首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examine how interspecific competition and two types of size-selective predation affect population density, variability and persistence in laboratory cultures of two species of Daphnia, D. magna and D. longispina. When both species were analysed together, and for D. longispina alone, there were weak negative relationships between mean population density and population variability. Interspecific competition resulted in lower population densities and higher population variability. Extinct populations had lower densities and were also more variable than persisting ones. There was still an effect of population variability on extinction probability after the effect of density on population variability had been accounted for. Hence, the effects of population density and variability on population persistence were partly independent of each other. The effects of size-selective predation on population persistence were more species-specific and not directly related to density or variability. Since the effects of species interactions on persistence were large, we suggest that it is likely that population vulnerability analyses not incorporating effects of interspecific interactions are often misleading.  相似文献   

2.
Approximate Bayesian computation (ABC) is useful for parameterizing complex models in population genetics. In this study, ABC was applied to simultaneously estimate parameter values for a model of metapopulation coalescence and test two alternatives to a strict metapopulation model in the well‐studied network of Daphnia magna populations in Finland. The models shared four free parameters: the subpopulation genetic diversity (θS), the rate of gene flow among patches (4Nm), the founding population size (N0) and the metapopulation extinction rate (e) but differed in the distribution of extinction rates across habitat patches in the system. The three models had either a constant extinction rate in all populations (strict metapopulation), one population that was protected from local extinction (i.e. a persistent source), or habitat‐specific extinction rates drawn from a distribution with specified mean and variance. Our model selection analysis favoured the model including a persistent source population over the two alternative models. Of the closest 750 000 data sets in Euclidean space, 78% were simulated under the persistent source model (estimated posterior probability = 0.769). This fraction increased to more than 85% when only the closest 150 000 data sets were considered (estimated posterior probability = 0.774). Approximate Bayesian computation was then used to estimate parameter values that might produce the observed set of summary statistics. Our analysis provided posterior distributions for e that included the point estimate obtained from previous data from the Finnish D. magna metapopulation. Our results support the use of ABC and population genetic data for testing the strict metapopulation model and parameterizing complex models of demography.  相似文献   

3.
Daphnia models for individual growth and population dynamics have been developed in the manner of models developed by Gurney, McCauley, Andersen and others. All or most of the earlier models were parameterized for Daphnia pulex; we have used the D. pulex model as a baseline model for other species of Daphnia such as magna, galeata and also Bosmina longirostris. Because of the lack of ample data for D. magna, D. galeata and B. longirostris, some of the physiological data had to be relied on the other species whose data were available and in some case calibrated. We were able to produce reasonable results for individual growth as well as population dynamics under the controlled laboratory conditions. Most of the results were compared with the available laboratory data for population as well as growth. All the simulations have been done under high and low food concentrations. The animals are assumed to be feeding on green algae (Chlamydomonas reinhardtti) under the laboratory conditions of 18–20°C. The continuous growth until the end of the life was observed in smaller B. longirostris, whereas rapid growth in the beginning and slower after the start of the reproduction was observed in Daphnia species. The smaller species matured earlier than larger species. B. longirostris population sustained better than Daphnia species in medium food concentrations.  相似文献   

4.
In aquatic environments, predator kairomones have been shown to affect morphology of prey species. Past work on the interaction between zooplankton and phytoplankton was based mainly on the Daphnia–Scenedesmus model. Algae of the genus Staurastrum can produce mucilage, causing cell clumping and settling out of the water column. These clumps are too large to be eaten by daphniids. Thus, we hypothesised that this may be a grazer defence. We investigated whether Daphnia magna induces the formation of mucus globules in Staurastrum, how this occurs, and if the formation of clumps inhibits growth in juvenile Daphnia. Eight strains of Staurastrum were used to check whether mucus extrusion is induced by the presence of Daphniaor possibly by a chemical excreted by Daphnia magna. None of the strains reacted to the presence of Daphnia water alone, animals had to be present to induce clumping. Mechanical action (gentle stirring) caused the same strains to clump. The ecological relevance of clumping was then investigated. The different Staurastrum strains were used as food in a growth experiment with ecologically relevant densities of neonates of Daphnia hyalina. These small daphniids did not cause the same clumping observed for Daphnia magna when present in experiments at high densities. We observed that juvenile daphniids grew less well on strains with larger cell size.  相似文献   

5.
Employingin situ enclosures containing inocula of the lake zooplankton (mainlyDaphnia galeata, Daphnia cucullata andBosmina spp.) from a moderately eutrophic Lake Ros (Northern Poland) or large-bodiedDaphina magna, the following observations on succession of phytoplankton were made: 1) whereasD. magna could control the density of all the photoplankton size classes, the lake zooplankton could not suppress the large-sized phytoplankters or net phytoplankton; 2) the lake zooplankton was able to control the density of small algae (< 50μm), but its effect on large algae may be opposite: a promotion of net phytoplankton growth by removing small-sized algae which can out-compete net phytoplankton for limited PO4-P resources (<5μg P l−1). Since efficiency of phytoplankton density control byD. magna decreased with an increase in net phytoplankton abundance, biomanipulation could not be successful without introducing or maintaining a high population of large-bodied cladoceran species before high densities of large algae would make the control of phytoplankton inefficient.  相似文献   

6.
The effects of alarm substance on feeding behaviour of zebra danio fish (Brachydanio rerio) were tested by offering them high and low densities of enclosed waterfleas (Daphnia magna). Normally the fish attacked high densities of prey, but when exposed to alarm substance they preferred lower and presumably less confusing prey densities — also lowering their feeding rate.  相似文献   

7.
Small fragmented populations can lose genetic variability, which reduces population viability through inbreeding and loss of adaptability. Current and previous environmental conditions can also alter the viability of populations, by creating local adaptations that determine responses to stress. Yet, most studies on stress tolerance usually consider either the effect of genetic diversity or the local environment, missing a more holistic perspective of the factors contributing to stress tolerance among natural populations. Here, we studied how salinity stress affects population growth of Daphnia longispina, Daphnia magna, and Daphnia pulex from rock pools with varying degrees of population isolation and salinity conditions. Standing variation of in situ rock pool salinity conditions explained more variation in salt tolerance than the standing variation of population isolation or genetic diversity, in both a pulse and a press disturbance experiment. This indicates that the level of stress, which these natural populations experience, influences their response to that stress, which may have important consequences for the conservation of fragmented populations. However, long-term population stability in the field decreased with population isolation, indicating that natural populations experience a variety of stresses; thus, population isolation and genetic diversity may stabilize population dynamics over larger spatiotemporal scales.  相似文献   

8.
Theory predicts that genetic diversity and genetic differentiation may strongly vary among populations of the same species depending on population turnover and local population sizes. Yet, despite the importance of these predictions for evolutionary and conservation issues, empirical studies comparing high‐turnover and low‐turnover populations of the same species are scarce. In this study, we used Daphnia magna, a freshwater crustacean, as a model organism for such a comparison. In the southern/central part of its range, D. magna inhabits medium‐sized, stable ponds, whereas in the north, it occurs in small rock pools with strong population turnover. We found that these northern populations have a significantly lower genetic diversity and higher genetic differentiation compared to the southern/central populations. Total genetic diversity across populations was only about half and average within‐population diversity only about a third of that in southern/central populations. Moreover, an average southern population contains more genetic diversity than the whole metapopulation system in the north. We based our analyses both on silent sites and microsatellites. The similarity of our results despite the contrasting mutation rates of these markers suggests that the differences are caused by contemporary rather than by historical processes. Our findings show that variation in population turnover and population size may have a major impact on the genetic diversity and differentiation of populations, and hence may lead to differences in evolutionary processes like local adaptation, hybrid vigour and breeding system evolution in different parts of a species range.  相似文献   

9.
  • 1 In this study an experiment was carried out to test whether Daphnia magna (Cladocera) changed its reproductive strategy in response to varying population density but constant food supply.
  • 2 As population density increased there was a reduction in the age at which females reproduced. Early reproduction was offset by smaller body length and clutch size (number of eggs per female) relative to later reproducing females grown at lower population densities.
  • 3 This pattern was interpreted as a strategy carried out by females to reduce the time at which they release their offspring. One potential advantage of early reproduction is to reduce the risk of severe food limitation for neonates born during a period of rapid population increase.
  相似文献   

10.
In natural host populations, parasitism is considered to be omnipresent and to play an important role in shaping host life history and population dynamics. Here, we study parasitism in natural populations of the zooplankton host Daphnia magna investigating their individual and population level effects during a 2-year field study. Our results revealed a rich and highly prevalent community of parasites, with eight endoparasite species (four microsporidia, one amoeba, two bacteria and one nematode) and six epibionts (belonging to five different taxa: Chlorophyta, Bacillariophyceae, Ciliata, Fungi and Rotifera). Several of the endoparasites were associated with a severe overall fecundity reduction of the hosts, while such effects were not seen for epibionts. In particular, infections by Pasteuria ramosa, White Fat Cell Disease and Flabelliforma magnivora were strongly associated with a reduction in overall D. magna fecundity. Across the sampling period, average population fecundity of D. magna was negatively associated with overall infection intensity and total endoparasite richness. Population density of D. magna was negatively correlated to overall endoparasite prevalence and positively correlated with epibiont richness. Finally, the reduction in host fecundity caused by different parasite species was negatively correlated to both parasite prevalence and the length of the time period during which the parasite persisted in the host population. Consistent with epidemiological models, these results indicate that parasite mediated host damages influence the population dynamics of both hosts and parasites.  相似文献   

11.
Daphnia magna as a test animal in acute and chronic toxicity tests   总被引:18,自引:2,他引:16  
Daphnia magna is a commonly used test animal in aquatic toxicology.Test procedures for acute and chronic test are described, together with the influence of several variables on their results.The practicability of the methods was checked with four model compounds, viz. 1,1,2-trichloroethane, dieldrin, pentachlorophenol and 3,4-dichloroaniline. Toxicity data of these compounds for Daphnia magna are given.  相似文献   

12.
Costs of resistance, i.e. trade‐offs between resistance to parasites or pathogens and other fitness components, may prevent the fixation of resistant genotypes and therefore explain the maintenance of genetic polymorphism for resistance in the wild. Using two approaches, the cost of resistance to a sterilizing bacterial pathogen were tested for in the crustacean Daphnia magna. First, groups of susceptible and resistant hosts from each of four natural populations were compared in terms of their life‐history characteristics. Secondly, we examined the competitiveness of nine clones from one population for which more detailed information on genetic variation for resistance was known. In no case did the results show that competitiveness or life history characteristics of resistant Daphnia systematically differed from susceptible ones. These results suggest that costs of resistance are unlikely to explain the maintenance of genetic variation in D. magna populations. We discuss methods for measuring fitness and speculate on which genetic models of host‐parasite co‐evolution may apply to the Daphnia‐microparasite system.  相似文献   

13.
The foraging efficiency of juvenile perch (Perca fluviatilis), feeding on two types of prey, was studied in laboratory experiments. Waterfleas (Daphnia magna) and phantom midge larvae (Chaoborus flavicans) were offered in a range of densities, either separately or combined. Perch fed more efficiently on each prey type separately than when both were mixed. Foraging efficiency decreased with an increase of mixed prey density with both prey types present in equal numbers, but also when the proportion of Chaoborus increased. This could be caused by the existence of different hunting techniques, each of which is fully efficient in the presence of one prey type only. In the presence of two prey types, the predator constantly has to switch from one hunting technique to another.  相似文献   

14.
It has recently been suggested that the expression of parasite virulence depends on host population density, such that infected hosts have a higher sensitivity to density, and thus reach their carrying capacity earlier than uninfected hosts. In this scenario, parasite-induced reduction in fitness (i.e., virulence) increases with host density. We tested this hypothesis experimentally, using outdoor mesocosm populations of Daphnia magna infected by the microsporidian Octosporea bayeri. Contrary to the prediction, virulence was independent of host density. In a competition experiment with initial prevalence of 50%, O. bayeri reduced the competitive ability of infected Daphnia within the asexual growth phase independent of initial host population density. In an additional experiment we set up populations with 100% and 0% prevalence and followed their population dynamics over the whole season. Consistent with the competition experiment, we found no difference in population dynamics within the asexual growth phase of the host, suggesting that infected hosts are not more sensitive to density than uninfected hosts. The additional experiment, however, included more than the initial growth phase as did the competition experiment. Eventually, after 100 days, 100% infected populations assumed a reduced carrying capacity compared to uninfected populations. We identify and discuss three reasons for the discrepancy between our experiment and the predictions.  相似文献   

15.
Laboratory populations of cloned Daphnia magna were exposed at different population phases (growing phase, density peak, stable phase) to the insecticide carbaryl at 15 μg 1−1, which was harmful to juveniles but not to adults, and their population dynamics were analyzed. The population declined most at the density peak, when not only juveniles but also many adult individuals died. To analyze the factors affecting population vulnerability to carbaryl, acute toxicity tests were conducted using Daphnia individuals of different body sizes under different food conditions. The test revealed that daphnid sensitivity to carbaryl increased greatly when food density was changed from a high food level to a low level. This food condition, of low availability, might be the condition to which the Daphnia populations were exposed at their density peak. The synergism of the negative impacts of anthropogenic and natural stresses such as insecticides and food shortage may control aquatic populations.  相似文献   

16.
By combining a field study with controlled laboratory experimentation, we examined how infection traits of the sterilizing bacterium, Pasteuria ramosa, changed over the course of a growing season in a natural population of its crustacean host Daphnia magna. The number of parasite transmission spores per infected host increased ten‐fold over the course of the season, concomitant with a decline in the density of infected hosts. Plausible explanations for this variation include changes in environmental conditions, changes in host quality, or that parasite migration or natural selection caused a genetic change in the parasite population. We sought to distinguish some of these possibilities in a laboratory experiment. Thus, we preserved field‐collected parasite spores throughout the season, and later exposed a set of hosts to a fixed dose of these spores under controlled laboratory conditions. Parasites collected late in the season were more infectious and grew more rapidly than parasites collected early in the season. This result is compatible with the hypothesis that the observed increase in infectivity in the field was due to genetic change, i.e. evolution in the P. ramosa population.  相似文献   

17.
1. The seasonal development of crustacean zooplankton, heterotrophic nanoflagellates (HNF) and bacteria was examined in Grosser Binnensee, a shallow, eutrophic lake in northern Germany. The grazing impact of Daphnia on bacteria and nanoflagellates was estimated from field data on population abundances and from clearance rates obtained in laboratory experiments. 2. The seasonal succession of zooplankton showed distinct peaks of Daphnia magna, cyclopopid copepods, Bosmina longirostris and Daphnia galeata and D. hynlina. The population dynamics of Dapfinia had the strongest impact on all sestonic components. Daphnia maxima coincided with clearwater phases, and were negatively correlated with particulate organic carbon (POC), HNF and phytoplankton. Bacterial abundance was only slightly affected although daphnids were at times more important as bacterial consumers than HNF, as estimated from measured bacterial clearance rates. Other crustaceans (copepods, Bosmina) were probably of minor importance as grazers of bacteria and nanoplankton. 3. HNF abundance varied from 550 ml?1 to more than 30000 ml?1. HNF appeared to be suppressed by daphnids and reached highest densities when copepods dominated the metazooplankton. The variation in HNF abundance was not reflected in the concentration of heterotrophic bacteria, which fluctuated rather irregularly between 5 and 20 ± 106 ml?1. Long filamentous bacteria which were probably resistant to protozoan grazing, however, appeared parallel to the development of HNF. These bacterial cells, although small in number, could comprise more than 30% of the total bacterial biomass.  相似文献   

18.
The population dynamics of an exotic cladoceran (Daphnia lumholtzi Sars) and a native cladoceran (Daphnia ambigua) were studied over a 12 month period in subtropical Lake Okeechobee, Florida (USA), to quantify the extent of invasion of the exotic species and compare ecological niches. Daphnia lumholtzi accounted for up to 70% of the Daphnia assemblage during the summer months (June-August), while D.ambigua accounted for up to 97% of the Daphnia assemblage from fall to spring (October-April). The densities of the two species were inversely corelated. The exotic species was most concentrated in the shallower, warmer, north and south ends of the lake during the summer. It also was present, but at much lower densities, in the central lake region during the fall. The native species displayed a ubiquitous distribution throughout the lake during spring and winter, but was concentrated in the deeper, cooler, central region during the summer. Relationships of the two species with environmental conditions indicate that water column temperature might affect the seasonal and spatial distribution of the two Daphnia species. The results also indicate that D.lumholtzi may be filling a 'vacant' seasonal or spatial niche when conditions are unfavorable for D.ambigua.   相似文献   

19.
The population structure of parasites is central to the ecology and evolution of host‐parasite systems. Here, we investigate the population genetics of Pasteuria ramosa, a bacterial parasite of Daphnia. We used natural P. ramosa spore banks from the sediments of two geographically well‐separated ponds to experimentally infect a panel of Daphnia magna host clones whose resistance phenotypes were previously known. In this way, we were able to assess the population structure of P. ramosa based on geography, host resistance phenotype and host genotype. Overall, genetic diversity of P. ramosa was high, and nearly all infected D. magna hosted more than one parasite haplotype. On the basis of the observation of recombinant haplotypes and relatively low levels of linkage disequilibrium, we conclude that P. ramosa engages in substantial recombination. Isolates were strongly differentiated by pond, indicating that gene flow is spatially restricted. Pasteuria ramosa isolates within one pond were segregated completely based on the resistance phenotype of the host—a result that, to our knowledge, has not been previously reported for a nonhuman parasite. To assess the comparability of experimental infections with natural P. ramosa isolates, we examined the population structure of naturally infected D. magna native to one of the two source ponds. We found that experimental and natural infections of the same host resistance phenotype from the same source pond were indistinguishable, indicating that experimental infections provide a means to representatively sample the diversity of P. ramosa while reducing the sampling bias often associated with studies of parasite epidemics. These results expand our knowledge of this model parasite, provide important context for the large existing body of research on this system and will guide the design of future studies of this host‐parasite system.  相似文献   

20.
Some results of studies with Daphnia magna are presented. These results can be used as background information for toxicologists, but the techniques referred to might well be used for toxicity tests. Daphnia magna is a filter-feeder. With the Coulter Counter it was shown that the feeding mechanism is aselective for size of the food particles. It was also shown that algal cells can pass the gut of Daphnia magna several times before being completely digested. The uptake of food is proportional to the food concentration up to a critical concentration. Above this concentration the food uptake is constant. Respiration is also dependent on the food concentration, and has a maximum value at food concentrations near the critical concentration of the feeding process. Growth efficiency is independent of the food concentration. The effect of temperature on the feeding process is different for low and high food concentrations. Growth efficiency is maximal at 10°C and above 22°C growth efficiency was negative, which means that the population cannot survive under the experimental conditions used, at temperatures above 22°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号