首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 678 毫秒
1.
Ca2+-sensitive K+ channels (IK1 channels) are required for many physiological functions such as cell proliferation, epithelial transport or cell migration. They are regulated by the intracellular Ca2+ concentration and by phosphorylation-dependent reactions. Here, we investigate by means of the patch-clamp technique mechanisms by which protein kinase C (PKC) regulates the canine isoform, cIK1, cloned from transformed renal epithelial (MDCK-F) cells. cIK1 elicits a K+-selective, inwardly rectifying, and Ca2+-dependent current when expressed in HEK293 or CHO cells. It is inhibited by charybdotoxin, clotrimazole, and activated by 1-ethyl-2-benzimidazolone. cIK1 is activated by intracellular application of ATP or ATP[gS]. ATP-dependent activation is reversed by PKC inhibitors (bisindolylmaleimide, calphostin C), while stimulation with ATP[gS] resists PKC inhibition. Stimulation of protein kinase C with phorbol 12-myristate 13-acetate (PMA) leads to the acute activation of cIK1 currents, which are blocked by PKC inhibitors. In contrast, PKC depletion by overnight incubation with PMA prevents ATP-dependent cIK1 activation. Neither single mutations nor the simultaneous mutation of all PKC sites (T101, S178, T329) to alanine alter the acute regulation of cIK1 channels by PKC. However, current amplitudes of CIK1-T329A and the triple mutant are dramatically increased upon long-term treatment with PMA. These mutations thereby disclose an inhibitory effect on cIKl current of the PKC site at T329. Our results indicate that cIK1 channel activity is regulated in two ways. PKC-dependent activation of cIK1 channels occurs indirectly, while the inhibitory effect probably requires a direct interaction with the channel protein.  相似文献   

2.
Cell migration is crucial for processes such as immune defense, wound healing, or the formation of tumor metastases. Typically, migrating cells are polarized within the plane of movement with lamellipodium and cell body representing the front and rear of the cell, respectively. Here, we address the question of whether this polarization also extends to the distribution of ion transporters such as Na(+)/H(+) exchanger (NHE) and anion exchanger in the plasma membrane of migrating cells. Both transporters are required for locomotion of renal epithelial (Madin-Darby canine kidney, MDCK-F) cells and human melanoma cells since their blockade reduces the rate of migration in a dose-dependent manner. Inhibition of migration of MDCK-F cells by NHE blockers is accompanied by a decrease of pH(i). However, when cells are acidified with weak organic acids, migration of MDCK-F cells is normal despite an even more pronounced decrease of pH(i). Under these conditions, NHE activity is increased so that cells are swelling due to the accumulation of organic anions and Na(+). When exclusively applied to the lamellipodium, blockers of NHE or anion exchange inhibit migration of MDCK-F cells as effectively as when applied to the entire cell surface. When they are directed to the cell body, migration is not affected. These data are confirmed immunocytochemically in that the anion exchanger AE2 is concentrated at the front of MDCK-F cells. Our findings show that NHE and anion exchanger are distributed in a polarized way in migrating cells. They are consistent with important contributions of both transporters to protrusion of the lamellipodium via solute uptake and consequent volume increase at the front of migrating cells.  相似文献   

3.
Cell migration plays a central role in many physiological and pathophysiological processes. On a cellular level it is based on a highly coordinated restructuring of the cytoskeleton, a continuous cycle of adhesion and de-adhesion as well as on the activity of ion channels and transporters. The cytoplasmic Ca2+ ([Ca2+]i) concentration is an important coordinator of these intracellular processes. Thus, [Ca2+]i must be tightly controlled in migrating cells. This is among other things achieved by the activity of Ca2+ permeable channels, the plasma membrane Ca2+-ATPase (PMCA) and the Na+/Ca2+ exchanger (NCX) in the plasma membrane. Here, we wanted to determine the functional role of these transport proteins in cell migration. We therefore quantified the acute effect of inhibitors of these transport proteins (Gd3+, vanadate, KB-R7943) on migration, [Ca2+]i, and intracellular pH (pHi) of MDCK-F cells. Migration was monitored with computer-assisted time-lapse video microscopy. [Ca2+]i and pHi were measured with the fluorescent indicators fura-2 and BCECF. NCX expression in MDCK-F cells was verified with ion substitution experiments, and expression of PMCA was tested with RT-PCR. All blockers lead to a rapid impairment of cell migration. However, the most prominent effect is elicited by NCX-inhibition with KB-R7943. NCX-blockade leads to an almost complete inhibition of migration which is accompanied by a dose-dependent increase of [Ca2+]i and an intracellular alkalinisation. We show that inhibition of NCX and PMCA strongly affects lamellipodial dynamics of migrating MDCK-F cells. Taken together, our results show that PMCA and in particular NCX are of critical importance for cell migration.  相似文献   

4.
Cisplatin, a platinum-based drug, is an important weapon against many types of cancer. It induces apoptosis by forming adducts with DNA, although many aspects of its mechanism of action remain to be clarified. Previously, we found a role for the volume-sensitive, outwardly rectifying Cl(-) channel in cisplatin-induced apoptosis. To investigate the possibility that cation channels also have a role in the cellular response to cisplatin, we examined the activity of cation channels in cisplatin-sensitive KB-3-1 (KB) epidermoid cancer cells by the whole cell patch-clamp method. A cation channel in KB cells, activated by hypotonic stress, was identified as the Ca2+-activated, intermediate-conductance K+ (IK1) channel on the basis of its requirement for intracellular Ca2+, its blockage by the blockers clotrimazole and triarylmethane-34, and its suppression by a dominant-negative construct. Activity of this channel was not observed in KCP-4 cells, a cisplatin-resistant cell line derived from KB cells, and its molecular expression, observed by semiquantitative RT-PCR and immunostaining, appeared much reduced. Cell volume measurements confirmed a physiological role for the IK1 channel as a component of the volume-regulatory machinery in KB cells. A possible role of the IK1 channel in cisplatin-induced apoptosis was investigated. It was found that clotrimazole and triarylmethane-34 inhibited a cisplatin-induced decrease in cell viability and increase in caspase-3/7 activity, whereas 1-ethyl-2-benzimidazolinone, an activator of the channel, had the opposite effect. Thus IK1 channel activity appears to mediate, at least in part, the response of KB cells to cisplatin treatment.  相似文献   

5.
Calcium‐sensitive potassium channels (KCa3.1) are expressed in virtually all migrating cells. Their activity is required for optimal cell migration so that their blockade leads to slowing down. KCa3.1 channels must be inserted into the plasma membrane in order to elicit their physiological function. However, the plasma membrane of migrating cells is subject to rapid recycling by means of endo‐ and exocytosis. Here, we focussed on the endocytic internalization and the intracellular transport of the human isoform hKCa3.1. A hKCa3.1 channel construct with an HA‐tag in the extracellularly located S3‐S4 linker was transfected into migrating transformed renal epithelial MDCK‐F cells. Channel internalization was visualized and quantified with immunofluorescence and a cell‐based ELISA. Movement of hKCa3.1 channel containing vesicles as well as migration of MDCK‐F cells were monitored by means of time lapse video microscopy. hKCa3.1 channels are endocytosed during migration. Most of the hKCa3.1 channel containing vesicles are moving at a speed of up to 2 µm/sec in a microtubule‐dependent manner towards the front of MDCK‐F cells. Our experiments indicate that endocytosis of hKCa3.1 channels is clathrin‐dependent since they colocalize with clathrin adaptor proteins and since it is impaired when a C‐terminal dileucine motif is mutated. The C‐terminal dileucine motif is also important for the subcellular localization of hKCa3.1 channels in migrating cells. Mutated channels are no longer concentrated at the leading edge. We therefore propose that recycling of hKCa3.1 channels contributes to their characteristic subcellular distribution in migrating cells. J. Cell. Physiol. 227: 686–696, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
The complexity of mammalian physiology requires a diverse array of ion channel proteins. This diversity extends even to a single family of channels. For example, the family of Ca2+-activated K channels contains three structural subfamilies characterized by small, intermediate, and large single channel conductances. Many cells and tissues, including neurons, vascular smooth muscle, endothelial cells, macrophages, and salivary glands express more than a single class of these channels, raising questions about their specific physiological roles. We demonstrate here a novel interaction between two types of Ca2+-activated K channels: maxi-K channels, encoded by the KCa1.1 gene, and IK1 channels (KCa3.1). In both native parotid acinar cells and in a heterologous expression system, activation of IK1 channels inhibits maxi-K activity. This interaction was independent of the mode of activation of the IK1 channels: direct application of Ca2+, muscarinic receptor stimulation, or by direct chemical activation of the IK1 channels. The IK1-induced inhibition of maxi-K activity occurred in small, cell-free membrane patches and was due to a reduction in the maxi-K channel open probability and not to a change in the single channel current level. These data suggest that IK1 channels inhibit maxi-K channel activity via a direct, membrane-delimited interaction between the channel proteins. A quantitative analysis indicates that each maxi-K channel may be surrounded by four IK1 channels and will be inhibited if any one of these IK1 channels opens. This novel, regulated inhibition of maxi-K channels by activation of IK1 adds to the complexity of the properties of these Ca2+-activated K channels and likely contributes to the diversity of their functional roles.  相似文献   

7.
The migration of T lymphocytes is an essential part of the adaptive immune response as T cells circulate around the body to carry out immune surveillance. During the migration process T cells polarize, forming a leading edge at the cell front and a uropod at the cell rear. Our interest was in studying the involvement of ion channels in the migration of activated human T lymphocytes as they modulate intracellular Ca(2+) levels. Ca(2+) is a key regulator of cellular motility. To this purpose, we created protein surfaces made of the bio-polymer PNMP and coated with ICAM-1, ligand of LFA-1. The LFA-1 and ICAM-1 interaction facilitates T cell movement from blood into tissues and it is critical in immune surveillance and inflammation. Activated human T lymphocytes polarized and migrated on ICAM-1 surfaces by random walk with a mean velocity of ~6 μm/min. Confocal microscopy indicated that Kv1.3, CRAC, and TRPM4 channels positioned in the leading-edge, whereas KCa3.1 and TRPM7 channels accumulated in the uropod. The localization of KCa3.1 and TRPM7 at the uropod was associated with oscillations in intracellular Ca(2+) levels that we measured in this cell compartment. Further studies with blockers against Kv1.3 (ShK), KCa3.1 (TRAM-34), CRAC (SKF-96365), TRPM7 (2-APB), and TRPM4 (glibenclamide) indicated that blockade of KCa3.1 and TRPM7, and not Kv1.3, CRAC or TRPM4, inhibits the T cell migration. The involvement of TRPM7 in cell migration was confirmed with siRNAs against TRPM7. Downregulation of TRPM7 significantly reduced the number of migrating T cells and the mean velocity of the migrating T cells. These results indicate that KCa3.1 and TRPM7 selectively localize at the uropod of migrating T lymphocytes and are key components of the T cell migration machinery.  相似文献   

8.
Cell polarization along the axis of movement is required for migration. The localization of proteins and regulators of the migratory machinery to either the cell front or its rear results in a spatial asymmetry enabling cells to simultaneously coordinate cell protrusion and retraction. Protons might function as such unevenly distributed regulators as they modulate the interaction of focal adhesion proteins and components of the cytoskeleton in vitro. However, an intracellular pH (pH(i)) gradient reflecting a spatial asymmetry of protons has not been shown so far. One major regulator of pH(i), the Na(+)/H(+) exchanger NHE1, is essential for cell migration and accumulates at the cell front. Here, we test the hypothesis that the uneven distribution of NHE1 activity creates a pH(i) gradient in migrating cells. Using the pH-sensitive fluorescent dye BCECF, pH(i) was measured in five cell lines (MV3, B16V, NIH3T3, MDCK-F1, EA.hy926) along the axis of movement. Differences in pH(i) between the front and the rear end (ΔpH(i) front-rear) were present in all cell lines, and inhibition of NHE1 either with HOE642 or by absence of extracellular Na(+) caused the pH(i) gradient to flatten or disappear. In conclusion, pH(i) gradients established by NHE1 activity exist along the axis of movement.  相似文献   

9.
Cell migration relies on a tight temporal and spatial regulation of the intracellular Ca2+ concentration ([Ca2+]i). [Ca2+]i in turn depends on Ca2+ influx via channels in the plasma membrane whose molecular nature is still largely unknown for migrating cells. A mechanosensitive component of the Ca2+ influx pathway was suggested. We show here that the capsaicin-sensitive transient receptor potential channel TRPV1, that plays an important role in pain transduction, is one of the Ca2+ influx channels involved in cell migration. Activating TRPV1 channels with capsaicin leads to an acceleration of human hepatoblastoma (HepG2) cells pretreated with hepatocyte growth factor (HGF). The speed rises by up to 50% and the displacement is doubled. Patch clamp experiments revealed the presence of capsaicin and resiniferatoxin (RTX)-sensitive currents. In contrast, HepG2 cells kept in the absence of HGF are not accelerated by capsaicin and express no capsaicin- or RTX-sensitive current. The TRPV1 antagonist capsazepine prevents the stimulation of migration and inhibits capsaicin-sensitive currents. Finally, we compared the contribution of capsaicin-sensitive TRPV1 channels to cell migration with that of mechanosensitive TRPV4 channels that are also expressed in HepG2 cells. A specific TRPV4 agonist, 4alpha-phorbol 12,13-didecanoate, does not increase the displacement. In summary, we assigned a novel role to capsaicin-sensitive TRPV1 channels. They are important Ca2+ influx channels required for cell migration.  相似文献   

10.
Growth factor-induced cell migration underlies various physiological and pathological processes. The mechanisms by which growth factors regulate cell migration are not completely understood. Although intracellular elevation of Ca2+ is known to be critical in cell migration, the source of this Ca2+ elevation and the mechanism by which Ca2+ modulates this process in fibroblast cells are not well defined. Here we show that increase of cellular Ca2+ through Ca2+ influx, rather than Ca2+ release from intracellular stores, is essential for growth factor-induced fibroblast cell migration. Voltage-gated L-type Ca2+ channels, previously known to exist in excitable cells such as neurons and muscle cells, are shown here to be present in fibroblasts as well. Furthermore, these channels are responsible for the Ca2+ influx. L-type Ca2+ channel inhibitors block growth factor-induced Ca2+ influx and fibroblast cell migration. One mechanism by which Ca2+ signals control cell migration is to regulate the contraction of the trailing edge of migrating fibroblasts; this process is controlled by the small GTPase Rho in fast migrating cells such as leukocytes. Downstream of Ca2+, both calmodulin and myosin light chain kinase, but not calcineurin, are involved leading to phosphorylation of the myosin light chain at the trailing end. Thus, trailing edge contraction is critically regulated by Ca2+ influx through L-type Ca2+ channels in growth factor-induced fibroblast cell migration.  相似文献   

11.
Glioblastoma cells in vivo are exposed to a variety of promigratory signals, including undefined serum components that infiltrate into high grade gliomas as result of blood-brain barrier breakdown. Glioblastoma cell migration has been further shown to depend heavily on ion channels activity. We have then investigated the modulatory effects of fetal calf serum (FCS) on ion channels, and their involvement in U87-MG cells migration. Using the perforated patch-clamp technique we have found that, in a subpopulation of cells (42%), FCS induced: (1) an oscillatory activity of TRAM-34 sensitive, intermediate-conductance calcium-activated K (IK(Ca) ) channels, mediated by calcium oscillations previously shown to be induced by FCS in this cell line; (2) a stable activation of a DIDS- and NPPB-sensitive Cl current displaying an outward rectifying instantaneous current-voltage relationship and a slow, voltage-dependent inactivation. By contrast, in another subpopulation of cells (32%) FCS induced a single, transient IK(Ca) current activation, always accompanied by a stable activation of the Cl current. The remaining cells did not respond to FCS. In order to understand whether the FCS-induced ion channel activities are instrumental to promoting cell migration, we tested the effects of TRAM-34 and DIDS on the FCS-induced U87-MG cell migration using transwell migration assays. We found that these inhibitors were able to markedly reduce U87-MG cell migration in the presence of FCS, and that their co-application resulted in an almost complete arrest of migration. It is concluded that the modulation of K and Cl ion fluxes is essential for the FCS-induced glioblastoma cell migration.  相似文献   

12.
Expression of voltage-gated K(+) (Kv) channel genes is regulated by polyamines in intestinal epithelial cells (IEC-6 line), and Kv channel activity is involved in the regulation of cell migration during early restitution by controlling membrane potential (E(m)) and cytosolic free Ca2+ concentration ([Ca2+](cyt)). This study tests the hypothesis that RhoA of small GTPases is a downstream target of elevated ([Ca2+](cyt)) following activation of K(+) channels by increased polyamines in IEC-6 cells. Depletion of cellular polyamines by alpha-difluoromethylornithine (DFMO) reduced whole cell K+ currents [I(K(v))] through Kv channels and caused membrane depolarization, which was associated with decreases in ([Ca2+](cyt)), RhoA protein, and cell migration. Exogenous polyamine spermidine reversed the effects of DFMO on I(K(v)), E(m), ([Ca2+](cyt)), and RhoA protein and restored cell migration to normal. Elevation of ([Ca2+](cyt)) induced by the Ca2+ ionophore ionomycin increased RhoA protein synthesis and stimulated cell migration, while removal of extracellular Ca2+ decreased RhoA protein synthesis, reduced protein stability, and inhibited cell motility. Decreased RhoA activity due to Clostridium botulinum exoenzyme C(3) transferase inhibited formation of myosin II stress fibers and prevented restoration of cell migration by exogenous spermidine in polyamine-deficient cells. These findings suggest that polyamine-dependent cell migration is partially initiated by the formation of myosin II stress fibers as a result of Ca2+-activated RhoA activity.  相似文献   

13.
Small- and intermediate-conductance Ca(2+)-activated K(+) channels (SK3/Kcnn3 and IK1/Kcnn4) are expressed in vascular endothelium. Their activities play important roles in regulating vascular tone through their modulation of intracellular concentration ([Ca(2+)](i)) required for the production of endothelium-derived vasoactive agents. Activation of endothelial IK1 or SK3 channels hyperpolarizes endothelial cell membrane potential, increases Ca(2+) influx, and leads to the release of vasoactive factors, thereby impacting blood pressure. To examine the distinct roles of IK1 and SK3 channels, we used electrophysiological recordings to investigate IK1 and SK3 channel trafficking in acutely dissociated endothelial cells from mouse aorta. The results show that SK3 channels undergo Ca(2+)-dependent cycling between the plasma membrane and intracellular organelles; disrupting Ca(2+)-dependent endothelial caveolae cycling abolishes SK3 channel trafficking. Moreover, transmitter-induced changes in SK3 channel activity and surface expression modulate endothelial membrane potential. In contrast, IK1 channels do not undergo rapid trafficking and their activity remains unchanged when either exo- or endocytosis is block. Thus modulation of SK3 surface expression may play an important role in regulating endothelial membrane potential in a Ca(2+)-dependent manner.  相似文献   

14.
Potassium channels play a key role in establishing the cell membrane potential and are expressed ubiquitously. Today, more than 70 mammalian K(+) channel genes are known. The diversity of K(+) channels is further increased by the fact that different K(+) channel family members may assemble to form heterotetramers. We present a method based on fluorescence microscopy to determine the subunit composition of a tetrameric K(+) channel. We generated artificial "heteromers" of the K(+) channel hK(Ca)3.1 by coexpressing two differently tagged hK(Ca)3.1 constructs containing either an extracellular hemagglutinin (HA) or an intracellular V5 epitope. hK(Ca)3.1 channel subunits were detected in the plasma membrane of MDCK-F cells or HEK293 cells by labeling the extra- and intracellular epitopes with differently colored quantum dots (QDs). As previously shown for the extracellular part of hK(Ca)3.1 channels, its intracellular domain can also bind only one QD label at a time. When both channel subunits were coexpressed, 27.5 ± 1.8% and 24.9 ± 2.1% were homotetramers consisting of HA- and V5-tagged subunits, respectively. 47.6 ± 3.2% of the channels were heteromeric and composed of both subunits. The frequency distribution of HA- and V5-tagged homo- and heteromeric hK(Ca)3.1 channels is reminiscent of the binomial distribution (a + b)(2) = a(2) + 2ab + b(2). Along these lines, our findings are consistent with the notion that hK(Ca)3.1 channels are assembled from two homomeric dimers and not randomly from four independent subunits. We anticipate that our technique will be applicable to other heteromeric membrane proteins, too.  相似文献   

15.
Restoration of cell volume in the continued presence of osmotic stimuli is essential, particularly in hepatocytes, which swell upon nutrient uptake. Responses to swelling involve the Ca2+-dependent activation of K+ channels, which promote fluid efflux to drive volume recovery; however, the channels involved in hepatocellular volume regulation have not been identified. We found that hypotonic exposure of HTC hepatoma cells evoked the opening of 50 pS K+-permeable channels, consistent with intermediate conductance (IK) channels. We isolated from rat liver and HTC cells a cDNA with sequence identity to the coding region of IK1. Swelling-activated currents were inhibited by transfection with a dominant interfering IK1 mutant. The IK channel blockers clotrimazole and TRAM-34 inhibited whole cell swelling-activated K+ currents and volume recovery. To determine whether IK1 underwent volume-sensitive localization, we expressed a green fluorescent protein fusion of IK1 in HTC cells. The localization of IK1 was suggestive of distribution in lipid rafts. Consistent with this, there was a time-dependent increase in colocalization between IK1 and the lipid raft ganglioside GM1 on the plasma membrane, which subsequently decreased with volume recovery. Pharmacological disruption of lipid rafts altered the plasma membrane distribution of IK1 and inhibited volume recovery after hypotonic exposure. Collectively, these findings support the hypothesis that IK1 regulates compensatory responses to hepatocellular swelling and suggest that regulation of cell volume involves coordination of signaling from lipid rafts with IK1 function.  相似文献   

16.
Cell migration is an important physiological process among others controlled by ion channel activity. Calcium-activated potassium channels (K(Ca)3.1) are required for optimal cell migration. Previously, we identified single human (h)K(Ca)3.1 channel proteins in the plasma membrane by means of quantum dot (QD) labeling. In the present study, we tracked single-channel proteins during migration to classify their dynamics in the plasma membrane of MDCK-F cells. Single hK(Ca)3.1 channels were visualized with QD- or Alexa488-conjugated antibodies and tracked at the basal cell membrane using time-lapse total internal reflection fluorescence (TIRF) microscopy. Analysis of the trajectories allowed the classification of channel dynamics. Channel tracks were compared with those of free QD-conjugated antibodies. The size of the label has a pronounced effect on hK(Ca)3.1 channel diffusion. QD-labeled channels have a (sub)diffusion coefficient D(QDbound) = 0.067 microm(2)/s(alpha), whereas that of Alexa488-labeled channels is D(Alexa) = 0.139 microm(2)/s. Free QD-conjugated antibodies move much faster: D(QDfree) = 2.163 microm(2)/s(alpha). Plotting the mean squared distances (msd) covered by hK(Ca)3.1 channels as a function of time points to the mode of diffusion. Alexa488-labeled channels diffuse normally, whereas the QD-label renders hK(Ca)3.1 channel diffusion anomalous. Free QD-labeled antibodies also diffuse anomalously. Hence, QDs slow down diffusion of hK(Ca)3.1 channels and change the mode of diffusion. These results, referring to the role of label size and properties of the extracellular environment, suggest that the pericellular glycocalyx has an important impact on labels used for single molecule tracking. Thus tracking fluorescent particles within the glycocalyx opens up a possibility to characterize the pericellular nanoenvironment.  相似文献   

17.
Potassium channels play a vital role in maintaining the membrane potential and the driving force for anion secretion in epithelia. In pancreatic ducts, which secrete bicarbonate-rich fluid, the identity of K(+) channels has not been extensively investigated. In this study, we investigated the molecular basis of functional K(+) channels in rodent and human pancreatic ducts (Capan-1, PANC-1, and CFPAC-1) using molecular and electrophysiological techniques. RT-PCR analysis revealed mRNAs for KCNQ1, KCNH2, KCNH5, KCNT1, and KCNT2, as well as KCNN4 coding for the following channels: KVLQT1; HERG; EAG2; Slack; Slick; and an intermediate-conductance Ca(2+)-activated K(+) (IK) channel (K(Ca)3.1). The following functional studies were focused on the IK channel. 5,6-Dichloro-1-ethyl-1,3-dihydro-2H-benzimidazole-2-one (DC-EBIO), an activator of IK channel, increased equivalent short-circuit current (I(sc)) in Capan-1 monolayer, consistent with a secretory response. Clotrimazole, a blocker of IK channel, inhibited I(sc). IK channel blockers depolarized the membrane potential of cells in microperfused ducts dissected from rodent pancreas. Cell-attached patch-clamp single-channel recordings revealed IK channels with an average conductance of 80 pS in freshly isolated rodent duct cells. These results indicated that the IK channels may, at least in part, be involved in setting the resting membrane potential. Furthermore, the IK channels are involved in anion and potassium transport in stimulated pancreatic ducts.  相似文献   

18.
Huang MH  So EC  Liu YC  Wu SN 《Steroids》2006,71(2):129-140
The effects of glucocorticoids on ion currents were investigated in pituitary GH3 and AtT-20 cells. In whole-cell configuration, dexamethasone, a synthetic glucocorticoid, reversibly increased the density of Ca2+ -activated K+ current (IK(Ca)) with an EC50 value of 21 +/- 5 microM. Dexamethasone-induced increase in IK(Ca) density was suppressed by paxilline (1 microM), yet not by glibenclamide (10 microM), pandinotoxin-Kalpha (1 microM) or mifepristone (10 microM). Paxilline is a blocker of large-conductance Ca2+ -activated K+ (BKCa) channels, while glibenclamide and pandinotoxin-Kalpha are blockers of ATP-sensitive and A-type K+ channels, respectively. Mifepristone can block cytosolic glucocorticoid receptors. In inside-out configuration, the application of dexamethasone (30 microM) into the intracellular surface caused no change in single-channel conductance; however, it did increase BKCa -channel activity. Its effect was associated with a negative shift of the activation curve. However, no Ca2+ -sensitiviy of these channels was altered by dexamethasone. Dexamethasone-stimulated channel activity involves an increase in mean open time and a decrease in mean closed time. Under current-clamp configuration, dexamethasone decreased the firing frequency of action potentials. In pituitary AtT-20 cells, dexamethasone (30 microM) also increased BKCa -channel activity. Dexamethasone-mediated stimulation of IK(Ca) presented here that is likely pharmacological, seems to be not linked to a genomic mechanism. The non-genomic, channel-stimulating properties of dexamethasone may partly contribute to the underlying mechanisms by which glucocorticoids affect neuroendocrine function.  相似文献   

19.
The intermediate (IK(Ca)) and small (SK(Ca)) conductance Ca(2+)-sensitive K(+) channels in endothelial cells (ECs) modulate vascular diameter through regulation of EC membrane potential. However, contribution of IK(Ca) and SK(Ca) channels to membrane current and potential in native endothelial cells remains unclear. In freshly isolated endothelial cells from mouse aorta dialyzed with 3 microM free [Ca(2+)](i) and 1 mM free [Mg(2+)](i), membrane currents reversed at the potassium equilibrium potential and exhibited an inward rectification at positive membrane potentials. Blockers of large-conductance, Ca(2+)-sensitive potassium (BK(Ca)) and strong inward rectifier potassium (K(ir)) channels did not affect the membrane current. However, blockers of IK(Ca) channels, charybdotoxin (ChTX), and of SK(Ca) channels, apamin (Ap), significantly reduced the whole-cell current. Although IK(Ca) and SK(Ca) channels are intrinsically voltage independent, ChTX- and Ap-sensitive currents decreased steeply with membrane potential depolarization. Removal of intracellular Mg(2+) significantly increased these currents. Moreover, concomitant reduction of the [Ca(2+)](i) to 1 microM caused an additional increase in ChTX- and Ap-sensitive currents so that the currents exhibited theoretical outward rectification. Block of IK(Ca) and SK(Ca) channels caused a significant endothelial membrane potential depolarization (approximately 11 mV) and decrease in [Ca(2+)](i) in mesenteric arteries in the absence of an agonist. These results indicate that [Ca(2+)](i) can both activate and block IK(Ca) and SK(Ca) channels in endothelial cells, and that these channels regulate the resting membrane potential and intracellular calcium in native endothelium.  相似文献   

20.
SK4/IK1 encodes an intermediate conductance, Ca2+-activated K+ channel and fulfills a variety of physiological functions in excitable and nonexcitable cells. Although recent studies have provided evidence for the presence of SK4/IK1 channels in salivary acinar cells, the regulatory mechanisms and the physiological function of the channel remain unknown in these cells. Using molecular and electrophysiological techniques, we examined whether cytosolic ATP-dependent regulation of native SK4/IK1-like channel activity would involve endogenous cAMP-dependent protein kinase (PKA) in rat submandibular acinar (RSA) cells. Electrophysiological properties of tetraethylammonium (TEA) (10 mM)-insensitive, Ca2+-dependent K+ currents in macropatches excised from RSA cells matched those of whole cell currents recorded from human embryonic kidney-293 cells heterologously expressing rat SK4/IK1 (rSK4/IK1) cloned from RSA cells. In outside-out macropatches, activity of native SK4/IK1-like channels, defined as a charybdotoxin (100 nM)-blockable current in the presence of TEA (10 mM) in the bathing solution, ran down unless both ATP and Mg2+ were present in the pipette solution. The nonhydrolyzable ATP analog AMP-PNP failed to support the channel activity as ATP did. The addition of Rp-cAMPS (10 µM), a PKA inhibitor, to the pipette solution containing ATP/Mg2+ induced a rundown of the Ca2+-dependent K+ currents. Inclusion of cAMP (1 mM) into the pipette solution (1 µM free Ca2+) containing ATP/Mg2+ caused a gradual increase in the currents, the effect being pronounced for the currents induced by 0.1 µM free Ca2+. Forskolin (1 µM), an adenylyl cyclase activator, also increased the currents induced by 0.1 µM free Ca2+. In inside-out macropatches, cytosolic ATP/Mg2+ increased both the maximum current (proportional to the maximum channel activity) and Ca2+ sensitivity of current activation. Collectively, these results suggest that ATP-dependent regulation of native SK4/IK1-like channels, at least in part, is mediated by endogenous PKA in RSA cells. Ca2+-activated K+ channel; patch clamp; human embryonic kidney-293; salivary secretion  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号