首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
InsP(3) is an important link in the intracellular information network. Previous observations show that activation of InsP(3)-receptor channels on the granular membrane can turn secretory granules into Ca(2+) oscillators that deliver periodic trains of Ca(2+) release to the cytosol (T. Nguyen, W. C. Chin, and P. Verdugo, 1998, Nature, 395:908-912; I. Quesada, W. C. Chin, J. Steed, P. Campos-Bedolla, and P. Verdugo, 2001, BIOPHYS: J. 80:2133-2139). Here we show that InsP(3) can also turn mast cell granules into proton oscillators. InsP(3)-induced intralumenal [H(+)] oscillations are ATP-independent, result from H(+)/K(+) exchange in the heparin matrix, and produce perigranular pH oscillations with the same frequency. These perigranular pH oscillations are in-phase with intralumenal [H(+)] but out-of-phase with the corresponding perigranular [Ca(2+)] oscillations. The low pH of the secretory compartment has critical implications in a broad range of intracellular processes. However, the association of proton release with InsP(3)-induced Ca(2+) signals, their similar periodic nature, and the sensitivity of important exocytic proteins to the joint action of Ca(2+) and pH strongly suggests that granules might encode a combined Ca(2+)/H(+) intracellular signal. A H(+)/Ca(2+) signal could significantly increase the specificity of the information sent by the granule by transmitting two frequency encoded messages targeted exclusively to proteins like calmodulin, annexins, or syncollin that are crucial for exocytosis and require specific combinations of [Ca(2+)] "and" pH for their action.  相似文献   

2.
Physiological regulation of Ca(2+) release from the endoplasmic reticulum (ER) is critical for cell function. Recent direct measurements of free [Ca(2+)] inside the ER ([Ca(2+)](ER)) revealed that [Ca(2+)](ER) itself is a key regulator of ER Ca(2+) handling. However, the role of this new regulatory process in generating various patterns of Ca(2+) release remains to be elucidated in detail. Here, we incorporate the recently quantified experimental correlations between [Ca(2+)](ER) and Ca(2+) movements across the ER membrane into a mathematical model ER Ca(2+) handling. The model reproduces basic experimental dynamics of [Ca(2+)](ER). Although this was not goal in model design, the model also exhibits mechanistically unclear experimental phenomena such as "quantal" Ca(2+) release, and "store charging" by increasing resting cytosolic [Ca(2+)]. While more complex explanations cannot be ruled out, on the basis of our data we propose that "quantal release" and "store charging" could be simple re-equilibration phenomena, predicted by the recently quantified biophysical dynamics of Ca(2+) movements across the ER membrane.  相似文献   

3.
The inositol 1,4,5-trisphosphate receptor (InsP(3)R) forms ligand-regulated intracellular Ca(2+) release channels in the endoplasmic reticulum of all mammalian cells. The InsP(3)R has been suggested to have six transmembrane regions (TMRs) near its carboxyl terminus. A TMR-deletion mutation strategy was applied to define the location of the InsP(3)R pore. Mutant InsP(3)Rs were expressed in COS-1 cells and single channel function was defined in planar lipid bilayers. Mutants having the fifth and sixth TMR (and the interceding lumenal loop), but missing all other TMRs, formed channels with permeation properties similar to wild-type channels (gCs = 284; gCa = 60 pS; P(Ca)/P(Cs) = 6.3). These mutant channels bound InsP(3), but ligand occupancy did not regulate the constitutively open pore (P(o) > 0.80). We propose that a region of 191 amino acids (including the fifth and sixth TMR, residues 2398-2589) near the COOH terminus of the protein forms the InsP(3)R pore. Further, we have produced a constitutively open InsP(3)R pore mutant that is ideal for future site-directed mutagenesis studies of the structure-function relationships that define Ca(2+) permeation through the InsP(3)R channel.  相似文献   

4.
The inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP3R) is an endoplasmic reticulum-localized Ca2+ -release channel that controls complex cytoplasmic Ca(2+) signaling in many cell types. At least three InsP3Rs encoded by different genes have been identified in mammalian cells, with different primary sequences, subcellular locations, variable ratios of expression, and heteromultimer formation. To examine regulation of channel gating of the type 3 isoform, recombinant rat type 3 InsP3R (r-InsP3R-3) was expressed in Xenopus oocytes, and single-channel recordings were obtained by patch-clamp electrophysiology of the outer nuclear membrane. Gating of the r-InsP3R-3 exhibited a biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). In the presence of 0.5 mM cytoplasmic free ATP, r-InsP3R-3 gating was inhibited by high [Ca2+]i with features similar to those of the endogenous Xenopus type 1 Ins3R (X-InsP3R-1). Ca2+ inhibition of channel gating had an inhibitory Hill coefficient of approximately 3 and half-maximal inhibiting [Ca2+]i (Kinh) = 39 microM under saturating (10 microM) cytoplasmic InsP3 concentrations ([InsP3]). At [InsP3] < 100 nM, the r-InsP3R-3 became more sensitive to Ca2+ inhibition, with the InsP(3) concentration dependence of Kinh described by a half-maximal [InsP3] of 55 nM and a Hill coefficient of approximately 4. InsP(3) activated the type 3 channel by tuning the efficacy of Ca2+ to inhibit it, by a mechanism similar to that observed for the type 1 isoform. In contrast, the r-InsP3R-3 channel was uniquely distinguished from the X-InsP3R-1 channel by its enhanced Ca2+ sensitivity of activation (half-maximal activating [Ca2+]i of 77 nM instead of 190 nM) and lack of cooperativity between Ca2+ activation sites (activating Hill coefficient of 1 instead of 2). These differences endow the InsP3R-3 with high gain InsP3-induced Ca2+ release and low gain Ca2+ -induced Ca2+ release properties complementary to those of InsP3R-1. Thus, distinct Ca2+ signals may be conferred by complementary Ca2+ activation properties of different InsP3R isoforms.  相似文献   

5.
The effect of nordihydroguaiaretic acid (NDGA) on Ca(2+) signaling in C6 glioma cells has been investigated. NDGA (5-100 microM) increased [Ca(2+)]i concentration-dependently. The [Ca(2+)]i increase comprised an initial rise and an elevated phase over a time period of 4 min. Removal of extracellular Ca(2+) reduced NDGA-induced [Ca(2+)]i signals by 52+/-2%. After incubation of cells with NDGA in Ca(2+)-free medium for 4 min, addition of 3 mM CaCl2 induced a concentration-dependent increase in [Ca(2+)]i. NDGA (100 microM)-induced [Ca(2+)]i increases in Ca(2+)-containing medium was not changed by pretreatment with 10 microM nifedipine or verapamil. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (1 microM) abolished 100 microM NDGA-induced [Ca(2+)]i increases. Inhibition of phospholipase C with 2 microM U73122 had little effect on 100 microM NDGA-induced Ca(2+) release. Several other lipoxygenase inhibitors had no effect on basal [Ca(2+)]i. Collectively, the results suggest that NDGA increased [Ca(2+)]i in glioma cells in a lipoxygenase-independent manner, by releasing Ca(2+) from the endoplasmic reticulum in a manner independent of phospholipase C activity and by causing Ca(2+) influx.  相似文献   

6.
7.
Calcium-induced calcium release (CICR) has been observed in cardiac myocytes as elementary calcium release events (calcium sparks) associated with the opening of L-type Ca(2+) channels. In heart cells, a tight coupling between the gating of single L-type Ca(2+) channels and ryanodine receptors (RYRs) underlies calcium release. Here we demonstrate that L-type Ca(2+) channels activate RYRs to produce CICR in smooth muscle cells in the form of Ca(2+) sparks and propagated Ca(2+) waves. However, unlike CICR in cardiac muscle, RYR channel opening is not tightly linked to the gating of L-type Ca(2+) channels. L-type Ca(2+) channels can open without triggering Ca(2+) sparks and triggered Ca(2+) sparks are often observed after channel closure. CICR is a function of the net flux of Ca(2+) ions into the cytosol, rather than the single channel amplitude of L-type Ca(2+) channels. Moreover, unlike CICR in striated muscle, calcium release is completely eliminated by cytosolic calcium buffering. Thus, L-type Ca(2+) channels are loosely coupled to RYR through an increase in global [Ca(2+)] due to an increase in the effective distance between L-type Ca(2+) channels and RYR, resulting in an uncoupling of the obligate relationship that exists in striated muscle between the action potential and calcium release.  相似文献   

8.
To gain further insights into the function of extracellular Ca2+ in alleviating salt stress, Vicia faba guard cell protoplasts (GCPs) were patch-clamped in a whole-cell configuration. The results showed that 100 mM NaCl clearly induced Na+ influx across the plasma membrane in GCPs and promoted stomatal opening. Extracellular Ca2+ at 10 mM efficiently blocked Na+ influx and inhibited stomatal opening, which was partially abolished by La3+ (an inhibitor of plasma membrane Ca2+ channel) or catalase (CAT, a H?O? scavenger), respectively. These results suggest that the plasma membrane Ca2+ channels and H?O? possibly mediate extracellular Ca2+-blocked Na+ influx in GCPs. Furthermore, extracellular Ca2+ activated the plasma membrane Ca2+ channels under NaCl stress, which was partially abolished by CAT. These results, taken together, indicate that hydrogen peroxide (H?O?) likely regulates Na+ uptake by activating plasma membrane Ca2+ channels in GCPs. In accordance with this hypothesis, H?O? could mimic extracellular Ca2+ to activate Ca2+ channels and block Na+ influx in guard cells. A single-cell analysis of cytosolic free Ca2+ ([Ca2+](cyt)) using Fluo 3-AM revealed that extracellular Ca2+ induced the accumulation of cytosolic Ca2+ under NaCl stress, but had few effects on the accumulation of cytosolic Ca2+ under non-NaCl conditions. All of these results, together with our previous studies showing that extracellular Ca2+ induced the generation of H?O? in GCPs during NaCl stress, indicate that extracellular Ca2+ alleviates salt stress, likely by activating the H?O?-dependent plasma membrane Ca2+ channels, and the increase in cytosolic Ca2+ appears to block Na+ influx across the plasma membrane in Vicia guard cells, leading to stomatal closure and reduction of water loss.  相似文献   

9.
In response to a variety of stimuli, neutrophils release large amount of reactive oxygen species (ROS) generated by NADPH oxidase. This process known as the respiratory burst is dependent on cytosolic free calcium concentration ([Ca(2+)](i)). Proinflammatory cytokines such as interleukin-8 (IL-8) may modulate ROS generation through a priming phenomenon. The aim of this study was to determine the effect of human IL-8 on ROS production in neutrophil-like dimethylsulfoxide-differentiated HL-60 cells (not equalHL-60 cells) and further to examine the role of Ca(2+) mobilization during the priming. IL-8 at 10 nM induced no ROS production but a [Ca(2+)](i) rise (254 +/- 36 nM). IL-8 induced a strongly enhanced (2 fold) ROS release during stimulation with 1 microM of N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF). This potentiation of ROS production is dependent of extracellular Ca(2+) (17.0+/-4.5 arbitrary units (A.U.) in the absence of Ca(2+) versus 56.6 +/- 3.9 A.U. in the presence of 1.25 mM of Ca(2+)). Also, IL-8 enhanced fMLF-stimulated increase in [Ca(2+)](i) (375 +/- 35 versus 245 +/- 21 nM, 0.1 microM of fMLF). IL-8 had no effect on not equalHL-60 cells in response to 1 microM of thapsigargin (472 +/- 66 versus 470 +/- 60 nM). In conclusion, Ca(2+) influx is necessary for a full induction of neutrophil priming by IL-8.  相似文献   

10.
Fluorescent ryanodine revealed the distribution of ryanodine receptors in the submembrane cytoplasm (less than a few micrometers) of cultured bullfrog sympathetic ganglion cells. Rises in cytosolic Ca(2+) ([Ca(2+)](i)) elicited by single or repetitive action potentials (APs) propagated at a high speed (150 microm/s) in constant amplitude and rate of rise in the cytoplasm bearing ryanodine receptors, and then in the slower, waning manner in the deeper region. Ryanodine (10 microM), a ryanodine receptor blocker (and/or a half opener), or thapsigargin (1-2 microM), a Ca(2+)-pump blocker, or omega-conotoxin GVIA (omega-CgTx, 1 microM), a N-type Ca(2+) channel blocker, blocked the fast propagation, but did not affect the slower spread. Ca(2+) entry thus triggered the regenerative activation of Ca(2+)-induced Ca(2+) release (CICR) in the submembrane region, followed by buffered Ca(2+) diffusion in the deeper cytoplasm. Computer simulation assuming Ca(2+) release in the submembrane region reproduced the Ca(2+) dynamics. Ryanodine or thapsigargin decreased the rate of spike repolarization of an AP to 80%, but not in the presence of iberiotoxin (IbTx, 100 nM), a BK-type Ca(2+)-activated K(+) channel blocker, or omega-CgTx, both of which decreased the rate to 50%. The spike repolarization rate and the amplitude of a single AP-induced rise in [Ca(2+)](i) gradually decreased to a plateau during repetition of APs at 50 Hz, but reduced less in the presence of ryanodine or thapsigargin. The amplitude of each of the [Ca(2+)](i) rise correlated well with the reduction in the IbTx-sensitive component of spike repolarization. The apamin-sensitive SK-type Ca(2+)-activated K(+) current, underlying the afterhyperpolarization of APs, increased during repetitive APs, decayed faster than the accompanying rise in [Ca(2+)](i), and was suppressed by CICR blockers. Thus, ryanodine receptors form a functional triad with N-type Ca(2+) channels and BK channels, and a loose coupling with SK channels in bullfrog sympathetic neurons, plastically modulating AP.  相似文献   

11.
Inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) were recently demonstrated to be activated independently of InsP(3) by a family of calmodulin (CaM)-like neuronal Ca(2+)-binding proteins (CaBPs). We investigated the interaction of both naturally occurring long and short CaBP1 isoforms with InsP(3)Rs, and their functional effects on InsP(3)R-evoked Ca(2+) signals. Using several experimental paradigms, including transient expression in COS cells, acute injection of recombinant protein into Xenopus oocytes and (45)Ca(2+) flux from permeabilised COS cells, we demonstrated that CaBPs decrease the sensitivity of InsP(3)-induced Ca(2+) release (IICR). In addition, we found a Ca(2+)-independent interaction between CaBP1 and the NH(2)-terminal 159 amino acids of the type 1 InsP(3)R. This interaction resulted in decreased InsP(3) binding to the receptor reminiscent of that observed for CaM. Unlike CaM, however, CaBPs do not inhibit ryanodine receptors, have a higher affinity for InsP(3)Rs and more potently inhibited IICR. We also show that phosphorylation of CaBP1 at a casein kinase 2 consensus site regulates its inhibition of IICR. Our data suggest that CaBPs are endogenous regulators of InsP(3)Rs tuning the sensitivity of cells to InsP(3).  相似文献   

12.
Ligation of sphingosine 1-phosphate (S1P) to a set of specific receptors named S1P receptors (S1PRs) regulates important biological processes. Although the ability of S1P to increase cytosolic Ca2+ in various cell types is well known, the role of the individual S1PRs has not been fully characterized. Here, we provide a complete analysis of S1P-dependent intracellular Ca2+ homeostasis in HeLa cells. Overexpression of S1P2, or S1P3, but not S1P1, leads to a significant increase in cytosolic and mitochondrial [Ca2+] in response to S1P challenge. Moreover, cells ectopically expressing S1P2, or S1P3 exhibited an appreciable decrease of the free Ca2+ concentration in the endoplasmic reticulum, dependent on stimulation of receptors by S1P endogenously present in the culture medium which was accompanied by a reduced susceptibility to C2-ceramide-induced cell death. These results demonstrate a differential contribution of individual S1PRs to Ca2+ homeostasis and its possible implication in the regulation of cell survival.  相似文献   

13.
In skeletal muscle, Mg(2+) exerts a dual inhibitory effect on RyR1, by competing with Ca(2+) at the activation site and binding to a low affinity Ca(2+)/Mg(2+) inhibitory site. Pharmacological activators of RyR1 must overcome the inhibitory action of Mg(2+) before Ca(2+) efflux can occur. In normal muscle, where the free [Mg(2+)](i) is approximately 1mM, even prolonged exposure to millimolar levels of volatile anesthetics does not initiate SR Ca(2+) release. However, when the cytosolic [Mg(2+)] is reduced below the physiological range, low levels of volatile anesthetic within the clinically relevant range (1mM) can initiate SR Ca(2+) release, in the form of a propagating Ca(2+) wave. In human muscle fibers from malignant hyperthermia susceptible patients, such Ca(2+) waves occur when 1mM halothane is applied at physiological [Mg(2+)](i). There is increasing evidence to suggest that defective Mg(2+) regulation of RyR1 confers susceptibility to malignant hyperthermia. At the molecular level, interactions between critical RyR1 subdomains may explain the clustering of RyR1 mutations and associated effects on Mg(2+) regulation.  相似文献   

14.
The InsP3R proteins have three recognized domains, the InsP3-binding, regulatory/coupling, and channel domains (Mignery, G.A., and T.C. Südhof. 1990. EMBO J. 9:3893-3898). The InsP3 binding domain and the channel-forming domain are at opposite ends of the protein. Ligand regulation of the channel must involve communication between these different regions of the protein. This communication likely involves the interceding sequence (i.e., the regulatory/coupling domain). The single channel functional attributes of the full-length recombinant type-1, -2, and -3 InsP3R channels have been defined. Here, two type-1/type-2 InsP3R regulatory/coupling domain chimeras were created and their single channel function defined. One chimera (1-2-1) contained the type-2 regulatory/coupling domain in a type-1 backbone. The other chimera (2-1-2) contained the type-1 regulatory/coupling domain in a type-2 backbone. These chimeric proteins were expressed in COS cells, isolated, and then reconstituted in proteoliposomes. The proteoliposomes were incorporated into artificial planar lipid bilayers and the single-channel function of the chimeras defined. The chimeras had permeation properties like that of wild-type channels. The ligand regulatory properties of the chimeras were altered. The InsP3 and Ca2+ regulation had some unique features but also had features in common with wild-type channels. These results suggest that different independent structural determinants govern InsP3R permeation and ligand regulation. It also suggests that ligand regulation is a multideterminant process that involves several different regions of the protein. This study also demonstrates that a chimera approach can be applied to define InsP3R structure-function.  相似文献   

15.
There is controversy over whether Ca(2+) binds to the BK(Ca) channel's intracellular domain or its integral-membrane domain and over whether or not mutations that reduce the channel's Ca(2+) sensitivity act at the point of Ca(2+) coordination. One region in the intracellular domain that has been implicated in Ca(2+) sensing is the "Ca(2+) bowl". This region contains many acidic residues, and large Ca(2+)-bowl mutations eliminate Ca(2+) sensing through what appears to be one type of high-affinity Ca(2+)-binding site. Here, through site-directed mutagenesis we have mapped the residues in the Ca(2+) bowl that are most important for Ca(2+) sensing. We find acidic residues, D898 and D900, to be essential, and we find them essential as well for Ca(2+) binding to a fusion protein that contains a portion of the BK(Ca) channel's intracellular domain. Thus, much of our data supports the conclusion that Ca(2+) binds to the BK(Ca) channel's intracellular domain, and they define the Ca(2+) bowl's essential Ca(2+)-sensing motif. Overall, however, we have found that the relationship between mutations that disrupt Ca(2+) sensing and those that disrupt Ca(2+) binding is not as strong as we had expected, a result that raises the possibility that, when examined by gel-overlay, the Ca(2+) bowl may be in a nonnative conformation.  相似文献   

16.
This electrophysiological study was undertaken to investigate the role of voltage-operated Ca(2+) channels (VOCCs) in cultivated human neuroendocrine tumor (NET) cells. Patch-clamp techniques, measurements of intracellular Ca(2+) ([Ca(2+)](i)), and secretion analysis were performed using cultured human NET BON cells. Ba(2+) inward currents through R-type channels (Ca(V)2.3) were measured and identified by SNX-482 (10 n M), a novel voltage-sensitive R-type Ca(2+) channel antagonist. In the presence of nifedipine (5 micro M), omega-Conotoxin GVIA (100 n M) and omega-Agatoxin IVA (20 n M), R-type channel currents were also detectable. Release of Ca(2+) from intracellular Ca(2+) stores by intracellular application of inositol-1,4,5-trisphosphate (InsP(3); 10 micro M) via the patch pipette during whole-cell configuration as well as induction of capacitative Ca(2+) entry (CCE), a passive maneuver to release Ca(2+) from intracellular Ca(2+) stores, led to an increase in [Ca(2+)](i). This effect could be reduced by SNX-482 (20 n M). In addition, SNX-482 (25 n M) also decreased chromogranin A (CgA) secretion, whereas omega-Conotoxin GVIA (500 n M) and nifedipine (5 micro M) failed to reduce CgA secretion. We conclude that these data reveal neuronal R-type channel activity (Ca(V)2.3), for the first time associated with CgA secretion in BON cells. Influx of Ca(2+) by activation of R-type channels may lead to an increase of intracellular Ca(2+), which stimulates CgA secretion. Thus, R-type channels could play an important role in certain clinical characteristics of NETs, such as the hypersecretion syndrome.  相似文献   

17.
Ca(2+) channel inactivation in the neurons of the freshwater snail, Lymnaea stagnalis, was studied using patch-clamp techniques. In the presence of a high concentration of intracellular Ca(2+) buffer (5 mM EGTA), the inactivation of these Ca(2+) channels is entirely voltage dependent; it is not influenced by the identity of the permeant divalent ions or the amount of extracellular Ca(2+) influx, or reduced by higher levels of intracellular Ca(2+) buffering. Inactivation measured under these conditions, despite being independent of Ca(2+) influx, has a bell-shaped voltage dependence, which has often been considered a hallmark of Ca(2+)-dependent inactivation. Ca(2+)-dependent inactivation does occur in Lymnaea neurons, when the concentration of the intracellular Ca(2+) buffer is lowered to 0.1 mM EGTA. However, the magnitude of Ca(2+)-dependent inactivation does not increase linearly with Ca(2+) influx, but saturates for relatively small amounts of Ca(2+) influx. Recovery from inactivation at negative potentials is biexponential and has the same time constants in the presence of different intracellular concentrations of EGTA. However, the amplitude of the slow component is selectively enhanced by a decrease in intracellular EGTA, thus slowing the overall rate of recovery. The ability of 5 mM EGTA to completely suppress Ca(2+)-dependent inactivation suggests that the Ca(2+) binding site is at some distance from the channel protein itself. No evidence was found of a role for serine/threonine phosphorylation in Ca(2+) channel inactivation. Cytochalasin B, a microfilament disrupter, was found to greatly enhance the amount of Ca(2+) channel inactivation, but the involvement of actin filaments in this effect of cytochalasin B on Ca(2+) channel inactivation could not be verified using other pharmacological compounds. Thus, the mechanism of Ca(2+)-dependent inactivation in these neurons remains unknown, but appears to differ from those proposed for mammalian L-type Ca(2+) channels.  相似文献   

18.
Free Mg(2+) in chloroplasts may contribute to the regulation of photosynthetic enzymes, but adequate methodology for the determination of free Mg(2+) concentration ([Mg(2+)]) in chloroplasts has been lacking. We measured internal chloroplast [Mg(2+)] by using a Mg-sensitive fluorescent indicator, mag-fura-2. In intact, dark-kept spinach chloroplasts, internal [Mg(2+)] was estimated to be 0.50 mM, and illumination caused an increase in [Mg(2+)] to 2.0mM in the stroma. The light-induced increase in [Mg(2+)] was inhibited by a blocker of driven electron transport and uncouplers. The K(+)-specific ionophore valinomycin inhibited the [Mg(2+)] increase in the absence of external K(+), and addition of KCl restored the [Mg(2+)] increase. NH(4)Cl, which induces stromal alkalinization, enhanced the [Mg(2+)] increase. A Ca(2+)-channel blocker, ruthenium red, inhibited the [Mg(2+)] increase, but LaCl(3) had no effect. These results indicate that stromal alkalinization is essential for light-induced increase in [Mg(2+)]. This system for measuring internal chloroplast [Mg(2+)] might provide a suitable system for assay of Mg(2+) transport activity of chloroplast membranes.  相似文献   

19.
We report here a combination of site-directed mutations that eliminate the high-affinity Ca(2+) response of the large-conductance Ca(2+)-activated K(+) channel (BK(Ca)), leaving only a low-affinity response blocked by high concentrations of Mg(2+). Mutations at two sites are required, the "Ca(2+) bowl," which has been implicated previously in Ca(2+) binding, and M513, at the end of the channel's seventh hydrophobic segment. Energetic analyses of mutations at these positions, alone and in combination, argue that the BK(Ca) channel contains three types of Ca(2+) binding sites, one of low affinity that is Mg(2+) sensitive (as has been suggested previously) and two of higher affinity that have similar binding characteristics and contribute approximately equally to the power of Ca(2+) to influence channel opening. Estimates of the binding characteristics of the BK(Ca) channel's high-affinity Ca(2+)-binding sites are provided.  相似文献   

20.
Activation of large conductance Ca(2+)-activated K(+) channels is controlled by both cytoplasmic Ca(2+) and membrane potential. To study the mechanism of voltage-dependent gating, we examined mSlo Ca(2+)-activated K(+) currents in excised macropatches from Xenopus oocytes in the virtual absence of Ca(2+) (<1 nM). In response to a voltage step, I(K) activates with an exponential time course, following a brief delay. The delay suggests that rapid transitions precede channel opening. The later exponential time course suggests that activation also involves a slower rate-limiting step. However, the time constant of I(K) relaxation [tau(I(K))] exhibits a complex voltage dependence that is inconsistent with models that contain a single rate limiting step. tau(I(K)) increases weakly with voltage from -500 to -20 mV, with an equivalent charge (z) of only 0.14 e, and displays a stronger voltage dependence from +30 to +140 mV (z = 0.49 e), which then decreases from +180 to +240 mV (z = -0.29 e). Similarly, the steady state G(K)-V relationship exhibits a maximum voltage dependence (z = 2 e) from 0 to +100 mV, and is weakly voltage dependent (z congruent with 0.4 e) at more negative voltages, where P(o) = 10(-5)-10(-6). These results can be understood in terms of a gating scheme where a central transition between a closed and an open conformation is allosterically regulated by the state of four independent and identical voltage sensors. In the absence of Ca(2+), this allosteric mechanism results in a gating scheme with five closed (C) and five open (O) states, where the majority of the channel's voltage dependence results from rapid C-C and O-O transitions, whereas the C-O transitions are rate limiting and weakly voltage dependent. These conclusions not only provide a framework for interpreting studies of large conductance Ca(2+)-activated K(+) channel voltage gating, but also have important implications for understanding the mechanism of Ca(2+) sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号