首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Until now, the general importance of microvilli present on the surface of almost all differentiated cells has been strongly underestimated and essential functions of these abundant surface organelles remained unrecognized. Commonly, the role of microvilli has been reduced to their putative function of cell‐surface enlargement. In spite of a large body of detailed knowledge about the specific functions of microvilli in sensory receptor cells for sound, light, and odor perception, their functional importance for regulation of basic cell functions remained obscure. Here, a number of microvillar mechanisms involved in fundamental cell functions are discussed. Two structural features enable the extensive functional competence of microvilli: First, the exclusive location of almost all functional important membrane proteins on microvilli of differentiated cells and second, the function of the F‐actin‐based cytoskeletal core of microvilli as a structural diffusion barrier modulating the flow of low molecular substrates and ions into and out of the cell. The specific localization on microvilli of important functional membrane proteins such as glucose transporters, ion channels, ion pumps, and ion exchangers indicate the importance and diversity of microvillar functions. In this review, the microvillar mechanisms of audioreceptor, photoreceptor, and olfactory/taste receptor cells are discussed as highly specialized adaptations of a general type of microvillar mechanisms involved in regulation of important basic cell functions such as glucose transport/energy metabolism, ion channel regulation, generation and modulation of the membrane potential, volume regulation, and Ca signaling. Even the constitutive cellular defence against cytotoxic compounds, also called “multidrug resistance (MDR),” is discussed as a microvillar mechanism. A comprehensive examination of the specific properties of “cable‐like” ion conduction along the microvillar core structure of F‐actin allows the proposal that microvilli are specifically designed for using ionic currents as cellular signals. In view of the multifaceted gating and signaling properties of TRP channels, the possible role of microvilli as a universal gating device for TRP channel regulation is discussed. Combined with the role of the microvillar core bundle of actin filaments as high‐affinity Ca store, microvilli may turn out as highly specialized Ca signaling organelle involved in store‐operated Ca entry (SOCE) and initiation of nonlinear Ca signals such as waves and oscillations. J. Cell. Physiol. 226: 896–927, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
A novel mechanism of cellular volume regulation is presented, which ensues from the recently introduced concept of transport and ion channel regulation via microvillar structures (Lange K, 1999, J Cell Physiol 180:19-35). According to this notion, the activity of ion channels and transporter proteins located on microvilli of differentiated cells is regulated by changes in the structural organization of the bundle of actin filaments in the microvillar shaft region. Cells with microvillar surfaces represent two-compartment systems consisting of the cytoplasm on the one side and the sum of the microvillar tip (or, entrance) compartments on the other side. The two compartments are separated by the microvillar actin filament bundle acting as diffusion barrier ions and other solutes. The specific organization of ion and water channels on the surface of microvillar cell types enables this two-compartment system to respond to hypo- and hyperosmotic conditions by activation of ionic fluxes along electrochemical gradients. Hypotonic exposure results in swelling of the cytoplasmic compartment accompanied by a corresponding reduction in the length of the microvillar diffusion barrier, allowing osmolyte efflux and regulatory volume decrease (RVD). Hypertonic conditions, which cause shortening of the diffusion barrier via swelling of the entrance compartment, allow osmolyte influx for regulatory volume increase (RVI). Swelling of either the cytoplasmic or the entrance compartment, by using membrane portions of the microvillar shafts for surface enlargement, activates ion fluxes between the cytoplasm and the entrance compartment by shortening of microvilli. The pool of available membrane lipids used for cell swelling, which is proportional to length and number of microvilli per cell, represents the sensor system that directly translates surface enlargements into activation of ion channels. Thus, the use of additional membrane components for osmotic swelling or other types of surface-expanding shape changes (such as the volume-invariant cell spreading or stretching) directly regulates influx and efflux activities of microvillar ion channels. The proposed mechanism of ion flux regulation also applies to the physiological main functions of epithelial cells and the auxiliary action of swelling-induced ATP release. Furthermore, the microvillar entrance compartment, as a finely dispersed ion-accessible peripheral space, represents a cellular sensor for environmental ionic/osmotic conditions able to detect concentration gradients with high lateral resolution. Volume regulation via microvillar surfaces is only one special aspect of the general property of mechanosensitivity of microvillar ionic pathways.  相似文献   

3.
The interaction of weakelectromagnetic fields (EMF) with living cells is a most important butstill unresolved biophysical problem. For this interaction, thermal andother types of noise appear to cause severe restrictions in the actionof weak signals on relevant components of the cell. A recentlypresented general concept of regulation of ion and substrate pathwaysthrough microvilli provides a possible theoretical basis for thecomprehension of physiological effects of even extremely low magneticfields. The actin-based core of microfilaments in microvilli isproposed to represent a cellular interaction site for magnetic fields.Both the central role of F-actin in Ca2+ signaling and itspolyelectrolyte nature eliciting specific ion conduction propertiesrender the microvillar actin filament bundle an ideal interaction sitefor magnetic and electric fields. Ion channels at the tip of microvilliare connected with the cytoplasm by a bundle of microfilaments forminga diffusion barrier system. Because of its polyelectrolyte nature, themicrofilament core of microvilli allows Ca2+ entry into thecytoplasm via nonlinear cable-like cation conduction through arrays ofcondensed ion clouds. The interaction of ion clouds with periodicallyapplied EMFs and field-induced cation pumping through the cascade ofpotential barriers on the F-actin polyelectrolyte followswell-known physical principles of ion-magnetic field (MF) interactionand signal discrimination as described by the stochastic resonance andBrownian motor hypotheses. The proposed interaction mechanismis in accord with our present knowledge about Ca2+signaling as the biological main target of MFs and the postulated extreme sensitivity for coherent excitation by very low field energieswithin specific amplitude and frequency windows. Microvillar F-actinbundles shielded by a lipid membrane appear to function like electronicintegration devices for signal-to-noise enhancement; the influence ofcoherent signals on cation transduction is amplified, whereas that ofrandom noise is reduced.

  相似文献   

4.
Actin-bundling proteins are identified as key players in the morphogenesis of thin membrane protrusions. Until now, functional redundancy among the actin-bundling proteins villin, espin, and plastin-1 has prevented definitive conclusions regarding their role in intestinal microvilli. We report that triple knockout mice lacking these microvillar actin-bundling proteins suffer from growth delay but surprisingly still develop microvilli. However, the microvillar actin filaments are sparse and lack the characteristic organization of bundles. This correlates with a highly inefficient apical retention of enzymes and transporters that accumulate in subapical endocytic compartments. Myosin-1a, a motor involved in the anchorage of membrane proteins in microvilli, is also mislocalized. These findings illustrate, in vivo, a precise role for local actin filament architecture in the stabilization of apical cargoes into microvilli. Hence, the function of actin-bundling proteins is not to enable microvillar protrusion, as has been assumed, but to confer the appropriate actin organization for the apical retention of proteins essential for normal intestinal physiology.  相似文献   

5.
The distal regions of the photoreceptor microvilli of tipulid flies are shed to extracellular space during membrane turnover. Before abscission, the microvillar tips undergo a transformation: they become deformed, and after conventional fixation for electron microscopy are relatively electron-lucent compared to the stable, basal microvillar segments. We now show that the electron-lucent segment is an empty bag of membrane whose P-face after freeze-etch preparation appears as densely particulate as the remainder of the microvillus. Transformation is achieved by the local deletion of a microvillar cytoskeleton which consists of a single, axial filament linked to the plasma membrane by side-arms. The filament may be partially preserved by the chelation of Ca2+; the provision of a divalent cation (Mg2+ or Ba2+) stabilizes the side-arms during subsequent fixation, as has been shown previously for the rhabdomeral cytoskeleton of blowflies. Incubation of the isolated retina in the presence of 0.25 mM Ca2+ at room temperature for 10-20 min causes proteolysis of the cytoskeleton which is blocked by as little as 0.5 mM of the thiol protease inhibitors Ep-475 and Ep-459. Loss of the cytoskeleton is accompanied by deformation of all regions of the microvilli. Local deletion of the cytoskeleton from the transformed zone of the normal rhabdom is sufficient to explain deformation of the microvillar tips, but not their subsequent abscission. The intimate association between a Ca2+-activated thiol protease and the cytoskeleton implied by the great rapidity of proteolysis calls for a reassessment of published studies of membrane turnover by radioautography, and of the nature of light-induced damage to arthropod photoreceptor membranes.  相似文献   

6.
The brush border, isolated from chicken intestine epithelial cells, contains the 95,000 relative molecular mass (M(r)) polypeptide, villin. This report describes the purification and characterization of villin as a Ca(++)-dependent, actin bundling/depolymerizing protein. Then 100,000 g supernatant from a Ca(++) extract of isolated brush borders is composed of three polypeptides of 95,000 (villin), 68,000 (fimbrin), and 42,000 M(r) (actin). Villin, following purification from this extract by differential ammonium sulfate precipitation and ion-exchange chromatography, was mixed with skeletal muscle F-actin. Electron microscopy of negatively stained preparations of these villin-actin mixtures showed that filament bundles were present. This viscosity, sedimentability, and ultrastructural morphology of filament bundles are dependent on the villin:actin molar ratio, the pH, and the free Ca(++) concentration in solution. At low free Ca(++) (less than 10(-6) M), the amount of protein in bundles, when measured by sedimentation, increased as the villin: actin molar ratio increased and reached a plateau at approximately a 4:10 ratio. This behavior correlates with the conversion of single actin filaments into filament bundles as detected in the electron microscope. At high free Ca(++) (more than 10(-6) M), there was a decrease in the apparent viscosity in the villin-actin mixtures to a level measured for the buffer. Furthermore, these Ca(++) effects were correlated with the loss of protein sedimented, the disappearance of filament bundles, and the appearance of short fragments of filaments. Bundle formation is also pH-sensitive, being favored at mildly acidic pH. A decrease in the pH from 7.6 to 6.6 results in an increase in sedimentable protein and also a transformation of loosly associated actin filaments into compact actin bundles. These results are consistent with the suggestions that villin is a bundling protein in the microvillus and is responsible for the Ca(++)-sensitive disassembly of the microvillar cytoskeleton. Thus villin may function in the cytoplasm as a major cytoskeletal element regulating microvillar shape.  相似文献   

7.
The brush border of intestinal epithelial cells consists of an array of tightly packed microvilli. Within each microvillus is a bundle of 20-30 actin filaments. The basal ends of the filament bundles are embedded in and interconected by a filamentous meshwork, the terminal web, which lies directly beneath the microvilli. When calcium and ATP are added to isolated brush borders that have been treated with the detergent, Triton X-100, the microvillar filament bundles rapidly retract into and through the terminal web region. Biochemical studies of brush border contractile proteins suggest that the observed microvillar contraction is actomyosin mediated. We have shown previously that the major protein of the brush border's actin (Tilney, L. G., and M. S. Mooseker. 1971. Proc. Natl. Acad. Sci. U. S. A. 68:2611-2615). The brush border also contains a protein with the same molecular weight as the heavy chain subunit of myosin (200, 000 daltons). In addition, preparations of demembranated brush borders exhibit potassium-EDTA ATPase activity of 0.02 mumol phosphate/mg-min (22 degrees C); this assay is diagnostic for myosin-like ATPase isolated from vertebrate sources. Other proteins of the brush border include a 30,000 dalton protein with properties similar to those of tropomyosin, and a protein with the same molecular weight as the Z band protein, alpha-actinin (95,000 daltons). How these observations bear on the basis for microvillar movements in vivo is discussed within the framework of our recent model for the organization of actin and myosin in the brush border (Mooseker, M. S., and L. G. Tilney. 1975. J. Cell Biol. 67:725-743).  相似文献   

8.
The report that microvillar cores of isolated, demembranated brush borders retract into the terminal web in the presence of Ca(++) and ATP has been widely cited as an example of Ca(++)-regulated nonmuscle cell motility. Because of recent findings that microvillar core actin filaments are cross-linked by villin which, in the presence of micromolar Ca(++), fragments actin filaments, we used the techniques of video enhanced differential interference contrast, immunofluorescence, and phase contrast microscopy and thin-section electron microscopy (EM) to reexamine the question of contraction of isolated intestinal cell brush borders. Analysis of video enhanced light microscopic images of Triton- demembranated brush borders treated with a buffered Ca(++) solution shows the cores disintegrating with the terminal web remaining intact; membranated brush borders show the microvilli to vesiculate with Ca(++). Using Ca(++)/EGTA buffers, it is found that micromolar free Ca(++) causes core filament dissolution in membranated or demembranated brush borders, Ca(++) causes microvillar core solation followed by complete vesiculation of the microvillar membrane. The lengths of microvilli cores and rootlets were measured in thin sections of membranated and demembranated controls, in Ca(++)-, Ca(++) + ATP-, and in ATP-treated brush borders. Results of these measurements show that Ca(++) alone causes the complete solation of the microvillar cores, yet the rootlets in the terminal web region remain of normal length. These results show that microvilli do not retract into the terminal web in response to Ca(++) and ATP but rather that the microvillar cores disintegrate. NBD-phallicidin localization of actin and fluorescent antibodies to myosin reveal a circumferential band of actin and myosin in mildly permeabilized cells in the region of the junctional complex. The presence of these contractile proteins in this region, where other studies have shown a circumferential band of thin filaments, is consistent with the hypothesis that brush borders may be motile through the circumferential constriction of this “contractile ring,” and is also consistent with the observations that ATP-treated brush borders become cup shaped as if there had been a circumferential constriction.  相似文献   

9.
Non-selective cation channels have been described in the basolateral membrane of the renal tubule, but little is known about functional channels on the apical side. Apical membranes of microdissected fragments of mouse cortical thick ascending limbs were searched for ion channels using the cell-free configuration of the patch-clamp technique. A cation channel with a linear current-voltage relationship (19pS) that was permeable both to monovalent cations [P(NH4)(1.7)>P(Na) (1.0)=P(K) (1.0)] and to Ca(2+) (P(Ca)/P(Na)≈0.3) was detected. Unlike the basolateral TRPM4 Ca(2+)-impermeable non-selective cation channel, this non-selective cation channel was insensitive to internal Ca(2+), pH and ATP. The channel was already active after patch excision, and its activity increased after reduced pressure was applied via the pipette. External gadolinium (10(-5)M) decreased the channel-open probability by 70% in outside-out patches, whereas external amiloride (10(-4)M) had no effect. Internal flufenamic acid (10(-4)M) inhibited the channel in inside-out patches. Its properties suggest that the current might be supported by the TRPM7 protein that is expressed in the loop of Henle. The conduction properties of the channel suggest that it could be involved in Ca(2+) signaling.  相似文献   

10.
Actin dynamics: old friends with new stories   总被引:1,自引:0,他引:1  
  相似文献   

11.
The association of actin filaments with membranes is an important feature in the motility of nonmuscle cells. We investigated the role of membrane particles in the attachment of actin filaments to membranes in those systems in which the attachment site can be identified. Freeze fractures through the end-on attachment site of the acrosomal filament bundles in Mytilus (mussel) and Limulus (horseshoe crab) sperm and the attachment site of the microvillar filament bundles in the brush border of intestinal epithelial cells were examined. There are no particles on the P face of the membrane at these sites in the sperm systems and generally none at these sites in microvilli. In microvilli, the actin filaments are also attached along their lengths to the membrane by bridges. When the isolated brush border is incubated in high concentrations of Mg++ (15 mM), the actin filaments form paracrystals and, as a result, the bridges are in register (330 A period). Under these conditions, alignment of the particles on the P face of the membrane into circumferential bands also occurs. However, these bands are generally separated by 800-900 A, indicating that all the bridges cannot be directly attached to membrane particles. Thus membrane particles are not directly involved in the attachment of actin filaments to membranes.  相似文献   

12.
The association of microvillar microfilaments with the microvillar membrane actin-containing transmembrane complex of MAT-C1 13762 ascites tumor cell microvilli has been investigated by differential centrifugation, gel electrophoresis and electron microscopy of detergent extracts of the isolated microvilli. Several methods have been used to reduce breakdown and solubilization of the microfilament core actin during the detergent extractions for preparation of microvillar core microfilaments. Gel electrophoresis of differential centrifugation fractions demonstrated that over 70% of the total microvillus actin could be pelleted with microfilament cores at 10 000 g under extraction conditions which reduce filament breakdown. Transmission electron microscopy (TEM) of all of the core preparations showed arrays of microfilaments and small microfilament bundles. The major protein components of the microfilament cores, observed by sodium dodecyl sulfate (SDS) electrophoresis, were actin and alpha-actinin. Among the less prominent polypeptide components was a 58 000 Dalton polypeptide (58 K), previously identified as a member of the MAT-Cl transmembrane complex. This three-component complex contains, in addition to 58 K, actin associated directly and stably with a cell surface glycoprotein (Carraway, CAC, Jung, G & Carraway, K L, Proc. natl acad. sci. US 80 (1983) 430). Evidence that the apparent association of complex with the microfilament core was not due simply to co-sedimentation was provided by myosin affinity precipitation. These results provide further evidence that the transmembrane complex is a site for the interaction of microfilaments with the microvillar plasma membrane.  相似文献   

13.
Actin filament arrays in in vivo microvillar bundles of rat intestinal enterocyte were re-evaluated using electron tomography (ET). Conventional electron microscope observation of semi-thin cross sections (300nm thick) of high-pressure freeze fixed and resin embedded brush border has shown a whirling pattern in the center of the microvilli instead of hexagonally arranged dots, which strongly suggests that the bundle consists of a non-parallel array of filaments. A depth compensation method for the ET was developed to estimate the actual structure of the actin bundle. Specimen shrinkage by beam irradiation during image acquisition was estimated to be 63%, and we restored the original thickness in the reconstruction. The depth compensated tomogram displayed the individual actin filaments within the bundles and it indicated that the actin filaments do not lie exactly parallel to each other: instead, they are twisted in a clockwise coil with a pitch of ~120°/μm. Furthermore, the lattice of actin filaments was occasionally re-arranged within the bundle. As the microvillar bundle mechanically interacts with the membrane and is thought to be compressed by the membrane's faint tensile force, we removed the shrouding membrane using detergents to eliminate the mechanical interaction. The bared bundles no longer showed the whirling pattern, suggesting that the bundle had released its coiled property. These findings indicate that the bundle has not rigid but elastic properties and a dynamic transformation in its structure caused by a change in the mechanical interaction between the membrane and the bundle.  相似文献   

14.
From germinating pollen of lily, two types of villins, P-115-ABP and P-135-ABP, have been identified biochemically. Ca(2+)-CaM-dependent actin-filament binding and bundling activities have been demonstrated for both villins previously. Here, we examined the effects of lily villins on the polymerization and depolymerization of actin. P-115-ABP and P-135-ABP present in a crude protein extract prepared from germinating pollen bound to a DNase I affinity column in a Ca(2+)-dependent manner. Purified P-135-ABP reduced the lag period that precedes actin filament polymerization from monomers in the presence of either Ca(2+) or Ca(2+)-CaM. These results indicated that P-135-ABP can form a complex with G-actin in the presence of Ca(2+) and this complex acts as a nucleus for polymerization of actin filaments. However, the nucleation activity of P-135-ABP is probably not relevant in vivo because the assembly of G-actin saturated with profilin, a situation that mimics conditions found in pollen, was not accelerated in the presence of P-135-ABP. P-135-ABP also enhanced the depolymerization of actin filaments during dilution-mediated disassembly. Growth from filament barbed ends in the presence of Ca(2+)-CaM was also prevented, consistent with filament capping activity. These results suggested that lily villin is involved not only in the arrangement of actin filaments into bundles in the basal and shank region of the pollen tube, but also in regulating and modulating actin dynamics through its capping and depolymerization (or fragmentation) activities in the apical region of the pollen tube, where there is a relatively high concentration of Ca(2+).  相似文献   

15.
The detailed substructure of actin filament bundles in microvilli of fertilized sea urchin eggs has been studied by analysing electron microscope images of negatively stained specimens. Transverse stripes which repeat about every 130 Å along the axis of a bundle, as previously observed by Burgess & Schroeder (1977), reflect the positions of cross-bridges that connect the filaments into a bundle. Analysis of optical transforms of the micrographs reveals that there are approximately 14 actin monomers between cross-overs of the two long-pitch helical strands of the actin filaments, with three cross-bridges in this interval. The structure is basically similar to that of the hexagonally packed bundles prepared in vitro from high speed supernatants of sea urchin eggs by Kane (1975) and analyzed by DeRosier et al. (1977). One clear difference, however, is that the in vivo microvillar filament bundles are supercoiled, giving rise to long axial repeats of 1500 to 2000 Å.Computationally filtered images of regions that were only slightly supercoiled reveal the relative alignment of filaments within the bundles and show that crossbridges appear to interact with four actin monomers, apparently linking two actin monomers on one strand of one filament to the nearest two monomers on a neighbouring filament. However, the cross-bridges are not spaced at equal intervals corresponding to four actin subunits, presumably because of the lack of hexagonal symmetry in the individual filaments, which have about 14 actin monomers between cross-overs. Instead, the cross-bridges are arranged quasiequivalently along the longitudinal axis of the bundles, in steps of four or five actin subunit spacings (28 Å each).  相似文献   

16.
《The Journal of cell biology》1983,97(6):1795-1805
We have used hydrostatic pressure to study the structural organization of actin in the sea urchin egg cortex and the role of cortical actin in early development. Pressurization of Arbacia punctulata eggs to 6,000 psi at the first cleavage division caused the regression of the cleavage furrow and the disappearance of actin filament bundles from the microvilli. Within 30 s to 1 min of decompression these bundles reformed and furrowing resumed. Pressurization of dividing eggs to 7,500 psi caused both the regression of the cleavage furrow and the complete loss of microvilli from the egg surface. Following release from this higher pressure, the eggs underwent extensive, uncoordinated surface contractions, but failed to cleave. The eggs gradually regained their spherical shape and cleaved directly into four cells at the second cleavage division. Microvilli reformed on the egg surface over a period of time corresponding to that required for the recovery of normal egg shape and stability. During the initial stages of their regrowth the microvilli contained a network of actin filaments that began to transform into bundles when the microvilli had reached approximately 2/3 of their final length. These results demonstrate that moderate levels of hydrostatic pressure cause the reversible disruption of cortical actin organization, and suggest that this network of actin stabilizes the egg surface and participates in the formation of the contractile ring during cytokinesis. The results also demonstrate that actin filament bundles are not required for the regrowth of microvilli after their removal by pressurization. Preliminary experiments demonstrate that F-actin is not depolymerized in vitro by pressures up to 10,000 psi and suggest that pressure may act indirectly in vivo, either by changing the intracellular ionic environment or by altering the interaction of actin binding proteins with actin.  相似文献   

17.
Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca(2+) than of Mg(2+), we have investigated the effect of these ions on the structure of HsRad51 filament complexes with single- and double-stranded DNA, the reaction intermediates. Flow linear dichroism spectroscopy shows that the two ionic conditions induce significantly different structures in the HsRad51/single-stranded DNA complex, while the HsRad51/double-stranded DNA complex does not demonstrate this ionic dependence. In the HsRad51/single-stranded DNA filament, the primary intermediate of the strand exchange reaction, ATP/Ca(2+) induces an ordered conformation of DNA, with preferentially perpendicular orientation of nucleobases relative to the filament axis, while the presence of ATP/Mg(2+), ADP/Mg(2+) or ADP/Ca(2+) does not. A high strand exchange activity is observed for the filament formed with ATP/Ca(2+), whereas the other filaments exhibit lower activity. Molecular modelling suggests that the structural variation is caused by the divalent cation interfering with the L2 loop close to the DNA-binding site. It is proposed that the larger Ca(2+) stabilizes the loop conformation and thereby the protein-DNA interaction. A tight binding of DNA, with bases perpendicularly oriented, could facilitate strand exchange.  相似文献   

18.
The bundle of filaments within microvilli of intestinal epithelial cells contains five major proteins including actin, calmodulin, and subunits of 105-, 95-, and 70-kdaltons. It has been previously shown (Howe, C. L., M. S. Mooseker, and T. A. Graves. 1980. Brush-border calmodulin: a major component of the isolated microvillus core. J. Cell Biol. 85: 916-923) that the addition of Ca++ (> 10(-6) M) to microvillus cores causes a rapid, drastic, but at least partially reversible disruption of this actin filament bundle. High-speed centrifugation of microvillus cores treated with Ca++ indicates that several core proteins are solubilized, including 30-50% of the actin and calmodulin, along with much of the 95- and 70-kdalton subunits. Gel filtration of such Ca++ extracts in the presence and absence of Ca++ indicates that microvillar actin "solated" by Ca++ is in an oligomeric state probably complexed with the 95-kdalton subunit. Removal of Ca++ results in the reassembly of F-actin, probably still complexed with 95- kdalton subunit, as determined by gel filtration, cosedimentation, viscometry, and electron microscopy. The 95-kdalton subunit (95K) was purified from Ca++ extracts by DEAE-Sephadex chromatography and its interaction with actin characterized by viscometry, cosedimentation, and EM in the presence and absence of Ca++. In the presence, but not absence, of Ca++, 95K inhibits actin assembly (50% inhibition at 1:50- 60 95K to actin) and also reduces the viscosity of F-actin solutions. Similarly, sedimentation of actin is inhibited by 95K, but a small, presumably oligomeric actin- 95K complex formed in the presence of Ca++ is pelletable after long-term centrifugation. In the absence of Ca++, 95K cosediments with F-actin. EM of 95K-actin mixtures reveals that 95K "breaks" actin into small, filamentous fragments in the presence of Ca++. Reassembly of filaments occurs once Ca++ is removed. In the absence of Ca++, 95K has no effect on filament structure and, at relatively high ratios (1:2-6) of 95K to actin, this core protein will aggregate actin filaments into bundles.  相似文献   

19.
The distribution of actin filaments in Malpighian tubules of the fleshfly Sarcophaga bullata (Parker) was investigated before and after metamorphosis by means of the rhodamine phalloidin staining method. The numerous primary cells show a pattern of thick basal actin bundles resembling stress fibres of cultured cells, while the apical microvillar zone shows a bright and homogeneous labelling. The less abundant stellate cells contain no such basal actin bundles and their apical microvillar zone gets only faintly stained. Late larval stages display fingerlike infoldings and an increased actin filament concentration at the apical membrane of the stellate cells. During metamorphosis the Malpighian tubules dedifferentiate and eventually redifferentiate to give rise to adult tubules resembling larval ones. The different types of actin filament organisation in the primary and stellate cells of the Malpighian tubules are discussed.  相似文献   

20.
Summary Brush cells represent a population of epithelial cells with unknown function, which are scattered throughout the epithelial lining of both the respiratory system and the alimentary system. These cells are reliably distinguished from other epithelial cells only at the ultrastructural level by the presence of an apical tuft of stiff microvilli and extremely long microvillar rootlets that may project down to the perinuclear space. In the present study we show that brush cells can be identified in tissue sections even at the light microscopic level by immunostaining with antibodies against villin and fimbrin, two proteins that crosslink actin filaments to form bundles. In brush cells, villin and fimbrin are not only present in the actin filament core bundles of apical microvilli and their long rootlets but, in addition, both proteins are also associated with microvilli extending from the basolateral cell surface of the brush cells. Basolateral immunostaining specific for villin and fimbrin does not occur in any other epithelial cell type of the respiratory and alimentary tract. Thus immunostaining with antibodies against both proteins allows unequivocal identification of individual brush cells even in sectional planes that do not contain the brightly stained apical tuft of microvilli and their long rootlets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号