首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In mammals, photoperiodic information is transformed into a melatonin secretory rhythm in the pineal gland (high levels at night, low levels during the day). Melatonin exerts its effects in discrete hypothalamic areas, most likely through MT1 melatonin receptors. Whether melatonin is brought to the hypothalamus from the cerebrospinal fluid or the blood is still unclear. The final action of this indoleamine at the level of the central nervous system is a modulation of GnRH secretion but it does not act directly on GnRH neurones; rather, its action involves a complex neural circuit of interneurones that includes at least dopaminergic, serotoninergic and aminoacidergic neurones. In addition, this network appears to undergo morphological changes between seasons.  相似文献   

2.
3.
Rhythmic neural outputs from the hypothalamic suprachiasmatic nucleus (SCN), which programme the rhythmic release of norepinephrine (NE) from intrapineal nerve fibers, regulate circadian rhythm of melatonin synthesis. Increased secretion of NE with the onset of darkness during the first half of night stimulates melatonin synthesis by several folds. NE binds to both alpha1- and beta-adrenergic receptors present on the pinealocyte membrane and initiates adrenergic signal transduction via cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) generating pathways. The NE-induced adrenergic signal transduction switches 'on' melatonin synthesis during the early hours of night by stimulating expression of the rate-limiting enzyme of melatonin synthesis, N-acetyltransferase (AA-NAT) via cAMP-protein kinase A (PKA)-cAMP response element binding protein (CREB)-cAMP response element (CRE) pathway as well as by increasing AA-NAT activity via cAMP-PKA-14-3-3 protein pathway. Simultaneously, adrenergically-induced expression of inducible cAMP early repressor (ICER) negatively regulates aa-nat gene expression and controls the amplitude of melatonin rhythm. In the second half of night, increased release of acetylcholine from central pinealopetal projections, inhibition of NE secretion by SCN, withdrawal of adrenergic inputs and reversal of events that took place in the first half lead to switching 'off' of melatonin synthesis. Adrenergic signal transduction via cGMP-protein kinase G (PKG)-mitogen activated protein kinase (MAPK)-ribosomal S6 kinase (RSK) pathway also seems to be fully functional, but its role in modulation of melatonin synthesis remains unexplored. This article gives a critical review of information available on various components of the adrenergic signal transduction cascades involved in the regulation of melatonin synthesis.  相似文献   

4.
The time course for the decrease in norepinephrine concentration of rat pineal explants in culture indicated a significant fall starting at the 4th hour and completed after 16-24 h of incubation. Significant decreases of serotonin and 5-hydroxyindoleacetic acid (HIAA) levels in tissue, an increase of HIAA/serotonin ratio, and an increase of melatonin production rate in vitro were also observed as a function of the incubation time. Estradiol (10(-7)-10(-5) M) increased rat pineal melatonin content, testosterone (10(-5) M) decreased it and progesterone was devoid of activity when incubated with explants for up to 6 h. The in vitro stimulatory effect of estradiol on rat pineal methoxyindole synthesis was blocked by propranolol but not by phentolamine; propranolol also blocked the increase of nuclear estradiol-receptor complex produced by estrogen exposure of pineal explants. TSH (1-100 ng/ml), growth hormone (10-100 ng/ml) and LH (10 ng/ml) augmented rat pineal melatonin content while 100 ng/ml of FSH decreased it significantly. Prolactin exerted a biphasic effect on rat pineal explants, the lowest concentration augmenting melatonin content while the high concentration depressed it. Deep, intermediate and superficial segments of guinea-pig pineal glands showed an increase in melatonin concentration after a 6-h incubation in the presence of 10(-7)-10(-5) M estradiol.  相似文献   

5.
6.
7.
8.
9.
Melatonin production in the pineal gland is high at night and low during the day. This rhythm reflects circadian changes in the activity of serotonin N-acetyltransferase [arylalkylamine N-acetyltransferase (AA-NAT); EC 2.3.1.87], the penultimate enzyme in melatonin synthesis. The rhythm is generated by an endogenous circadian clock. In the chick, a clock is located in the pinealocyte, which also contains two phototransduction systems. One controls melatonin production by adjusting the clock and the other acts distal to the clock, via cyclic AMP mechanisms, to switch melatonin synthesis on and off. Unlike the clock in these cells, cyclic AMP does not appear to regulate activity by altering AA-NAT mRNA levels. The major changes in AA-NAT mRNA levels induced by the clock seemed likely (but not certain) to generate comparable changes in AA-NAT protein levels and AA-NAT activity. Cyclic AMP might also regulate AA-NAT activity via changes in protein levels, or it might act via other mechanisms, including posttranslational changes affecting activity. We measured AA-NAT protein levels and enzyme activity in cultured chick pineal cells and found that they correlated well under all conditions. They rose and fell spontaneously with a circadian rhythm. They also rose in response to agents that increase cyclic AMP. They were raised by agents that increase cyclic AMP, such as forskolin, and lowered by agents that decrease cyclic AMP, such as light and norepinephrine. Thus, both the clock and cyclic AMP can control AA-NAT activity by altering the total amount of AA-NAT protein. Effects of proteosomal proteolysis inhibitors suggest that changes in AA-NAT protein levels, in turn, reflect changes in the rate at which the protein is destroyed by proteosomal proteolysis. It is likely that cyclic AMP-induced changes in AA-NAT protein levels mediate rapid changes in chick pineal AA-NAT activity. Our results indicate that light can rapidly regulate the abundance of a specific protein (AA-NAT) within a photoreceptive cell.  相似文献   

10.
11.
The aim of the present study was to examine arylalkylamine N-acetyltransferase (AANAT) activity and melatonin content in the pineal gland and retina as well as the melatonin concentration in plasma of the turkey (Meleagris gallopavo), an avian species in which several physiological processes, including reproduction, are controlled by day length. In order to investigate whether the analyzed parameters display diurnal or circadian rhythmicity, we measured these variables in tissues isolated at regular time intervals from birds kept either under a regular light-dark (LD) cycle or under constant darkness (DD). The pineal gland and retina of the turkey rhythmically produced melatonin. In birds kept under a daily LD cycle, melatonin levels in the pineal gland and retina were high during the dark phase and low during the light phase. Rhythmic oscillations in melatonin, with high night-time concentrations, were also found in the plasma. The pineal and retinal melatonin rhythms mirrored oscillations in the activity of AANAT, the penultimate enzyme in the melatonin biosynthetic pathway. Rhythmic oscillations in AANAT activity in the turkey pineal gland and retina were circadian in nature, as they persisted under conditions of constant darkness (DD). Transferring birds from LD into DD, however, resulted in a potent decline in the amplitude of the AANAT rhythm from the first day of DD. On the sixth day of DD, pineal AANAT activity was still markedly higher during the subjective dark than during the subjective light phase; whereas, AANAT activity in the retina did not exhibit significant oscillations. The results indicate that melatonin rhythmicity in the turkey pineal gland and retina is regulated both by light and the endogenous circadian clock. The findings suggest that environmental light may be of primary importance in the maintenance of the high-amplitude melatonin rhythms in the turkey.  相似文献   

12.
Summary In the present study an attempt was made to demonstrate melatonin in the rat pineal gland by means of immunohistochemistry. The anti-body used was raised against 5-methoxy-N-acetyltryptophan which is chemically similar to melatonin. Specific fluorescence was demonstrable only in pineals from rats killed during the night, when melatonin formation is high. It was restricted to parenchymal cells lying in a marginal zone of the organ. These results are discussed in relation to a subdivision of the pineal parenchyma into cortical and medullary areas.Supported by a grant of the Deutsche Forschungsgemeinschaft (VO 135/4) within the Schwerpunktprogramm Neuroendokrinologie  相似文献   

13.
The data presented herein suggest that an intact pineal gland is required for the expression of the increased nocturnal sensitivity to morphine observed in mice. We report that the day/night rhythm of morphine analgesia was not evident in pinealectomized mice. Further, mice treated with melatonin exhibited a dose-related analgesic response. The decrease in sensitivity to pain was not observed in animals in which melatonin administration was followed by the opiate antagonist, naloxone. These data suggest that information derived from environmental lighting regulates sensitivity to pain via the pineal gland hormone melatonin, which is released and acts upon other areas of the CNS.  相似文献   

14.
15.
16.
Having prepared antisera to serotonin and to melatonin, the authors were able to show that, in the pineal gland, the behaviour of these two antisera in immunohistochemical studies differs. The antiserum raised against 5HT, actually bound to the molecule formed by condensation of formaldehyde on 5HT and therefore could be used to reveal 5HT in tissue fixed with formaldehyde. On the other hand, the anti-melatonin antiserum bound to melatonin, and could therefore be used to reveal its presence in fresh tissue.  相似文献   

17.
The 24-hour rhythms of pineal norepinephrine (NE) content and serotonin (5-HT) turnover [estimated from the ratio of 5-hydroxyindoleacetic acid (5-HIAA) to 5-HT] were studied in young (2 months) and aged (18-20 months) Wistar rats killed at 6 different time points throughout a 24-hour cycle. In the first study, significant changes dependent on the time of day were identified, with acrophases in the first half of the activity span for both parameters. Old rats showed significantly smaller mesor and amplitude of the 24-hour rhythm of pineal NE content. They also showed decreased amplitude of the pineal 5-HT turnover rhythm, in the absence of changes in mesor. In old rats, pineal 5-HT and 5-HIAA concentrations were 41-47% of those found in young rats. In a second study, young and old rats received daily intraperitoneal injections of melatonin (30 microg) or vehicle for 11 days at 19.00 h (i.e. 11 h after light on). Analyzed as a main factor in a factorial analysis of variance, both pineal NE content and 5-HT turnover decreased in old rats while pineal 5-HT turnover increased after melatonin treatment. Melatonin treatment augmented the amplitude of the 24-hour rhythm of pineal NE content by 120 and 52% in young and old rats, respectively. The amplitude of the 24-hour rhythm of pineal 5-HT turnover almost doubled after melatonin treatment in young rats and did not change in old rats. Melatonin injection did not modify the rhythm's acrophase. The results indicate that old rats had lower amplitude and lower mesor values of 24-hour variations in pineal NE content and 5-HT turnover. Melatonin treatment only partly restored pineal NE content and was devoid of activity on pineal 5-HT turnover and 5-HT and 5-HIAA concentration in old rats. Impairment of pineal melatonin synthesizing capacity and intrapineal responses to melatonin may underlie pineal aging in rats.  相似文献   

18.
19.
The anatomy and innervation of the mammalian pineal gland   总被引:8,自引:0,他引:8  
The parenchymal cells of the mammalian pineal gland are the hormone-producing pinealocytes and the interstitial cells. In addition, perivascular phagocytes are present. The phagocytes share antigenic properties with microglial and antigen-presenting cells. In certain species, the pineal gland also contains neurons and/or neuron-like peptidergic cells. The peptidergic cells might influence the pinealocyte by a paracrine secretion of the peptide. Nerve fibers innervating the mammalian pineal gland originate from perikarya located in the sympathetic superior cervical ganglion and the parasympathetic sphenopalatine and otic ganglia. The sympathetic nerve fibers contain norepinephrine and neuropeptide Y as neurotransmitters. The parasympathetic nerve fibers contain vasoactive intestinal peptide and peptide histidine isoleucine. Recently, neurons in the trigeminal ganglion, containing substance P, calcitonin gene-related peptide, and pituitary adenylate cyclase-activating peptide, have been shown to project to the mammalian pineal gland. Finally, nerve fibers originating from perikarya located in the brain containing, for example, GABA, orexin, serotonin, histamine, oxytocin, and vasopressin innervate the pineal gland directly via the pineal stalk. Biochemical studies have demonstrated numerous receptors on the pinealocyte cell membrane, which are able to bind the neurotransmitters located in the pinealopetal nerve fibers. These findings indicate that the mammalian pinealocyte can be influenced by a plethora of neurotransmitters.  相似文献   

20.
Pineal tryptophan, serotonin, serotonin-N-acetyltransferase (NAT), melatonin, 5-hydroxyindole acetic acid (5HIAA), norephinephrine and dopamine were measured in 5 castrated rabbits each at 11.00, 00.30 and 03.00 hours. The rabbits were housed in an L:D 14:10 (lights on 07.00 hours). Significant day:night variations were found in NAT, melatonin, dopamine and norepinephrine. These results were compared to data concerning rhythms of pineal constituents in other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号