首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
真核细胞内物质的转运主要通过运输囊泡的出芽、融合所介导。外被体蛋白Ⅰ(coat proteinⅠ,COPⅠ)是一种由α、β、β'、γ、δ、ε、ζ亚基组成的异七聚体蛋白质复合物(即coatomer)。细胞内具有小GTP酶活性的ADP-核糖化因子1(ADP-ribosylation factor 1, Arf1)调节COPⅠ囊泡(COPⅠ-coated vesicle)的形成。在鸟苷酸交换因子的作用下,活化的Arf1-GTP结合至高尔基复合体(Golgiapparatus,Golgi)膜上,将胞质中的COPⅠ募集到膜上。COPⅠ在膜表面结合、分选货物、聚合装配,使膜弯曲产生包被的出芽,出芽逐渐增长最终与膜分离形成囊泡。COPⅠ囊泡进一步脱壳、与靶膜融合,进而完成对细胞内物质的转运。COPⅠ囊泡可携带蛋白质和脂质等货物分子从Golgi逆向转运至内质网(endoplasmic reticulum, ER),并介导Golgi膜囊间物质的逆向和正向运输过程,维持Golgi结构的极性与膜囊的成熟。  相似文献   

2.
高等植物细胞含有复杂的内膜系统,通过其特有的膜泡运输机制来完成细胞内和细胞间的物质交流。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留和膜融合4个过程。这4个过程受到许多因子的调控,如Coat、SM、Tether、SNARE和Rab蛋白等,其中SNARE因子在膜融合过程中发挥重要功能。SNARE因子是小分子跨膜蛋白,分为定位于运输囊泡上的v-SNARE和定位于靶位膜上的t-SNARE,两类SNARE结合形成SNARE复合体,促进膜融合的发生。SNARE蛋白在调控植物体生长发育以及对外界环境响应等生理过程中起重要作用。该文对模式植物拟南芥(Arabidopsis thaliana)SNARE因子的最新细胞内定位和功能分析等研究进展进行了概述。  相似文献   

3.
拟南芥SNARE因子在膜泡运输中的功能   总被引:1,自引:0,他引:1  
金红敏  李立新 《植物学报》2010,45(4):479-491
高等植物细胞含有复杂的内膜系统, 通过其特有的膜泡运输机制来完成细胞内和细胞间的物质交流。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留和膜融合4个过程。这4个过程受到许多因子的调控, 如Coat、SM、Tether、SNARE和Rab蛋白等, 其中SNARE因子在膜融合过程中发挥重要功能。SNARE因子是小分子跨膜蛋白, 分为定位于运输囊泡上的v-SNARE和定位于靶位膜上的t-SNARE, 两类SNARE结合形成SNARE复合体, 促进膜融合的发生。SNARE蛋白在调控植物体生长发育以及对外界环境响应等生理过程中起重要作用。该文对模式植物拟南芥(Arabidopsis thaliana)SNARE因子的最新细胞内定位和功能分析等研究进展进行了概述。  相似文献   

4.
胞浆囊泡转运的包被复合体与蛋白分拣   总被引:1,自引:0,他引:1  
在胞浆囊泡转运体系中囊泡包被复合体对于蛋白的分拣与定向转运有重要意义。目前较明确的囊泡包被复合体有:笼形蛋白被复合体,COPⅠ、COPⅡ,囊泡相关肌球蛋白。这些复合体各有其特定识别序列,彼此分工又相互协同,维持着转运系统的协调有序。  相似文献   

5.
Rab蛋白的结构、功能及进化   总被引:8,自引:0,他引:8  
Rab蛋白是小分子GTP结合蛋白家族(small GTP-binding proteins)中最大的亚家族,大约由200个氨基酸组成,由保守的G结构域与高度可变的N端和C端组成。Rab蛋白作为细胞内囊泡运输的分子开关,与其上游调控子和下游特定的效应子相互作用,并与GTP的结合和水解过程相偶联,在囊泡运输的不同阶段发挥作用。对不同Rab蛋白调控囊泡运输的研究有利干全面理解细胞内各类囊泡定向运输的分子动力学机制。  相似文献   

6.
在胞浆囊泡转运体系中囊泡包被复合体对于蛋白的分拣与定向转运有重要意义。目前较明确的囊泡包被复合体有 :笼形蛋白包被复合体 ,COPⅠ ,COPⅡ ,囊泡相关肌球蛋白。这些复合体各有其特定识别序列 ,彼此分工又相互协同 ,维持着转运系统的协调有序。  相似文献   

7.
赵翔  韩宝达  李立新 《遗传》2012,34(4):11-22
大多数细胞内都包含靶向不同细胞器的各种运输囊泡,其运输机制在进化上是高度保守的。Sec1/Munc-18(SM)蛋白在膜泡运输中起着重要的调控作用,它能够与SNARE(Soluble N-ethylmaleimide-sensitive factorattachment protein receptor)蛋白结合,共同在细胞内各个膜融合发生部位发挥重要作用。SM蛋白和SNARE复合体中的Syntaxin蛋白结合,调节SNARE复合体的装配,并与SNARE协同作用促进整个膜融合过程。文章对SM蛋白在结构和功能分析方面的最新研究进展进行了概述。  相似文献   

8.
为了研究植物生长素结合蛋白ABP1(auxin binding protein 1)对膜泡运输的调控,将烟草生长素结合蛋白基因ABP1 cDNA分别构建成可诱导型表达的过表达和干扰表达载体,并将绿色荧光蛋白GFP与烟草分泌载体膜蛋白SCAMP2(secretory carrier membrane protein 2)融合进行细胞的膜泡标记,转化植物模式细胞BY-2后分别获得了转ABP1和antiABP1的两类膜泡标记转基因细胞系。以雌二醇诱导ABP1、antiABP1表达后,结合生长素处理,通过扫描激光共聚焦观察了细胞的膜泡运输变化。当诱导ABP1在细胞内过量表达后,以吲哚-3-乙酸(indole-3-acetic acid,IAA)处理细胞,在细胞核膜及周围内质网膜、细胞质膜以及其他细胞内膜系统都观察到强烈的荧光信号,说明细胞内膜泡运输更为活跃;当诱导antiABP1在细胞内干扰表达时,在细胞核附近维持有较强烈的荧光信号,而细胞质膜及两细胞间隔的荧光信号明显减弱,表明抑制ABP1表达显著抑制了细胞膜泡的外排运输。在ABP1经诱导过表达后,加入IAA处理细胞,在0~6 min时间段内间隔性观察了细胞膜泡对生长素的时间响应,在这段时间内细胞核周围及内膜系统的荧光信号明显增强,细胞质膜的荧光强度没有明显的变化,表明细胞核与内膜系统间存在活跃的膜泡运输,内膜系统向细胞质膜间的外排膜泡运输也逐渐加强。因此,可以证明ABP1参与生长素信号响应,增强细胞膜泡的外排运输。  相似文献   

9.
细胞内蛋白质运输及神经递质释放的分子机理   总被引:1,自引:0,他引:1  
细胞内蛋白质及神经递质等生物活性物质的运输,分泌和释放都是以运输囊泡作为载体,经过运转囊泡的出芽,形成,移位,入坞等步骤,最终与靶膜融合将内容物排出,这些过程都是以动转囊泡膜,胞浆和靶膜的多种不同功能的蛋白质相互作用的结果。  相似文献   

10.
在脂肪和骨骼肌细胞中,胰岛素可迅速刺激葡萄糖转运,即通常所说的GLUT4转运。 GLUT4转运是指Rabs与GTP结合时,促进囊泡与微管和微丝蛋白结合,并通过锚定和融合作用使GLUT4囊泡与目标膜结构融合。多数 Rab 家族成员广泛表达于各种组织细胞中,且在细胞内定位十分广泛,几乎存在于真核细胞所有的膜相关的细胞器的胞浆侧。 Rab 蛋白作为囊泡运输的分子开关,通过调节运输小泡的停泊和融合,在囊泡的形成、转运、粘附、锚定、融合等过程中起着重要的作用。 Rab蛋白受到多种上游调节蛋白的调节,同时调控着下游的多种效应蛋白,构成了复杂的调控网络:任何一个环节改变都可能会导致蛋白质转运的异常,进而引发疾病。本文系统阐述了Rab蛋白在葡萄糖转运过程中的作用及该领域的最新进展。  相似文献   

11.
Cargo selection in vesicular transport: the making and breaking of a coat   总被引:7,自引:1,他引:6  
Intracellular traffic is mediated by vesicular/tubular carriers. The carriers are formed by the activity of cytosolic coat proteins that are recruited to their target membranes and deform these membranes into buds and vesicles. Specific interactions between recruited coat subunits and short peptide sequences (transport motifs) on cargo proteins direct the incorporation of cargo into budded vesicles. Here, we focus on cargo selection reactions mediated by COPII and AP-2/clathrin vesicle coat complexes to explore common mechanisms by which coat assembly support localized and selective cargo sorting. Recent findings suggest that multiple, low-affinity interactions are employed in a cooperative manner to support coat assembly and enable cargo recognition. Thus low-binding affinities between coat subunits and transport motifs are transiently transformed into high-avidity, multivalent and selective interactions at vesicle bud sites. The temporal and regulated nature of the interactions provide the key to cargo selection.  相似文献   

12.
Coats and vesicle budding   总被引:9,自引:0,他引:9  
Transport vesicles need coat proteins in order to form. The coat proteins are recruited from the cytosol onto a particular membrane, where they drive vesicle budding and select the vesicle cargo. So far, three types of coated transport vesicles have been purified and characterized, and candidates for components of other types of coats have been identified. This review gives a brief overview of what is known about the various coats and their role in transport vesicle formation.  相似文献   

13.
The best-understood mechanisms for generating transport vesicles in the secretory and endocytic pathways involve the localized assembly of cytosolic coat proteins such as clathrin, coat protein complex (COP)I and COPII onto membranes. These coat proteins can deform membranes by themselves, but accessory proteins might help to generate the tight curvature needed to form a vesicle. Enzymes that pump phospholipid from one leaflet of the bilayer to the other (flippases) can deform membranes by creating an imbalance in the phospholipid number between the two leaflets. Recent studies describe a requirement for the yeast Drs2p family of P-type ATPases in both phospholipid translocation and protein transport in the secretory and endocytic pathways. This indicates that flippases work with coat proteins to form vesicles.  相似文献   

14.
COPII coat assembly and selective export from the endoplasmic reticulum   总被引:2,自引:0,他引:2  
The coat protein complex II (COPII) generates transport vesicles that mediate protein transport from the endoplasmic reticulum (ER). Recent structural and biochemical studies have suggested that the COPII coat is responsible for direct capture of membrane cargo proteins and for the physical deformation of the ER membrane that drives the transport vesicle formation. The COPII-coated vesicle formation at the ER membrane is triggered by the activation of the Ras-like small GTPase Sar1 by GDP/GTP exchange, and activated Sar1 in turn promotes COPII coat assembly. Subsequent GTP hydrolysis by Sar1 leads to disassembly of the coat proteins, which are then recycled for additional rounds of vesicle formation. Thus, the Sar1 GTPase cycle is thought to regulate COPII coat assembly and disassembly. Emerging evidence suggests that the cargo proteins modulate the Sar1 GTP hydrolysis to coordinate coat assembly with cargo selection. Here, I discuss the possible roles of the GTP hydrolysis by Sar1 in COPII coat assembly and selective uptake of cargo proteins into transport vesicles.  相似文献   

15.
In addition to its role in forming vesicles from the endoplasmic reticulum (ER), the coat protein complex II (COPII) is also responsible for selecting specific cargo proteins to be packaged into COPII transport vesicles. Comparison of COPII vesicle formation in mammalian systems and in yeast suggested that the former uses more elaborate mechanisms for cargo recognition, presumably to cope with a significantly expanded repertoire of cargo that transits the secretory pathway. Using proTGFα, the transmembrane precursor of transforming growth factor α (TGFα), as a model cargo protein, we demonstrate in cell-free assays that at least one auxiliary cytosolic factor is specifically required for the efficient packaging of proTGFα into COPII vesicles. Using a knockout HeLa cell line generated by CRISPR/Cas9, we provide functional evidence showing that a transmembrane protein, Cornichon-1 (CNIH), acts as a cargo receptor of proTGFα. We show that both CNIH and the auxiliary cytosolic factor(s) are required for efficient recruitment of proTGFα to the COPII coat in vitro. Moreover, we provide evidence that the recruitment of cargo protein by the COPII coat precedes and may be distinct from subsequent cargo packaging into COPII vesicles.  相似文献   

16.
Hehnly H  Stamnes M 《FEBS letters》2007,581(11):2112-2118
During vesicular transport, the assembly of the coat complexes and the selection of cargo proteins must be coordinated with the subsequent translocation of vesicles from the donor to an acceptor compartment. Here, we review recent progress toward uncovering the molecular mechanisms that connect transport vesicles to the protein machinery responsible for cytoskeleton-mediated motility. An emerging theme is that vesicle cargo proteins, either directly or through binding interactions with coat proteins, are able to influence cytoskeletal dynamics and motor protein function. Hence, a vesicle's cargo composition may help direct its intracellular motility and targeting.  相似文献   

17.
Sato K  Nakano A 《FEBS letters》2007,581(11):2076-2082
The evolutionarily conserved coat protein complex II (COPII) generates transport vesicles that mediate protein transport from the endoplasmic reticulum (ER). COPII coat is responsible for direct capture of cargo proteins and for the physical deformation of the ER membrane that drives the COPII vesicle formation. In addition to coat proteins, recent data have indicated that the Ras-like small GTPase Sar1 plays multiple roles, such as COPII coat recruitment, cargo sorting, and completion of the final fission. In the present review, we summarize current knowledge of COPII-mediated vesicle formation from the ER, as well as highlighting non-canonical roles of COPII components.  相似文献   

18.
COP I and COP II coat proteins direct protein and membrane trafficking in between early compartments of the secretory pathway in eukaryotic cells. These coat proteins perform the dual, essential tasks of selecting appropriate cargo proteins and deforming the lipid bilayer of appropriate donor membranes into buds and vesicles. COP II proteins are required for selective export of newly synthesized proteins from the endoplasmic reticulum (ER). COP I proteins mediate a retrograde transport pathway that selectively recycles proteins from the cis-Golgi complex to the ER. Additionally, COP I coat proteins have complex functions in intra-Golgi trafficking and in maintaining the normal structure of the mammalian interphase Golgi complex.  相似文献   

19.
 Newly synthesized proteins destined for delivery to the cell surface are inserted cotranslationally into the endoplasmic reticulum (ER) and, after their correct folding, are transported out of the ER. During their transport to the cell surface, cargo proteins pass through the various cisternae of the Golgi apparatus and, in the trans-most cisternae of the stack, are sorted into constitutive secretory vesicles that fuse with the plasma membrane. Simultaneously with anterograde protein transport, retrograde protein transport occurs within the Golgi complex as well as from the Golgi back to the ER. Vesicular transport within the early secretory pathway is mediated by two types of non-clathrin coated vesicles: COPI- and COPII-coated vesicles. The formation of these carrier vesicles depends on the recruitment of cytosolic coat proteins that are thought to act as a mechanical device to shape a flattened donor membrane into a spherical vesicle. A general molecular machinery that mediates targeting and fusion of carrier vesicles has been identified as well. Beside a general overview of the various coat structures known today, we will discuss issues specifically related to the biogenesis of COPI-coated vesicles: (1) a possible role of phospholipase D in the formation of COPI-coated vesicles; (2) a functional role of a novel family of transmembrane proteins, the p24 family, in the initiation of COPI assembly; and (3) the direction COPI-coated vesicles may take within the early secretory pathway. Moreover, we will consider two alternative mechanisms of protein transport through the Golgi stack: vesicular transport versus cisternal maturation. Accepted: 24 October 1997  相似文献   

20.
COP I and COP II coat proteins direct protein and membrane trafficking in between early compartments of the secretory pathway in eukaryotic cells. These coat proteins perform the dual, essential tasks of selecting appropriate cargo proteins and deforming the lipid bilayer of appropriate donor membranes into buds and vesicles. COP II proteins are required for selective export of newly synthesized proteins from the endoplasmic reticulum (ER). COP I proteins mediate a retrograde transport pathway that selectively recycles proteins from the cis-Golgi complex to the ER. Additionally, COP I coat proteins have complex functions in intra-Golgi trafficking and in maintaining the normal structure of the mammalian interphase Golgi complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号