  相似文献   

16.
The rate of polymerization of ribosomal ribonucleic acid chains was estimated for steadily growing cultures of Escherichia coli M.R.E.600, from the kinetics of incorporation of exogenous [5-3H]uracil into completed 23S rRNA molecules. The analytical method of Avery & Midgley (1971) was used. Measurements were made at 37°C, in the presence or the absence of chloramphenicol, in each of three media; enriched broth, glucose–salts or sodium lactate–salts. The rate of chain elongation of 23S rRNA was virtually constant in all media at 37°C, as 24±4 nucleotides added/s. Accelerations in the rate of biosynthesis of rRNA by chloramphenicol in growth-limiting media are due primarily to an increase in the rate of initiation of new RNA chains, up to the rates existing in cultures growing rapidly in broth. Thus, in poorer media, only a small fraction of the available DNA-dependent RNA polymerase molecules are active at any given instant, since the chain-initiation rate is limiting in these conditions. In cultures growing rapidly in enriched broth, antibiotic inhibition caused a rise of some 12% in the rate of incorporation of exogenous uracil into total RNA. This small acceleration was due entirely to the partial stabilization of the mRNA fraction, which accumulated as 14% of the RNA formed after the addition of chloramphenicol. In cultures growing more slowly in glucose–salts or lactate–salts media, chloramphenicol caused an immediate acceleration of two- to three-fold in the overall rate of RNA synthesis. Studies by DNA–RNA hybridization showed that the synthesis of mRNA was accelerated in harmony with the other affected species. However, just over half the mRNA formed after the addition of chloramphenicol quickly decayed to acid-soluble products, whereas the remainder was more stable and accumulated in the cells. The mRNA fraction constituted about 6% of the total cellular RNA after 3h inhibition. A model was suggested to explain the partial stabilization and accumulation of the mRNA fraction and the acceleration in the rate of synthesis of mRNA when chloramphenicol was added to cultures in growth-limiting media.  相似文献   

17.
The biosynthesis of the pyrimidine moiety and the uronic acid moiety of the polyoxins and the formation of unnatural polyoxins has been studied in Streptomyces cacaoi. Experimental evidence is provided for the biosynthesis of thymine via a pathway that is independent of thymidylate synthetase. This new thymine pathway is based on two experimental approaches. First, two known inhibitors of DNA synthesis (1-formylisoquinoline thiosemicarbazide and 5-fluoro-2′-deoxyuridine), when added to polyoxin-producing cultures of S. cacaoi, inhibit the synthesis of TMP from exogenously supplied uracil but do not inhibit the synthesis of the thymine or hydroxymethyluracil in the polyoxin complex. Second, exogenously supplied thymine and hydroxymethyluracil are taken up by S. cacaoi but are not incorporated into the thymine or hydroxymethyluracil of the polyoxin complex. The thymine is incorporated into the DNA. The uracil in polyoxin L could be the parent pyrimidine chromophore with C-1 additions occurring at carbon-5 to form thymine and hydroxymethyluracil. Carbon-3 of serine but not the methyl group of methionine is a one-carbon source for the formation of the thymine and hydroxymethyluracil in the polyoxin complex.S. cacaoi can synthesize unnatural polyoxins, as evidenced by the incorporation of 5-fluoro, 5-bromo, and 6-azauracil into the polyoxins; 5-iodo-, 2-thio-, or 4-thiouracil is not a substrate. Two new polyoxin analogs synthesized and characterized when 5-fluorouracil is added to the cultures are 5-fluoropolyoxin L and 5-fluoropolyoxin M. There is a marked change in the molar ratio of the uracil:thymine:hydroxymethyluracil chromophores in the polyoxin complex following the incorporation of 5-fluoro-, 5-bromo-, or 6-azauracil. Apparently, the unnatural polyoxins inhibit the addition of the C-1 unit to carbon-5 of uracil in the polyoxin complex. Polyoxin L and polyoxin C do not inhibit Escherichia coli and Streptococcus faecalis, but 5-fluoropolyoxin L and 5-fluoropolyoxin C inhibit both these organisms. There is little or no difference in the inhibition of the fluorinated and natural polyoxins against leukemia L-1210 cells. The fluoro group on carbon-5 of the uracil ring does not affect the enzyme-inhibition complex with chitin synthetase since the inhibition constant of fluoropolyoxins L is the same as has been reported for polyoxins A, D, and L.The 14C-labeling pattern in the 5′-amino-5′-deoxy-d-allofuranosyluronic acid moiety of the polyoxins from 14C-labeled glucose, allose, and glycerol suggests that the formation of this unique C-6 uronic acid in the polyoxins does not proceed via the direct oxidation of either d-glucose or d-allose to the -onic or -uronic acids. Glucose is converted to two three-carbon trioses, followed by either (i) the oxidation of one of the trioses to a threecarbon acid and subsequent condensation with another three-carbon sugar to form the C-6 uronic or (ii) an 80:20 equilibrium of the two trioses followed by condensation to a hexose which is then oxidized to the C-6 uronic acid.  相似文献   

18.
The regulation of nucleic acid and protein synthesis in dormant, thermodormant, and after-ripened embryos of Vaccaria pyramidata (Caryophyllaceae) has been studied. Germination of after-ripened V. pyramidata seeds is prevented by inhibitors of protein, RNA, and DNA synthesis. The synthesis of both protein and RNA is activated at the beginning of imbibition, whereas [3H]thymidine incorporation does not start until the second period of the imbibition phase. [3H]Thymidine incorporation is greatly reduced in embryos treated with cycloheximide or 6-methylpurine. There is no correlation between the level of [3H]uracil and l-[14C]leucine incorporation into macromolecules and the physiological state of the seeds: tRNA, ribosomal RNA, and poly(A)-containing RNA (probably mRNA) as well as proteins are synthesized at the same rate in both dormant and thermodormant embryos as in after-ripened embryos. The protein patterns of dormant and after-ripened embryos are similar, as shown by electrophoresis and electrofocusing of double-labeled proteins. The level of DNA synthesis, measured as [3H]thymidine incorporation, may, on the other hand, indicate the physiological activity of the seeds: [3H]Thymidine is incorporated at a high rate in after-ripened embryos only and remains at a low level in dormant or thermodormant embryos. This correlation is, however, observed only in the axes. DNA synthesis in the cotyledons does not show any relation to the developmental stage of the seeds. These results are discussed in relation to the regulation of dormancy and after-ripening of seeds.  相似文献   

19.
The incorporation of 14C-2-mevalonic acid into transfer RNA and ribosomal RNA (high molecular weight RNA) in rapidly growing, cytokinin-dependent tobacco (Nicotiana tabacum var. Wisconsin No. 38) callus cultures has been investigated. Approximately 40% of the label incorporated into transfer RNA was present in a ribonucleoside with chromatographic properties identical to those of cis-ribosylzeatin. The remainder of the label in the transfer RNA appears to be nonspecific incorporation resulting from degradation and metabolism of 14C-2-mevalonic acid by the tobacco callus tissue. Although the total radioactivity incorporated into ribosomal RNA was roughly the same as in transfer RNA, the specific radioactivity of the transfer RNA was about four times higher than that of the ribosomal RNA, and the ribosomal RNA labeling could be distinguished from the cytokinin labeling observed in transfer RNA. The distributions of the 14C-2-mevalonic acid label and cytokinin activity in tobacco callus transfer RNA fractionated by benzoylated diethylaminoethylcellulose chromatography indicate that at least two cytokinin-containing transfer RNA species are present in this tissue.  相似文献   

20.
The rates of total RNA synthesis and accumulation have been measured in the polytenic salivary gland cells of the blowfly, Calliphora erythrocephala, by three methods: (1) injecting larvae with [2-3H]adenosine and determining its flow into the cellular ATP pool and RNA, (2) measuring the increase in glandular RNA optically, and (3) measuring the rate of flow of ATP out of the cellular pool. The size of the steady-state pool of rapidly turning over RNA and its half-life, were calculated from these kinetic data and, also, by an independent measurement of the steady-state content of nuclear RNA. These parameters were compared at a number of developmental stages which differed in degree of chromosomal polytenization. The results indicate that these polytenic cells synthesize RNA at a rate approximately 103 times those of other diploid eukaryotic cells. This rate is independent of the increase in chromosomal polyteny that accompanies larval development. Approximately 67% of the newly synthesized salivary gland RNA is an unstable component with an average first-order half-life of 20–25 min. The remainder is a long-lived species with an estimated average first-order half-life of about 30 hr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号