首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The fragile X [fra(X)] syndrome was screened on 190 Japanese institutionalized females with moderate to severe mental retardation. Two inmates with severe mental retardation (IQ 20) had the fra(X) chromosome in 26% and 15% of the cells examined, indicating that the prevalence of the fra(X) syndrome was about 1% in all female inmates and was about 3.27% in severely mentally retarded females with known causes. However, no female with fra(X) syndrome was found in 35 moderately retarded females. Both had brothers with the fra(X) syndrome and the prevalence was 10% in females with a family history of mental retardation. In addition, the replication study of the fra(X) chromosome in the patients supported the proposal that an excess of the early replicated fra(X) chromosome is related to the mental capacity in heterozygous females. Therefore, the fra(X) syndrome should not be ignored even in severely mentally retarded females with a family history, though the heterozygotes are commonly normal to subnormal in their mental development. in addition, the replication study of the fra(X) chromosome may help to estimate mental development in the carrier children.  相似文献   

2.
Marker or ring X chromosomes are frequently seen in Ullrich-Turner Syndrome with 46,X,r(X) karyotype, but only 8 children were reported with an extra marker X chromosome in at least some of their cell lines, we describe a 5 years old male patient who is mosaic (17%) for a cell line with an extra ring shaped marker X chromosome in addition to a normal 46,XY cell line. He had mild motor mental retardation, a dysmorphic face, dysplastic ears, high arched palate, cryptorchidism and brachydactyly. G-banding showed 46,XY[83]/47,XY,+r?[17] karyotype. NOR banding revealed no satellite region but its centromere was intact in C-banding. By fluorescent in situ hybridization (FISH) technique, dual X/Y alpha-satellite probes were used to detect the origin of ring shaped marker chromosome and 17% of his cells had two X chromosome signals due to marker X; hybridization with X chromosome inactivation center (XIST) specific probe revealed the absence of the locus on the ring chromosome. In this report, clinical features of our patient are compared with previously reported cases and the cytogenetic and molecular cytogenetic techniques used to detect origin of marker chromosome are discussed.  相似文献   

3.
The purpose of this study was to identify a gene causing non-syndromic X-linked mental retardation in an extended family, taking advantage of the X chromosome inactivation status of the females in order to determine their carrier state. X inactivation in the females was determined with the androgen receptor methylation assay; thereafter, the X chromosome was screened with evenly spaced polymorphic markers. Once initial linkage was identified, the region of interest was saturated with additional markers and the males were added to the analysis. Candidate genes were sequenced. Ten females showed skewed inactivation, while six revealed a normal inactivation pattern. A maximal lod score of 5.54 at θ?=?0.00 was obtained with the marker DXS10151. Recombination events mapped the disease gene to a 17.4-Mb interval between the markers DXS10153 and DXS10157. Three candidate genes in the region were sequenced and a previously described missense mutation (P375L) was identified in the ACSL4/FACL4 gene. On the basis of the female X inactivation status, we have mapped and identified the causative mutation in a gene causing non-syndromic X-linked mental retardation.  相似文献   

4.
Summary The IQ levels of 18 female carriers with the marker X chromosome were evaluated, and cytogenetic studies after BrdU incorporation were performed. A highly significant correlation between mental capacity and replication pattern of the X chromosomes could be demonstrated. Heterozygous females with normal intelligence showed a clear tendency to carry the fragile site at the late replicating X chromosome, while other female carriers with lower intelligence or mental impairment expressed their fragile site mainly with the early replicating X chromosome. This observation could be interpreted as an expression of Lyonisation.  相似文献   

5.
Linkage mapping of a severe X-linked mental retardation syndrome.   总被引:4,自引:2,他引:2       下载免费PDF全文
A four-generation Swedish family with a new type of X-linked mental retardation syndrome was recently reported by Gustavson et al. The complex syndrome includes microcephaly, severe mental retardation, optical atrophy with decreased vision or blindness, severe hearing defect, characteristic facial features, spasticity, seizures, and restricted joint motility. The patients die during infancy or early in childhood. Twenty-one family members, including two affected males, were available for study. Linkage analysis was conducted in the family by using 11 RFLP markers and 10 VNTR markers spread along the X chromosome. A hypervariable short tandem repeat of DXS294 at Xq26 showed a peak two-point lod score of 3.35 at zero recombination fraction. Calculations using the same markers revealed a multipoint peak lod score of 3.65 at DXS294. Crossover events with the centromeric marker DXS424 and the telomeric marker DXS297 delimit a probable region for the gene localization. It is noteworthy that hte disease loci of two other syndromes with overlapping clinical manifestations recently were shown by Turner et al. and Pettigrew et al. to be linked to markers at Xq26.  相似文献   

6.
We report on a female with mental and motor retardation, facial dysmorphism, abnormal pigmentation reminiscent to hypomelanosis of Ito (HI), and karyotypic mosaicism involving a small supernumerary marker chromosome. The marker chromosome was defined by fluorescence in situ hybridisation (FISH) as a ring X chromosome with breakpoints in the juxtacentromeric region. FISH analysis showed that the ring does not include the XIST locus at the X-inactivation centre and, therefore, may not be subject to X inactivation. X-inactivation studies with the HUMARA (human androgen receptor) and FMR1 assay showed a skewed X-inactivation pattern (85:15) with preferential inactivation of the paternal X chromosome. These results are discussed with respect to the role of functional disomy of Xp in the pathogenesis of HI. Received: 16 February 1998 / Accepted: 17 July 1998  相似文献   

7.
We present a linkage analysis and a clinical update on a previously reported family with X-linked recessive panhypopituitarism, now in its fourth generation. Affected members exhibit variable degrees of hypopituitarism and mental retardation. The markers DXS737 and DXS1187 in the q25-q26 region of the X chromosome showed evidence for linkage with a peak LOD score (Zmax) of 4.12 at zero recombination fraction (theta(max) = 0). An apparent extra copy of the marker DXS102, observed in the region of the disease gene in affected males and heterozygous carrier females, suggests that a segment including this marker is duplicated. The gene causing this disorder appears to code for a dosage-sensitive protein central to development of the pituitary.  相似文献   

8.
The number and morphology of X chromosomes were analysed in tetraploid cells induced with colcemid in cultured blood lymphocytes obtained from a patient with fra(X) syndrome of mental retardation. In contrast to diploid cells containing fra(X) chromosome in 22.7% of cells, the marker X was found in 51.6% of tetraploids, each cell containing only one fragile X out of the two expected ones. The data obtained indicate an extreme lability of the expression of fragile site (X) (q 27) in consecutive lymphocyte generation.  相似文献   

9.
Chondrodysplasia punctata with X;Y translocation   总被引:6,自引:2,他引:4  
Summary We have studied a family in which the mother and her son were carriers of an X;Y translocation, der(X)t(X;Y) (p22.3;q11). The mother was of slightly short stature and had mildly short upper extremities. The son had epiphyseal punctate calcifications, mildly short extremities, a flattened nasal bridge, and mental retardation (chondrodysplasia punctata). The extra bands on the short arm of the X chromosome were identified as deriving from the long arm of the Y chromosome, using in situ hybridization with a Y-chromosome-specific DNA probe (pHY10). The chondrodysplasia punctata seen in our case may be associated with the abnormality of the distal short arm of the X chromosome caused by X;Y translocation.  相似文献   

10.
Summary A family in which an interstitial deletion of the X chromosome, del(X)(q13q21.3), is segregating was ascertained through a boy with cleft lip and palate, agenesis of the corpus callosum, and severe mental retardation. The possible causal relationship to his chromosome abnormality is discussed. Although the deletion occurred within the critical region, the mother showed no signs of gonadal dysgenesis. A phenotypically normal daughter was, as her mother, monosomic for this region of the X, and both showed random inactivation of the X chromosome.Supported in part by grants to E.N. from the Carl Petersen's Foundation (B 995) and the Danish Medical Research Council (512-4276)  相似文献   

11.
Summary Clinical and cytogenetic data of five kindreds with X-linked mental retardation and a methotrexate-inducible fragile site at the distal long arm of the X chromosome fra(X)(q27) are reported; comprising a total of 26 individuals studied cytogenetically, 10 hemizygotes, five obligate heterozygotes, seven facultative heterozygotes, and four normal males, i.e., fathers and brothers of affected hemizygotes. The heterozygotes in two of these sibships show partial phenotypic and/or mental manifestation. Two of them, who are obligate heterozygotes, expressed fra(X)(q27) in 23% and 16% of their metaphases at the ages of 27 and 53 years. In the obligate and facultative heterozygotes, who are mentally normal, the marker X chromosome could not be detected in lymphocyte cultures. We conclude from these findings that the occurrence of fra(X)(q27) might correlate with the phenotypic expression in heterozygotes rather than with the age of the individual.This investigation was supported in part by the Deutsche Forschungsgemeinschaft  相似文献   

12.
In this study we describe a 3-generation family carrying a (X;Y)(p22.3;q11.2) translocation in seven individuals of both sexes. Molecular analysis of the aberrant (X;Y)(p22.3;q11.2) chromosome was performed by FISH using X and Y-specific painting probes and also PCR amplification of the Y-specific sequences. Using these approaches it was demonstrated that the translocation resulted in a deletion of both X and Y pseudoautosomal regions. Moreover, using RBG banding it was shown that in all females the X-derivative chromosome was inactive in over 90% of mitoses. From the preliminary results obtained in this study we assumed that in this particular family the observed phenotype of the patients was caused by a deletion of the cluster of pseudoaotosomal genes responsible for the stature. More proximal loci, like STS or MRX49, were probably not deleted, since neither ichtyosis nor mental retardation was observed in this family.  相似文献   

13.
An integrated large-insert clone map of the region Xq11-q12 is presented. A physical map containing markers within a few hundred kilobases of the centromeric locus DXZ1 to DXS1125 spans nearly 5 Mb in two contigs separated by a gap estimated to be approximately 100-250 kb. The contigs combine 75 yeast artificial chromosome clones, 12 bacterial artificial chromosome clones, and 17 P1-derived artificial chromosome clones with 81 STS or EST markers. Overall marker density across this region is approximately 1 STS/60 kb. Mapped within the contigs are 12 ESTs as well as 5 known genes, moesin (MSN), hephaestin (HEPH), androgen receptor (AR), oligophrenin-1 (OPHN1), and Eph ligand-2 (EPLG2). Orientation of the contigs on the X chromosome, as well as marker order within the contigs, was unambiguously determined by reference to a number of X chromosome breakpoints. In addition, the distal contig spans deletions from chromosomes of three patients exhibiting either complete androgen insensitivity (CAI) or a contiguous gene syndrome that includes CAI, impaired vision, and mental retardation.  相似文献   

14.
Expression of the marker(X)(q28) in lymphoblastoid cell lines   总被引:4,自引:4,他引:0       下载免费PDF全文
The marker(X)(q28) chromosome associated with one type of X-linked mental retardation has been demonstrated in lymphoblastoid cell lines established from affected individuals. The mar(x) can reliably and repeatedly be seen by the addition of FUdR to the cultures for 24 hrs prior to harvest. This simple technique provides an excellent in vitro experimental test system for investigation of the mar(X).  相似文献   

15.
16.
Summary Chromosomal, clinical, and psychological data are presented on members of six families with X-linked mental retardation. Affected males in three of these families express the fra(X)(q28) marker, while the retarded males in the other three do not. Similar variable physical and psychological charateristics, such as lop ears, large testes, and perseverative speech, are present in affected males in all six families. Preliminary analysis of the psychological data also shows that males with and without marker expression cannot be differentiated with certainty. On this basis we suggest that there is a type of X-linked mental retardation with many phenotypic features of marker-X mental retardation but without expression of the X chromosome fragile site.  相似文献   

17.
X-linked nonspecific mental retardation (MRX) has a frequency of 0.15% in the male population and is caused by defects in several different genes on the human X chromosome. Genotype-phenotype correlations in male patients with a partial nullisomy of the X chromosome have suggested that at least one locus involved in MRX is on Xp22.3. Previous deletion mapping has shown that this gene resides between markers DXS1060 and DXS1139, a region encompassing approximately 1.5 Mb of DNA. Analyzing the DNA of 15 males with Xp deletions, we were able to narrow this MRX critical interval to approximately 15 kb of DNA. Only one gene, VCX-A (variably charged, X chromosome mRNA on CRI-S232A), was shown to reside in this interval. Because of a variable number of tandem 30-bp repeats in the VCX-A gene, the size of the predicted protein is 186-226 amino acids. VCX-A belongs to a gene family containing at least four nearly identical paralogues on Xp22.3 (VCX-A, -B, -B1, and -C) and two on Yq11.2 (VCY-D, VCY-E), suggesting that the X and Y copies were created by duplication events. We have found that VCX-A is retained in all patients with normal intelligence and is deleted in all patients with mental retardation. There is no correlation between the presence or absence of VCX-B1, -B, and VCX-C and mental status in our patients. These results suggest that VCX-A is sufficient to maintain normal mental development.  相似文献   

18.
Unaffected carrier males in families with fragile X syndrome.   总被引:2,自引:1,他引:1       下载免费PDF全文
Males who transmit the fragile X chromosome but are themselves clinically normal have occasionally been observed. We have studied three families segregating the fragile X. In one family, there are three unaffected carrier males, and in each of the other two families, there is one unaffected carrier male. Three of these carrier males were studied cytogenetically, and none exhibited the fra(X)(q27) marker. The occurrence of carrier males and of other unusual genetic features in fragile X families suggest that this condition is not inherited as a standard recessive trait linked to the X chromosome.  相似文献   

19.
Cytogenetic and verbal studies were done on members of four families with non-specific X-linked mental retardation. Cytogenetic analysis was done using media 199 and GTG-banding; one family had a marker X with a fragile site in band Xq27 or 28. Preliminary results indicate variation of culture conditions can effect the frequency of the marker X. A generalized language disability was found which tended to concentrate in the areas of auditory reception, auditory sequential memory, visual closure and grammatic closure. Articulation errors involved the same sounds which are late in normal development and occur most frequently in both the general population and a Down syndrome population.  相似文献   

20.
A family is described in which three normal females transmitted to seven males X-linked mental retardation associated with macro-orchidism and a fragile site on the long arm of the X chromosome -- fra(X)(q27). The affected males also had minor clinical features in common: a large forehead, long face, large ears, a long upper lip and large extremities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号