首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.  相似文献   

2.
The primary sequences of five monoclonal antibodies (mAbs A-E) which bind with various affinities (Kd = 4-810 nM) to the D-2 dopaminergic antagonist, haloperidol, have been determined. Immunoglobulin light and heavy chain mRNA was isolated and gene sequence determined by primer extension in the presence of dideoxynucleotides. The pattern of insertions and deletions found within the hypervariable regions produce loops which differ in length from one antibody to another, and are directly responsible for establishing the gross architecture of the combining site. Two of the anti-haloperidol mAbs have long hypervariable loops which form a pocket-shaped combining site. Three other mAbs have deletions of 3 or 4 amino acids in the third heavy chain complementarity producing region which result in a groove-like combining site as determined by computer based molecular modeling. A discussion of the probable mechanism by which the given sequences were generated from various gene segments is also presented.  相似文献   

3.
Antibodies to DNA similar to those found in patients with systemic lupus erythematosus (SLE) and autoimmune mice can be derived from the lymphocytes of normal individuals. It is not known whether these normal derived anti-DNA antibodies are made from the same VH gene elements as the anti-DNA antibodies made by SLE patients. To begin to answer this question, we examined mu chain cDNA clones from human hybrid clone C6B2 producing anti-DNA antibodies. The sequence of the 500 base pair restriction fragment containing the variable region (5' terminus) was determined and was sequenced. This antibody uses a VHII heavy chain subgroup gene, a J3 joining segment, a hitherto unknown D segment, and a previously reported leader sequence. Significant homology was found to a mouse anti-DNA antibody sequence in the use of VH subgroup in J3, and in the hypervariable regions with a shared Ser-Tyr construction in CDR1 and an identical five amino acid residue stretch in CDR2. Comparison with the limited sequence data of published SLE monoclonal anti-DNA antibodies, both human and mouse, suggests that this shared Ser-Tyr may be important in some but not all antibodies to DNA. Comparison of C6B2 antibody is made with other known antibody sequences with identification of those residues likely to be part of the antigen binding site.  相似文献   

4.
Detailed knowledge on antibody-antigen recognition is scarce given the unlimited antibody specificities of which only few have been investigated at an atomic level. We report the crystal structures of an antibody fragment derived from a camel heavy chain antibody against carbonic anhydrase, free and in complex with antigen. Surprisingly, this single-domain antibody interacts with nanomolar affinity with the antigen through its third hypervariable loop (19 amino acids long), providing a flat interacting surface of 620 A(2). For the first time, a single-domain antibody is observed with its first hypervariable loop adopting a type-1 canonical structure. The second hypervariable loop, of unique size due to a somatic mutation, reveals a regular beta-turn. The third hypervariable loop covers the remaining hypervariable loops and the side of the domain that normally interacts with the variable domain of the light chain. Specific amino acid substitutions and reoriented side chains reshape this side of the domain and increase its hydrophilicity. Of interest is the substitution of the conserved Trp-103 by Arg because it opens new perspectives to 'humanize' a camel variable domain of heavy chain of heavy chain antibody (VHH) or to 'camelize' a human or a mouse variable domain of heavy chain of conventional antibody (VH).  相似文献   

5.
S McManus  L Riechmann 《Biochemistry》1991,30(24):5851-5857
Two-dimensional (2D) 1H NMR spectroscopy was used to study the hapten-binding site of a recombinant antibody Fv fragment expressed in Escherichia coli. Point mutations of residues in the CDR loops of the Fv fragment were designed in order to investigate their influence on hapten binding and to make site-specific assignments of aromatic NMR proton signals. Two tyrosines giving NOEs to the ligand 2-phenyloxazolone were identified, residue 33 in CDR1 of the heavy chain and residue 32 in CDR1 of the light chain. The benzyl portion of 2-phenyloxazolone is located between these two residues. The binding site is close to the surface of the Fv fragment. Comparison with a different anti-2-phenyloxazolone antibody, the crystal structure of which has recently been solved, shows that the general location of the hapten-binding site in both antibodies is similar. However, in the crystallographically solved antibody, the hapten is bound farther from the surface in a pocket created by a short CDR3 loop of the heavy chain. In the binding site identified in the Fv fragment studied in this report, this space is probably filled by the extra seven residues of the CDR3.  相似文献   

6.
BACKGROUND: Camelid serum contains a large fraction of functional heavy-chain antibodies - homodimers of heavy chains without light chains. The variable domains of these heavy-chain antibodies (VHH) have a long complementarity determining region 3 (CDR3) loop that compensates for the absence of the antigen-binding loops of the variable light chains (VL). In the case of the VHH fragment cAb-Lys3, part of the 24 amino acid long CDR3 loop protrudes from the antigen-binding surface and inserts into the active-site cleft of its antigen, rendering cAb-Lys3 a competitive enzyme inhibitor. RESULTS: A dromedary VHH with specificity for bovine RNase A, cAb-RN05, has a short CDR3 loop of 12 amino acids and is not a competitive enzyme inhibitor. The structure of the cAb-RN05-RNase A complex has been solved at 2.8 A. The VHH scaffold architecture is close to that of a human VH (variable heavy chain). The structure of the antigen-binding hypervariable 1 loop (H1) of both cAb-RN05 and cAb-Lys3 differ from the known canonical structures; in addition these H1 loops resemble each other. The CDR3 provides an antigen-binding surface and shields the face of the domain that interacts with VL in conventional antibodies. CONCLUSIONS: VHHs adopt the common immunoglobulin fold of variable domains, but the antigen-binding loops deviate from the predicted canonical structure. We define a new canonical structure for the H1 loop of immunoglobulins, with cAb-RN05 and cAb-Lys3 as reference structures. This new loop structure might also occur in human or mouse VH domains. Surprisingly, only two loops are involved in antigen recognition; the CDR2 does not participate. Nevertheless, the antigen binding occurs with nanomolar affinities because of a preferential usage of mainchain atoms for antigen interaction.  相似文献   

7.
The structure of the antigen-binding fragment from the monoclonal antibody S64-4 in complex with a pentasaccharide bisphosphate fragment from chlamydial lipopolysaccharide has been determined by x-ray diffraction to 2.6 ? resolution. Like the well-characterized antibody S25-2, S64-4 displays a pocket formed by the residues of germline sequence corresponding to the heavy and light chain V gene segments that binds the terminal Kdo residue of the antigen; however, although S64-4 shares the same heavy chain V gene segment as S25-2, it has a different light chain V gene segment. The new light chain V gene segment codes for a combining site that displays greater affinity, different specificity, and allows a novel antigen conformation that brings a greater number of antigen residues into the combining site than possible in S25-2. Further, while antibodies in the S25-2 family use complementarity determining region (CDR) H3 to discriminate among antigens, S64-4 achieves its specificity via the new light chain V gene segment and resulting change in antigen conformation. These structures reveal an intriguing parallel strategy where two different combinations of germline-coded V gene segments can act as starting points for the generation of germline antibodies against chlamydial antigens and show how anti-carbohydrate antibodies can exploit the conformational flexibility of this class of antigens to achieve high affinity and specificity independently of CDR H3.  相似文献   

8.
We have studied the effects of a four residue insertion into the FR3 loop of the heavy chain variable region from the anti-NP antibody B1-8. The insertion mutant is obtained as secreted antibody without major defects in biosynthesis, indicating that antibody variable domains can accommodate length variation not only in complementarity determining regions (CDRs), but also in framework region (FR) loops. The B1-8 antigen binding site is not affected by the change in a neighbouring loop. FR3 insertions represent a new method of antibody engineering with a potential to obtain strong antigen binding by designing additional antigen contacting residues.  相似文献   

9.
Antibody binding sites provide an adaptable surface capable of interacting with essentially any molecular target. Using CDR shuffling, residues important for the assembly of mucin-1 specific paratopes were defined by random recombination of the complementarity determining regions derived from a set of mucin-1 specific clones, previously selected from an antibody fragment library. It was found that positions 33 and 50 in the heavy chain and 32, 34, 90, 91 and 96 in the light chain were conserved in many of the clones. These particular residues seem to be located centrally in the binding site as indicated by a structure model analysis. The importance of several of these conserved residues was supported by their presence in a mouse monoclonal antibody with a known structure and the same epitope specificity. Several of these corresponding residues in the mouse monoclonal antibody are known to interact with the antigen. In conclusion, critical residues important for maintaining a human antigen-specific binding site during the process of in vitro antibody evolution were defined. Furthermore, an explanation for the observed restricted germline gene usage in certain antibody responses against protein epitopes is provided.  相似文献   

10.
Of the complementarity‐determining regions (CDRs) of antibodies, H3 loops, with varying amino acid sequences and loop lengths, adopt particularly diverse loop conformations. The diversity of H3 conformations produces an array of antigen recognition patterns involving all the CDRs, in which the residue positions actually in contact with the antigen vary considerably. Therefore, for a deeper understanding of antigen recognition, it is necessary to relate the sequence and structural properties of each residue position in each CDR loop to its ability to bind antigens. In this study, we proposed a new method for characterizing the structural features of the CDR loops and obtained the antigen‐binding ability of each residue position in each CDR loop. This analysis led to a simple set of rules for identifying probable antigen‐binding residues. We also found that the diversity of H3 loop lengths and conformations affects the antigen‐binding tendencies of all the CDR loops.  相似文献   

11.
A bacterially expressed single chain antibody (scFv215) directed against the largest subunit of drosophila RNA polymerase II was analysed. Structure and function of the antigen binding site in scFv215 were probed by chain shuffling and by site‐specific mutagenesis. The entire variable region of either the heavy or light chain was replaced by an unrelated heavy or light chain. Both replacements resulted in a total loss of binding activity suggesting that the antigen binding site is contributed by both chains. The functional contributions of each complementarity determining region (CDR) were investigated by site specific mutagenesis of each CDR separately. Mutations in two of the CDRs, CDR1 of light chain and CDR2 of heavy chain, reduced the binding activity significantly. Each of the amino acids in these two CDRs was replaced individually by alanine (alanine walking). Seven amino acid substitutions in the two CDRs were found to reduce the binding activity by more than 50%. The data support a computer model of scFv215 which fits an epitope model based on a mutational analysis of the epitope suggesting an alpha‐helical structure for the main contact area. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
The crystal structure of a mouse T-cell antigen receptor (TCR) Fv fragment complexed to the Fab fragment of a specific anti-clonotypic antibody has been determined to 2.6 A resolution. The polypeptide backbone of the TCR V alpha domain is very similar to those of other crystallographically determined V alphas, whereas the V beta structure is so far unique among TCR V beta domains in that it displays a switch of the c" strand from the inner to the outer beta-sheet. The beta chain variable region of this TCR antigen-binding site is characterized by a rather elongated third complementarity-determining region (CDR3beta) that packs tightly against the CDR3 loop of the alpha chain, without leaving any intervening hydrophobic pocket. Thus, the conformation of the CDR loops with the highest potential diversity distinguishes the structure of this TCR antigen-binding site from those for which crystallographic data are available. On the basis of all these results, we infer that a significant conformational change of the CDR3beta loop found in our TCR is required for binding to its cognate peptide-MHC ligand.  相似文献   

13.
The limited size of the germline antibody repertoire has to recognize a far larger number of potential antigens. The ability of a single antibody to bind multiple ligands due to conformational flexibility in the antigen‐binding site can significantly enlarge the repertoire. Among the six complementarity determining regions (CDRs) that generally comprise the binding site, the CDR H3 loop is particularly variable. Computational protein design studies showed that predicted low energy sequences compatible with a given backbone structure often have considerable similarity to the corresponding native sequences of naturally occurring proteins, indicating that native protein sequences are close to optimal for their structures. Here, we take a step forward to determine whether conformational flexibility, believed to play a key functional role in germline antibodies, is also central in shaping their native sequence. In particular, we use a multi‐constraint computational design strategy, along with the Rosetta scoring function, to propose that the native sequences of CDR H3 loops from germline antibodies are nearly optimal for conformational flexibility. Moreover, we find that antibody maturation may lead to sequences with a higher degree of optimization for a single conformation, while disfavoring sequences that are intrinsically flexible. In addition, this computational strategy allows us to predict mutations in the CDR H3 loop to stabilize the antigen‐bound conformation, a computational mimic of affinity maturation, that may increase antigen binding affinity by preorganizing the antigen binding loop. In vivo affinity maturation data are consistent with our predictions. The method described here can be useful to design antibodies with higher selectivity and affinity by reducing conformational diversity. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
αβ T-cell receptors (TCRs) recognize multiple antigenic peptides bound and presented by major histocompatibility complex molecules. TCR cross-reactivity has been attributed in part to the flexibility of TCR complementarity-determining region (CDR) loops, yet there have been limited direct studies of loop dynamics to determine the extent of its role. Here we studied the flexibility of the binding loops of the αβ TCR A6 using crystallographic, spectroscopic, and computational methods. A significant role for flexibility in binding and cross-reactivity was indicated only for the CDR3α and CDR3β hypervariable loops. Examination of the energy landscapes of these two loops indicated that CDR3β possesses a broad, smooth energy landscape, leading to rapid sampling in the free TCR of a range of conformations compatible with different ligands. The landscape for CDR3α is more rugged, resulting in more limited conformational sampling that leads to specificity for a reduced set of peptides as well as the major histocompatibility complex protein. In addition to informing on the mechanisms of cross-reactivity and specificity, the energy landscapes of the two loops indicate a complex mechanism for TCR binding, incorporating elements of both conformational selection and induced fit in a manner that blends features of popular models for TCR recognition.  相似文献   

15.
The length of the heavy chain complementarity-determining region 2 (CDRH2) was extended beyond what is found in germline genes to improve the binding properties of an anti-estradiol antibody. The previous immunochemical characterization and the molecular modeling of the high affinity (Ka=3.9x10(8)) murine anti-estradiol antibody 57-2 suggested that a part of the antigen was loosely recognized by the antibody. The CDRH2, because of its close location but scarce contacts with the hapten, was considered as a conceivable target for mutagenesis. Libraries with either two, three or four random amino acid insertions in the tip of the CDRH2 loop were constructed and displayed on the M13 filamentous phage as Fab fragments. Mutations were introduced also into the rest of the VHdomain by error-prone polymerase chain reaction to allow the surrounding structures to adapt to the extended CDRH2. After the panning of the libraries with an antigen off-rate-based selection, a number of active clones, most of which showed significantly improved affinity and specificity, were isolated, characterized and sequenced. The results indicate that the structure of the antibody can tolerate a number of different insertions in the CDRH2 region. They also suggest that the repertoire of antibody libraries can be expanded by extending the length of the CDR loops beyond that naturally provided by the given set of germline genes. This kind of mutagenesis can be generally useful for the engineering of hapten-binding antibodies.  相似文献   

16.
Cry proteins are a large family of crystalline toxins produced by Bacillus thuringiensis. Individually, the family members are highly specific, but collectively, they target a diverse range of insects and nematodes. Domain II of the toxins is important for target specificity, and three loops at its apex have been studied extensively. There is considerable interest in determining whether modifications in this region may lead to toxins with novel specificity or potency. In this work, we studied the effect of loop substitution on toxin stability and specificity. For this purpose, sequences derived from antibody complementarity-determining regions (CDR) were used to replace native domain II apical loops to create "Crybodies." Each apical loop was substituted either individually or in combination with a library of third heavy-chain CDR (CDR-H3) sequences to create seven distinct Crybody types. An analysis of variants from each library indicated that the Cry1Aa framework can tolerate considerable sequence diversity at all loop positions but that some sequence combinations negatively affect structural stability and protease sensitivity. CDR-H3 substitution showed that loop position was an important determinant of insect toxicity: loop 2 was essential for activity, whereas the effects of substitutions at loop 1 and loop 3 were sequence dependent. Unexpectedly, differences in toxicity did not correlate with binding to cadherins--a major class of toxin receptors--since all Crybodies retained binding specificity. Collectively, these results serve to better define the role of the domain II apical loops as determinants of specificity and establish guidelines for their modification.  相似文献   

17.
An IgM(kappa) immunoglobulin from a patient (Pot) with Waldenstrom's macroglobulinemia was hydrolyzed with pepsin to release a fragment consisting of the 'variable' (V) domains of the light and heavy chains plus eight residue 'tails' from the 'constant' (C) domains. The crystal structure of this fragment was determined at 2.3 A resolution by molecular replacement and crystallographic refinement methods. When examined separately, the light chain component closely resembles another human kappa chain (Rei) in both the beta-pleated sheet regions and the 'hypervariable' loops. The conserved pleated sheets in the heavy chain are similar to those in the human Kol IgG1 protein, but the third hypervariable loop in particular is different from that in any immunoglobulin structure described to date. As in the Kol protein, this loop blocks the access to any internal active site along the light-heavy chain interface. Unlike the Kol protein, however, the loop does not protrude beyond the boundaries of a conventional antigen combining site. Instead, it forms a very compact structure, which fills almost all residual space between the domains. This is an example of one dominant complementarity-determining region (CDR) essentially negating the diversity possible with five other CDRs in the two chains. Ordered water molecules are associated with light chain constituents along the interface, but not with CDR3 of the heavy chain. In screening exercises the Pot IgM failed to bind a wide variety of peptides. Together, the results suggest that ligand binding can only occur on external surfaces of the protein. These surfaces carry a limited number of side chains usually assigned to CDRs in more typical antibodies.  相似文献   

18.
We have used the polymerase chain reaction and VH family-based primers to clone and sequence 74 human germline VH segments from a single individual and built a directory to include all known germline sequences. The directory contains 122 VH segments with different nucleotide sequences, 83 of which have open reading frames. The directory indicates that the structural diversity of the germline repertoire for antigen binding is fixed by about 50 groups of VH segments: each group encodes identical hypervariable loops. The directory should help in mapping the VH locus, in estimating somatic mutation and VH segment usage and in designing and constructing synthetic antibody libraries.  相似文献   

19.
Antibodies are an important class of biotherapeutics that offer specificity to their antigen, long half-life, effector function interaction and good manufacturability. The immunogenicity of non-human-derived antibodies, which can be a major limitation to development, has been partially overcome by humanization through complementarity-determining region (CDR) grafting onto human acceptor frameworks. The retention of foreign content in the CDR regions, however, is still a potential immunogenic liability. Here, we describe the humanization of an anti-myostatin antibody utilizing a 2-step process of traditional CDR-grafting onto a human acceptor framework, followed by a structure-guided approach to further reduce the murine content of CDR-grafted antibodies. To accomplish this, we solved the co-crystal structures of myostatin with the chimeric (Protein Databank (PDB) id 5F3B) and CDR-grafted anti-myostatin antibody (PDB id 5F3H), allowing us to computationally predict the structurally important CDR residues as well as those making significant contacts with the antigen. Structure-based rational design enabled further germlining of the CDR-grafted antibody, reducing the murine content of the antibody without affecting antigen binding. The overall “humanness” was increased for both the light and heavy chain variable regions.  相似文献   

20.
We have previously established a minimalist approach to antibody engineering by using a phage-displayed framework to support complementarity determining region (CDR) diversity restricted to a binary code of tyrosine and serine. Here, we systematically augmented the original binary library with additional levels of diversity and examined the effects. The diversity of the simplest library, in which only heavy chain CDR positions were randomized by the binary code, was expanded in a stepwise manner by adding diversity to the light chain, by diversifying non-paratope residues that may influence CDR conformations, and by adding additional chemical diversity to CDR-H3. The additional diversity incrementally improved the affinities of antibodies raised against human vascular endoethelial growth factor and the structure of an antibody-antigen complex showed that tyrosine side-chains are sufficient to mediate most of the interactions with antigen, but a glycine residue in CDR-H3 was critical for providing a conformation suitable for high-affinity binding. Using new high-throughput procedures and the most complex library, we produced multiple high-affinity antibodies with dissociation constants in the single-digit nanomolar range against a wide variety of protein antigens. Thus, this fully synthetic, minimalist library has essentially recapitulated the capacity of the natural immune system to generate high-affinity antibodies. Libraries of this type should be highly useful for proteomic applications, as they minimize inherent complexities of natural antibodies that have hindered the establishment of high-throughput procedures. Furthermore, analysis of a large number of antibodies derived from these well-defined and simplistic libraries allowed us to uncover statistically significant trends in CDR sequences, which provide valuable insights into antibody library design and into factors governing protein-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号