首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Using three serotypes (four strains) of cultivable porcine rotavirus as immunizing antigens, 10 neutralizing monoclonal antibodies were characterized. One VP4-specific monoclonal antibody directed against porcine rotavirus BEN-144 (serotype G4) neutralized human rotavirus strain ST-3 in addition to the homologous porcine virus. All nine VP7-specific monoclonal antibodies were highly specific for viruses of the same serotype as the immunizing rotavirus strain. One exception was the VP7-specific monoclonal antibody C3/1, which neutralized both serotype G3 and G5 rotaviruses. However, this monoclonal antibody did not neutralize the porcine rotavirus AT/76, also of serotype G3, nor mutants of SA-11 virus (serotype G3) which were selected with monoclonal antibody A10/N3 and are known to have mutations affecting the C antigenic region.  相似文献   

3.
Genomic segment 4 of the porcine Gottfried strain (serotype 4) of porcine rotavirus, which encodes the outer capsid protein VP4, was sequences, and its deduced amino acid sequence was analyzed. Amino acid homology of the porcine rotavirus VP4 to the corresponding protein of asymptomatic or symptomatic human rotaviruses representing serotypes 1 to 4 ranged from 87.1 to 88.1% for asymptomatic strains and from 77.5 to 77.8% for symptomatic strains. Amino acid homology of the Gottfried strain to simian rhesus rotavirus, simian SA11 virus, bovine Nebraska calf diarrhea virus, and porcine OSU strains ranged from 71.5 to 74.3%. Antigenic similarities of VP4 epitopes between the Gottfried strain and human rotaviruses were detected by a plaque reduction neutralization test with hyperimmune antisera produced against the Gottfried strain or a Gottfried (10 genes) x human DS-1 rotavirus (VP7 gene) reassortant which exhibited serotype 2 neutralization specificity. In addition, a panel of six anti-VP4 monoclonal antibodies capable of neutralizing human rotaviruses belonging to serotype 1, 3, or 4 was able to neutralize the Gottfried strain. These observations suggest that the VP4 outer capsid protein of the Gottfried rotavirus is more closely related to human rotaviruses than to animal rotaviruses.  相似文献   

4.
5.
The pathogenic potential of human rotaviruses of serotypes 1 through 4 was evaluated in suckling mice. Oral inoculation of three different human rotaviruses of serotype 3 into 5-6 day old CD-1 mice caused disease characterized by diarrhea and dehydration. The mean 50% diarrhea inducing dose (DD50) was 5 X 10(5) pfu. Histopathological examination of small intestines revealed villus epithelial cell vacuolization localized to the distal one-third of the villus. Only Serotype 3 rotaviruses exhibited a rapid phase of viral growth in the intestine between 7 and 12 hours post-inoculation. Larger inocula of rotavirus serotypes 1, 2, and 4 did not cause disease or typical histopathologic changes. However, immunoperoxidase staining for rotavirus antigen was positive in all serotypes tested indicating that infection can occur without apparent disease and is not serotype specific. This convenient in-vivo model can be used to evaluate attenuation of human origin vaccine candidates of serotype 3.  相似文献   

6.
Cells producing neutralizing monoclonal antibodies to a serotype 3 human neonatal rotavirus strain RV-3 were derived by fusion of hyperimmunized mouse spleen cells with mouse myeloma cells. As ascites fluid, three rotavirus-neutralizing monoclonal antibodies were characterized by hemagglutination inhibition and reacted with 17 cultivable mammalian rotaviruses representing five virus serotypes, by fluorescent focus neutralization and enzyme immunoassay. Two antibodies, Mab RV-3:1 and Mab RV-3:2, reacted with the seven serotype 3 rotaviruses only. Mab RV-3:1 was shown to bind to the outer capsid glycoprotein gp34 of rotavirus when variants of SA 11 rotavirus were used, and it therefore appears to react with the major neutralization epitope of serotype 3 rotaviruses. The antibody Mab RV-3:3 was specific for an epitope of RV-3 rotavirus not present on any other rotavirus of any serotype tested, including another neonatal isolate of identical RNA electropherotype isolated from the same ward of the same hospital as RV-3 3 months earlier. These two viruses were also distinguishable by fluorescent focus neutralization, using antiserum to RV-3 virus. Western blot analysis showed binding of Mab RV-3:3 to the trypsin cleavage product of the outer capsid protein p86 of RV-3. This suggests that antigenic drift may have occurred among neonatal rotaviruses in Melbourne. These monoclonal antibodies will be useful in serotyping assays of rotaviruses directly in stool samples, and in further analysis of antigenic variation within the serotype.  相似文献   

7.
In our previous study (K. Taniguchi, Y. Morita, T. Urasawa, and S. Urasawa, J. Virol. 62:2421-2426, 1987) in which the cross-reactive neutralization epitopes on VP4 of human rotaviruses were analyzed, one strain, K8, was found to bear unique VP4 neutralization epitopes. This strain, which belongs to subgroup II and serotype 1, was not neutralized by any of six anti-VP4 neutralizing monoclonal antibodies which reacted with human rotavirus strains of serotypes 1, 3, and 4 or serotypes 1 through 4. We determined the complete nucleotide sequence of the gene encoding VP4 of strain K8 by primer extension. The VP4 gene is 2,359 base pairs in length, with 5' and 3' noncoding regions of 9 and 25 nucleotides, respectively. The gene contains a long open reading frame of 2,325 bases capable of coding for a protein of 775 amino acids. When compared with those of other human rotaviruses, VP4 of strain K8 had an insertion of one amino acid after residue 135, as found in simian rotavirus strains, and in addition, it had a deletion of one amino acid (residue 575). The amino acid homology of VP4 of strain K8 and those of other virulent human rotaviruses was only 60 to 70%. This was unusual, since over 90% VP4 homology has been found among the other virulent human rotavirus strains. In contrast, the VP7 amino acid sequence of the K8 strain was quite similar (over 98% homology) to those of other serotype 1 human rotaviruses. Thus, the K8 strain appears to have a unique VP4 gene previously not described.  相似文献   

8.
Genetic studies of reassortant rotaviruses have demonstrated that gene segments 4 and 9 each segregate with the serotype-specific neutralization phenotype in vitro. Reassortant rotaviruses derived by coinfection of MA-104 cells with the simian strain SA11 and the antigenically distinct bovine strain NCDV were used to determine which viral genes coded for proteins which induced a protective immune response in vivo. In addition, reassortant rotaviruses containing only the gene segment 4 or 9 protein products (vp3 and vp7, respectively) from SA11 or NCDV were used to determine the serotypic specificities of both vp3 and vp7 in several mammalian rotavirus strains. vp3 and vp7 from the murine strain Eb were shown to be indistinguishable from the corresponding proteins from strain SA11. Adult mice orally inoculated with strain Eb developed neutralizing antibodies to both vp3 and vp7. The two naturally occurring bovine rotavirus strains NCDV and UK were shown to contain antigenically similar vp7 but distinct vp3 proteins. Mouse dams orally immunized with a reassortant virus containing only gene 9 from NCDV passively protected their progeny against UK challenge, whereas mouse dams orally immunized with a reassortant virus containing only gene 4 from NCDV did not. Finally, we constructed reassortant viruses that immunized against rotaviruses of two distinct serotypes. SA11 X NCDV reassortants that contained vp3 and vp7 from different parents induced a protective immune response against both parental serotypes. vp3 and vp7 were independently capable of inducing a protective immune response after oral immunization. An understanding of the serotypic specificities of both vp3 and vp7 of human rotavirus isolates will be necessary for the development of successful strategies to protect infants against severe rotavirus infections.  相似文献   

9.
在我国腹泻患儿中发现G9型轮状病毒感染   总被引:11,自引:1,他引:10  
钱渊  关德华 《病毒学报》1994,10(3):263-267
  相似文献   

10.
《Research in virology》1991,142(4):271-275
Pigeon rotavirus strain PO-13, which was recently shown to be neutralized by a hyperimmune serum to the prototype serotype 7 virus Ch-2, showed a one-way neutralization cross with turkey rotavirus Ty-1. When its genome was compared by RNA-RNA hybridization under stringent conditions with those of avian and mammalian rotaviruses, PO-13 displayed a low to medium level of homology only with turkey rotavirus strains Ty-1 and Ty-3 but not with chicken rotavirus strain Ch-1. Furthermore, no homology was found between the PO-13 probe and genomic RNA from 11 rotavirus strains which originated from 6 different mammalian species and which represented 6 major mammalian serotypes (1–6).  相似文献   

11.
M E Hardy  G N Woode  Z C Xu    M Gorziglia 《Journal of virology》1991,65(10):5535-5538
In a previous study (S. Zheng, G. N. Woode, D. R. Melendy, and R. F. Ramig, J. Clin. Microbiol. 27:1939-1945, 1989), it was predicted that the VP7 serotype 6 bovine rotavirus strains NCDV and B641 do not share antigenically similar VP4s. In this study, gene 4 and the VP7 gene of B641 were sequenced, and the amino acid sequences were deduced and compared with those of NCDV and bovine rotavirus strain UK. Amino acid sequence homology in VP7 between the three strains was greater than 94%, confirming their relationship as VP7 serotype 6 viruses. VP4 of B641 showed amino acid homology to UK of 94% but only 73% homology to NCDV. Sequence comparison of a variable region of VP8 demonstrated amino acid homology of 53% between B641 and NCDV, whereas B641 and UK were 89% homologous in this region. These results confirm the earlier prediction that although the same serotype by VP7 reactivity, B641 and NCDV represent different VP4 serotypes. This difference in VP4 may have contributed to the lack of homotypic protection observed in calves, implicating VP4 as an important antigen in the active immune response to rotavirus infection in bovines.  相似文献   

12.
13.
PCR方法用于我国A组轮状病毒的分型研究   总被引:35,自引:2,他引:35  
方肇寅  秦树民 《病毒学报》1994,10(4):316-321
  相似文献   

14.
The dsRNA gene segment coding for the major outer shell glycoprotein of a human rotavirus (Hu/Australia/5/77, serotype 2) was converted into DNA and cloned into the PstI site of the plasmid pBR322. The cloned gene was sequenced and found to be 1062 bp long with one long open reading frame capable of coding for a protein 326 amino-acids. When this gene sequence was compared to the published sequences of the corresponding genes of two animal rotaviruses, SA11 (simian) and UK (bovine), all three were found to be closely related (74-78%). The predicted amino-acid sequences of the three genes were also highly conserved (75-86%), despite the fact that the three viruses belong to different serotypes.  相似文献   

15.
16.
17.
Although there are several reports on rotavirus inoculation of nonhuman primates, no reliable model exists. Therefore, this study was designed to develop a rhesus macaque model for rotavirus studies. The goals were to obtain a wild-type macaque rotavirus and evaluate it as a challenge virus for model studies. Once rotavirus was shown to be endemic within the macaque colony at the Tulane National Primate Research Center, stool specimens were collected from juvenile animals (2.6 to 5.9 months of age) without evidence of previous rotavirus infection and examined for rotavirus antigen. Six of 10 animals shed rotavirus during the 10-week collection period, and the electropherotypes of all isolates were identical to each other but distinct from those of prototype simian rotaviruses. These viruses were characterized as serotype G3 and subgroup 1, properties typical of many animal rotaviruses, including simian strains. Nucleotide sequence analysis of the VP4 gene was performed with a culture-grown isolate from the stool of one animal, designated the TUCH strain. Based on both genotypic and phylogenetic comparisons between TUCH VP4 and cognate proteins of representatives of the reported 22 P genotypes, the TUCH virus belongs to a new genotype, P[23]. A pool of wild-type TUCH was prepared and intragastrically administered to eight cesarean section-derived, specific-pathogen-free macaques 14 to 42 days of age. All animals were kept in a biocontainment level 2 facility. Although no diarrhea was observed and the animals remained clinically normal, all animals shed large quantities of rotavirus antigen in their feces after inoculation, which resolved by the end of the 14-day observation period. Therefore, TUCH infection of macaques provides a useful nonhuman primate model for studies on rotavirus protection.  相似文献   

18.
cDNA clones representing the VP8 and VP5 subunits of VP4 of symptomatic human rotavirus strain KU (VP7 serotype 1 and VP4 serotype 1A) or DS-1 (VP7 serotype 2 and VP4 serotype 1B) or asymptomatic human rotavirus strain 1076 (VP7 serotype 2 and VP4 serotype 2) were constructed and inserted into the pGEMEX-1 plasmid and expressed in Escherichia coli. Immunization of guinea pigs with the VP8 or VP5 protein of each strain induced antibodies that neutralized the rotavirus from which the VP4 subunits were derived. In a previous study (M. Gorziglia, G. Larralde, A.Z. Kapikian, and R. M. Chanock, Proc. Natl. Acad. Sci. USA 87:7155-7159, 1990), three distinct serotypes and one subtype of VP4 outer capsid protein were identified among 17 human rotavirus strains that had previously been assigned to five distinct VP7 serotypes. The results obtained by cross-immunoprecipitation and by neutralization assay with antisera to the VP8- and VP5-expressed proteins suggest that the VP8 subunit of VP4 contains the major antigenic site(s) responsible for serotype-specific neutralization of rotavirus via VP4, whereas the VP5 subunit of VP4 is responsible for much of the cross-reactivity observed among strains that belong to different VP4 serotypes.  相似文献   

19.
The recognition that rotaviruses are the major cause of life-threatening diarrheal disease and significant morbidity in young children has focused efforts on disease prevention and control of these viruses. Although the correlates of protection in children remain unclear, some studies indicate that serotype-specific antibody is important. Based on this premise, current live attenuated reassortant rotavirus vaccines include the four predominant serotypes of virus. We are evaluating subunit rotavirus vaccines, 2/6/7-VLPs and 2/4/6/7-VLPs, that contain only a single VP7 of serotype G1 or G3. In mice immunized parenterally twice, G3 virus-like particles (VLPs) induced a homotypic, whereas G1 VLPs induced a homotypic and heterotypic (G3) serum neutralizing immune response. Administration of three doses of G1 or G3 VLPs induced serum antibodies that neutralized five of seven different serotype test viruses. The inclusion of VP4 in the VLPs was not essential for the induction of heterotypic neutralizing antibody in mice. To confirm these results in another species, rabbits were immunized parenterally with two doses of 2/4/6/7-VLPs containing a G3 or G1 VP7, sequentially with G3 VLPs followed by G1 (G3/G1) VLPs, or with live or psoralen-inactivated SA11. High-titer homotypic serum neutralizing antibody was induced in all rabbits, and low-level heterotypic neutralizing antibody was induced in a subset of rabbits. The rabbits immunized with the G1 or G3/G1 VLPs in QS-21 were challenged orally with live G3 ALA rotavirus. Protection levels were similar in rabbits immunized with homotypic G3 2/4/6/7-VLPs, heterotypic G1 2/4/6/7-VLPs, or G3/G1 2/4/6/7-VLPs. Therefore, G1 2/4/6/7-VLPs can induce protective immunity against a live heterotypic rotavirus challenge in an adjuvant with potential use in humans. Following challenge, broad serum heterotypic neutralizing antibody responses were detected in rabbits parenterally immunized with G1, G3/G1, or G3 VLPs but not with SA11. Immunization with VLPs may provide sufficient priming of the immune system to induce protective anamnestic heterotypic neutralizing antibody responses upon subsequent rotavirus infection. Therefore, a limited number of serotypes of VLPs may be sufficient to provide a broadly protective subunit vaccine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号