首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rangarajan R  Galan JF  Whited G  Birge RR 《Biochemistry》2007,46(44):12679-12686
The absorption spectrum of green proteorhodopsin (GPR) is pH-dependent, exhibiting either red-shifted (low pH) or blue-shifted (high pH) absorption maxima. We examine the molecular basis of the pH-dependent spectral properties of green proteorhodopsin by using homology modeling and molecular orbital theory. Bacteriorhodopsin (BR) and sensory rhodopsin II (SRII) are compared as homology templates. The model of GPR generated by using BR as the homology parent is better than that generated by using SRII on the basis of the potential energy, relative stability to dynamics, and ability to rationalize pH effects. MNDO-PSDCI (molecular neglect of differential overlap with partial single- and double-configuration interaction) calculations provide insight into the spectroscopic properties of GPR and help rule out the viability of the SRII-based model. The proximity of His 75 to the quadrupole residues (LYR, D97, D227, and R94) in the BR-based model provides a good model for both the low- and high-pH spectral states of GPR. The observation that BR is a better structural model for GPR than SRII is in contrast to our previous study of BPR, which observed that SRII was the better homology parent [Hillebrecht, J. R. (2006) Biochemistry 45, 1579-1590]. The implications of this observation are discussed.  相似文献   

2.
Kloppmann E  Becker T  Ullmann GM 《Proteins》2005,61(4):953-965
The color tuning mechanism of the rhodopsin protein family has been in the focus of research for decades. However, the structural basis of the tuning mechanism in general and of the absorption shift between rhodopsins in particular remains under discussion. It is clear that a major determinant for spectral shifts between different rhodopsins are electrostatic interactions between the chromophore retinal and the protein. Based on the Poisson-Boltzmann equation, we computed and compared the electrostatic potential at the retinal of three archaeal rhodopsins: bacteriorhodopsin (BR), halorhodopsin (HR), and sensory rhodopsin II (SRII) for which high-resolution structures are available. These proteins are an excellent test case for understanding the spectral tuning of retinal. The absorption maxima of BR and HR are very similar, whereas the spectrum of SRII is considerably blue shifted--despite the structural similarity between these three proteins. In agreement with their absorption maxima, we find that the electrostatic potential is similar in BR and HR, whereas significant differences are seen for SRII. The decomposition of the electrostatic potential into contributions of individual residues, allowed us to identify seven residues that are responsible for the differences in electrostatic potential between the proteins. Three of these residues are located in the retinal binding pocket and have in fact been shown to account for part of the absorption shift between BR and SRII by mutational studies. One residue is located close to the beta-ionone ring of retinal and the remaining three residues are more than 8 A away from the retinal. These residues have not been discussed before, because they are, partly because of their location, no obvious candidates for the spectral shift among BR, HR, and SRII. However, their contribution to the differences in electrostatic potential is evident. The counterion of the Schiff base, which is frequently discussed to be involved in the spectral tuning, does not contribute to the dissimilarities between the electrostatic potentials.  相似文献   

3.
Sensory rhodopsin II (SRII) is unique among the archaeal rhodopsins in having an absorption maximum near 500 nm, blue shifted roughly 70 nm from the other pigments. In addition, SRII displays vibronic structure in the lambda(max) absorption band, whereas the other pigments display fully broadened band maxima. The molecular origins responsible for both photophysical properties are examined here with reference to the 2.4 A crystal structure of sensory rhodopsin II (NpSRII) from Natronobacterium pharaonis. We use semiempirical molecular orbital theory (MOZYME) to optimize the chromophore within the chromophore binding site, and MNDO-PSDCI molecular orbital theory to calculate the spectroscopic properties. The entire first shell of the chromophore binding site is included in the MNDO-PSDCI SCF calculation, and full single and double configuration interaction is included for the chromophore pi-system. Through a comparison of corresponding calculations on the 1.55 A crystal structure of bacteriorhodopsin (bR), we identify the principal molecular mechanisms, and residues, responsible for the spectral blue shift in NpSRII. We conclude that the major source of the blue shift is associated with the significantly different positions of Arg-72 (Arg-82 in bR) in the two proteins. In NpSRII, this side chain has moved away from the chromophore Schiff base nitrogen and closer to the beta-ionylidene ring. This shift in position transfers this positively charged residue from a region of chromophore destabilization in bR to a region of chromophore stabilization in NpSRII, and is responsible for roughly half of the blue shift. Other important contributors include Asp-201, Thr-204, Tyr-174, Trp-76, and W402, the water molecule hydrogen bonded to the Schiff base proton. The W402 contribution, however, is a secondary effect that can be traced to the transposition of Arg-72. Indeed, secondary interactions among the residues contribute significantly to the properties of the binding site. We attribute the increased vibronic structure in NpSRII to the loss of Arg-72 dynamic inhomogeneity, and an increase in the intensity of the second excited (1)A(g)(-) -like state, which now appears as a separate feature within the lambda(max) band profile. The strongly allowed (1)B(u)(+)-like state and the higher-energy (1)A(g)(-) -like state are highly mixed in NpSRII, and the latter state borrows intensity from the former to achieve an observable oscillator strength.  相似文献   

4.
Bacteriorhodopsin (BR) and sensory rhodopsin II (SRII) function as a light-driven proton pump and a receptor for negative phototaxis in haloarchaeal membranes, respectively. SRII transmits light signals through changes in protein-protein interaction with its transducer HtrII. Recently, we converted BR by three mutations into a form capable of transmitting photosignals to HtrII to mediate phototaxis responses. The BR triple mutant (BR-T) provides an opportunity to identify structural changes necessary to activate HtrII by comparing light-induced infrared spectral changes of BR, BR-T, and SRII. The hydrogen out-of-plane (HOOP) vibrations of the BR-T were very similar to those of SRII, indicating that they are distributed more extensively along the retinal chromophore than in BR, as in SRII. On the other hand, the bands of the protein moiety in BR-T are similar to those of BR, indicating that they are not specific to photosensing. The alteration of the O-H stretching vibration of Thr-204 in SRII, which we had previously shown to be essential for signal relay to HtrII, occurs also in BR-T. In addition, 1670(+)/1664(-) cm(-1) bands attributable to a distorted alpha-helix were observed in BR-T in a HtrII-dependent manner, as is seen in SRII. Thus, we identified similarities and dissimilarities of BR-T to BR and SRII. The results suggest signaling function of the structural changes of the HOOP vibrations, the O-H stretching vibration of the Thr-215 residue, and a distorted alpha-helix for the signal generation. We also succeeded in measurements of L minus initial state spectra of BR-T, which are the first FTIR spectra of L intermediates among sensory rhodopsins.  相似文献   

5.
Sensory rhodopsin II (SRII, also called pharaonis phoborhodopsin, ppR) is responsible for negative phototaxis in Natronomonas pharaonis. Photoisomerization of the retinal chromophore from all- trans to 13- cis initiates conformational changes in the protein, leading to activation of the cognate transducer protein (HtrII). We previously observed enhancement of the C 14-D stretching vibration of the retinal chromophore at 2244 cm (-1) upon formation of the K state and interpreted that a steric constraint occurs at the C 14D group in SRII K. Here, we identify the counterpart of the C 14D group as Thr204, because the C 14-D stretching signal disappeared in T204A, T204S, and T204C mutants as well as a C 14-HOOP (hydrogen out-of-plane) vibration at 864 cm (-1). Although the K state of the wild-type bacteriorhodopsin (BR), a light-driven proton pump, possesses neither 2244 nor 864 cm (-1) bands, both signals appeared for the K state of a triple mutant of BR that functions as a light sensor (P200T/V210Y/A215T). We found a positive correlation between these vibrational amplitudes of the C 14 atom at 77 K and the physiological phototaxis response. These observations strongly suggest that the steric constraint between the C 14 group of retinal and Thr204 of the protein is a prerequisite for light-signal transduction by SRII.  相似文献   

6.
Bacteriorhodopsin (BR) and sensory rhodopsin II (SRII), homologous photoactive proteins in haloarchaea, have different molecular functions. BR is a light-driven proton pump, whereas SRII is a phototaxis receptor that transmits a light-induced conformational change to its transducer HtrII. Despite these distinctly different functions, a single residue substitution, Ala215 to Thr215 in the BR retinal-binding pocket, enables its photochemical reactions to transmit signals to HtrII and mediate phototaxis. We pursued a crystal structure of the signaling BR mutant (BR_A215T) to determine the structural changes caused by the A215T mutation and to assess what new photochemistry is likely to be introduced into the BR photoactive site. We crystallized BR_A215T from bicelles and solved its structure to 3.0 Å resolution to enable an atomic-level comparison. The analysis was complemented by molecular dynamics simulation of BR mutated in silico. Three main conclusions regarding the roles of photoactive site residues in signaling emerge from the comparison of BR_A215T, BR, and SRII structures: (i) the Thr215 residue in signaling BR is positioned nearly identically with respect to the retinal chromophore as in SRII, consistent with its role in producing a steric conflict with the retinal C14 group during photoisomerization, proposed earlier to be essential for SRII signaling from vibrational spectroscopy and motility measurements; (ii) Tyr174–Thr204 hydrogen bonding, critical in SRII signaling and mimicked in signaling BR, is likely auxiliary, for example, to maintain Thr204 in the proper position for the steric trigger to occur; and (iii) the primary role of Arg72 in SRII is spectral tuning and not signaling.  相似文献   

7.
G-protein-coupled receptors transmit stimuli (light, taste, hormone, neurotransmitter, etc.) to the intracellular signaling systems, and rhodopsin (Rh) is the most-studied G-protein-coupled receptor. Rh possesses an 11-cis retinal as the chromophore, and 11-cis to all-trans photoisomerization leads to the protein structural changes in the cytoplasmic loops to activate G-protein. Microbial rhodopsins are similar heptahelical membrane proteins that function as bacterial sensors, light-driven ion-pumps, or light-gated channels. Microbial rhodopsins possess an all-trans retinal, and all-trans to 13-cis photoisomerization triggers protein structural changes for each function. Despite these similarities, there is no sequence homology between visual and microbial rhodopsins, and microbial rhodopsins do not activate G-proteins. However, it was reported that bacteriorhodopsin (BR) chimeras containing the third cytoplasmic loop of bovine Rh are able to activate G-protein, suggesting a common mechanism of protein structural changes. Here we design chimeric proteins for Natronomonas pharaonis sensory rhodopsin II (SRII, also called pharaonis phoborhodopsin), which has a two-orders-of-magnitude slower photocycle than BR. Light-dependent transducin activation was observed for most of the nine SRII chimeras containing the third cytoplasmic loop of bovine Rh (from Y223, G224, Q225 to T251, R252, and M253), but the activation level was 30,000–140,000 times lower than that of bovine Rh. The BR chimera, BR/Rh223-253, activates a G-protein transducin, whereas the activation level was 37,000 times lower than that of bovine Rh. We interpret the low activation by the chimeric proteins as reasonable, because bovine Rh must have been optimized for activating a G-protein transducin during its evolution. On the other hand, similar activation level of the SRII and BR chimeras suggests that the lifetime of the M intermediates is not the simple determinant of activation, because SRII chimeras have two-orders-of-magnitude's slower photocycle than the BR chimera. Activation mechanism of visual and microbial rhodopsins is discussed on the basis of these results.  相似文献   

8.
Rhodopsins possess retinal chromophore surrounded by seven transmembrane α-helices, are widespread in prokaryotes and in eukaryotes, and can be utilized as optogenetic tools. Although rhodopsins work as distinctly different photoreceptors in various organisms, they can be roughly divided according to their two basic functions, light-energy conversion and light-signal transduction. In microbes, light-driven proton transporters functioning as light-energy converters have been modified by evolution to produce sensory receptors that relay signals to transducer proteins to control motility. In this study, we cloned and characterized two newly identified microbial rhodopsins from Haloquadratum walsbyi. One of them has photochemical properties and a proton pumping activity similar to the well known proton pump bacteriorhodopsin (BR). The other, named middle rhodopsin (MR), is evolutionarily transitional between BR and the phototactic sensory rhodopsin II (SRII), having an SRII-like absorption maximum, a BR-like photocycle, and a unique retinal composition. The wild-type MR does not have a light-induced proton pumping activity. On the other hand, a mutant MR with two key hydrogen-bonding residues located at the interaction surface with the transducer protein HtrII shows robust phototaxis responses similar to SRII, indicating that MR is potentially capable of the signaling. These results demonstrate that color tuning and insertion of the critical threonine residue occurred early in the evolution of sensory rhodopsins. MR may be a missing link in the evolution from type 1 rhodopsins (microorganisms) to type 2 rhodopsins (animals), because it is the first microbial rhodopsin known to have 11-cis-retinal similar to type 2 rhodopsins.  相似文献   

9.
Studies have shown that trans-cis isomerization of retinal is the primary photoreaction in the photocycle of the light-driven proton pump bacteriorhodopsin (BR) from Halobacterium salinarum, as well as in the photocycle of the chloride pump halorhodopsin (HR). The transmembrane proteins HR and BR show extensive structural similarities, but differ in the electrostatic surroundings of the retinal chromophore near the protonated Schiff base. Point mutation of BR of the negatively charged aspartate D85 to a threonine T (D85T) in combination with variation of the pH value and anion concentration is used to study the ultrafast photoisomerization of BR and HR for well-defined electrostatic surroundings of the retinal chromophore. Variations of the pH value and salt concentration allow a switch in the isomerization dynamics of the BR mutant D85T between BR-like and HR-like behaviors. At low salt concentrations or a high pH value (pH 8), the mutant D85T shows a biexponential initial reaction similar to that of HR. The combination of high salt concentration and a low pH value (pH 6) leads to a subpopulation of 25% of the mutant D85T whose stationary and dynamic absorption properties are similar to those of native BR. In this sample, the combination of low pH and high salt concentration reestablishes the electrostatic surroundings originally present in native BR, but only a minor fraction of the D85T molecules have the charge located exactly at the position required for the BR-like fast isomerization reaction. The results suggest that the electrostatics in the native BR protein is optimized by evolution. The accurate location of the fixed charge at the aspartate D85 near the Schiff base in BR is essential for the high efficiency of the primary reaction.  相似文献   

10.
Proton transfers in the photochemical reaction cycle of proteorhodopsin   总被引:2,自引:0,他引:2  
The spectral and photochemical properties of proteorhodopsin (PR) were determined to compare its proton transport steps to those of bacteriorhodopsin (BR). Static and time-resolved measurements on wild-type PR and several mutants were done in the visible and infrared (FTIR and FT-Raman). Assignment of the observed C=O stretch bands indicated that Asp-97 and Glu-108 serve as the proton acceptor and donor, respectively, to the retinal Schiff base, as do the residues at corresponding positions in BR, but there are numerous spectral and kinetic differences between the two proteins. There is no detectable dark-adaptation in PR, and the chromophore contains nearly entirely all-trans retinal. Because the pK(a) of Asp-97 is relatively high (7.1), the proton-transporting photocycle is produced only at alkaline pH. It contains at least seven transient states with decay times in the range from 10 micros to 200 ms, but the analysis reveals only three distinct spectral forms. The first is a red-shifted K-like state. Proton release does not occur during the very slow (several milliseconds) rise of the second, M-like, intermediate, consistent with lack of the residues facilitating extracellular proton release in BR. Proton uptake from the bulk, presumably on the cytoplasmic side, takes place prior to release (tau approximately 2 ms), and coincident with reprotonation of the retinal Schiff base. The intermediate produced by this process contains 13-cis retinal as does the N state of BR, but its absorption maximum is red-shifted relative to PR (like the O state of BR). The decay of this N-like state is coupled to reisomerization of the retinal to all-trans, and produces a state that is O-like in its C-C stretch bands, but has an absorption maximum apparently close to that of unphotolyzed PR.  相似文献   

11.
Sensory rhodopsin II (SRII), a repellent phototaxis receptor found in Halobacterium salinarum, has several homologous residues which have been found to be important for the proper functioning of bacteriorhodopsin (BR), a light-driven proton pump. These include Asp73, which in the case of bacteriorhodopsin (Asp85) functions as the Schiff base counterion and proton acceptor. We analyzed the photocycles of both wild-type SRII and the mutant D73E, both reconstituted in Halobacterium salinarum lipids, using FTIR difference spectroscopy under conditions that favor accumulation of the O-like, photocycle intermediate, SII540. At both room temperature and -20 degrees C, the difference spectrum of SRII is similar to the BR-->O640 difference spectrum of BR, especially in the configurationally sensitive retinal fingerprint region. This indicates that SII540 has an all-trans chromophore similar to the O640 intermediate in BR. A positive band at 1761 cm-1 downshifts 40 cm-1 in the mutant D73E, confirming that Asp73 undergoes a protonation reaction and functions in analogy to Asp85 in BR as a Schiff base proton acceptor. Several other bands in the C=O stretching regions are identified which reflect protonation or hydrogen bonding changes of additional Asp and/or Glu residues. Intense bands in the amide I region indicate that a protein conformational change occurs in the late SRII photocycle which may be similar to the conformational changes that occur in the late BR photocycle. However, unlike BR, this conformational change does not reverse during formation of the O-like intermediate, and the peptide groups giving rise to these bands are partially accessible for hydrogen/deuterium exchange. Implications of these findings for the mechanism of SRII signal transduction are discussed.  相似文献   

12.
Z Chen  M Sheves  A Lewis    O Bouevitch 《Biophysical journal》1994,67(3):1155-1160
The second order nonlinear polarizability and dipole moment changes upon light excitation of light-adapted bacteriorhodopsin (BR), dark-adapted BR, blue membrane, and acid purple membrane have been measured by second harmonic generation. Our results indicate that the dipole moment changes of the retinal chromophore, delta mu, are very sensitive to both the chromophore structure and protein/chromophore interactions. Delta mu of light-adapted BR is larger than that of dark-adapted BR. The acid-induced formation of the blue membrane results in an increase in the delta mu value, and formation of acid purple membrane, resulting from further reduction of pH to 0, returns the delta mu to that of light-adapted BR. The implications of these findings are discussed.  相似文献   

13.
Suzuki D  Sudo Y  Furutani Y  Takahashi H  Homma M  Kandori H 《Biochemistry》2008,47(48):12750-12759
Sensory rhodopsin I (SRI) is one of the most interesting photosensory receptors in nature because of its ability to mediate opposite signals depending on light color by photochromic one-photon and two-photon reactions. Recently, we characterized SRI from eubacterium Salinibacter ruber (SrSRI). This protein allows more detailed information about the structure and structural changes of SRI during its action to be obtained. In this paper, Fourier transform infrared (FTIR) spectroscopy is applied to SrSRI, and the spectral changes upon formation of the K and M intermediates are compared with those of other archaeal rhodopsins, SRI from Halobacterium salinarum (HsSRI), sensory rhodopsin II (SRII), bacteriorhodopsin (BR), and halorhodopsin (HR). Spectral comparison of the hydrogen out-of-plane (HOOP) vibrations of the retinal chromophore in the K intermediates shows that extended choromophore distortion takes place in SrSRI and HsSRI, as well as in SRII, whereas the distortion is localized in the Schiff base region in BR and HR. It appears that sensor and pump functions are distinguishable from the spectral feature of HOOP modes. The HOOP band at 864 cm(-1) in SRII, important for negative phototaxis, is absent in SrSRI, suggesting differences in signal transfer mechanism between SRI and SRII. The strongly hydrogen-bound water molecule, important for proton pumps, is observed at 2172 cm(-1) in SrSRI, as well as in BR and SRII. The formation of the M intermediate accompanies the appearance of peaks at 1753 (+) and 1743 (-) cm(-1), which can be interpreted as the protonation signal of the counterion (Asp72) and the proton release signal from an unidentified carboxylic acid, respectively. The structure and structural changes of SrSRI are discussed on the basis of the present infrared spectral comparisons with other rhodopsins.  相似文献   

14.
The reported rates of thermal 13-cis to all-trans isomerization of the protonated Schiff base of retinal (PSBR) in solution and in bacteriorhodopsin (BR) are shown to be correlated with the red shift in the absorption maximum of the chromophore, though the linear fit is different for BR and for a model PSBR in solution. Because the red shift in the absorption has been previously shown to be correlated with π-electron delocalization in the chromophore, this suggests that the thermal isomerization rate is largely regulated by the amount of double bond character in the chromophore. Because the linear fit of isomerization rates with absorption maxima is different for BR and the model PSBR, specific interactions of the protein with the chromophore must also be a factor in determining thermal isomerization rates in BR. A model of the later steps in the photocycle of BR is presented in which the 13-cis to all-trans thermal isomerization occurs during the O intermediate.  相似文献   

15.
It was recently found that NOP-1, a membrane protein of Neurospora crassa, shows homology to haloarchaeal rhodopsins and binds retinal after heterologous expression in Pichia pastoris. We report on spectroscopic properties of the Neurospora rhodopsin (NR). The photocycle was studied with flash photolysis and time-resolved Fourier-transform infrared spectroscopy in the pH range 5-8. Proton release and uptake during the photocycle were monitored with the pH-sensitive dye, pyranine. Kinetic and spectral analysis revealed six distinct states in the NR photocycle, and we describe their spectral properties and pH-dependent kinetics in the visible and infrared ranges. The phenotypes of the mutant NR proteins, D131E and E142Q, in which the homologues of the key carboxylic acids of the light-driven proton pump bacteriorhodopsin, Asp-85 and Asp-96, were replaced, show that Glu-142 is not involved in reprotonation of the Schiff base but Asp-131 may be. This implies that, if the NR photocycle is associated with proton transport, it has a low efficiency, similar to that of haloarchaeal sensory rhodopsin II. Fourier-transform Raman spectroscopy revealed unexpected differences between NR and bacteriorhodopsin in the configuration of the retinal chromophore, which may contribute to the less effective reprotonation switch of NR.  相似文献   

16.
Mizuno M  Sudo Y  Homma M  Mizutani Y 《Biochemistry》2011,50(15):3170-3180
Sensory rhodopsin II (SRII) is a negative phototaxis receptor containing retinal as its chromophore, which mediates the avoidance of blue light. The signal transduction is initiated by the photoisomerization of the retinal chromophore, resulting in conformational changes of the protein which are transmitted to a transducer protein. To gain insight into the SRII sensing mechanism, we employed time-resolved ultraviolet resonance Raman spectroscopy monitoring changes in the protein structure in the picosecond time range following photoisomerization. We used a 450 nm pump pulse to initiate the SRII photocycle and two kinds of probe pulses with wavelengths of 225 and 238 nm to detect spectral changes in the tryptophan and tyrosine bands, respectively. The observed spectral changes of the Raman bands are most likely due to tryptophan and tyrosine residues located in the vicinity of the retinal chromophore, i.e., Trp76, Trp171, Tyr51, or Tyr174. The 225 nm UVRR spectra exhibited bleaching of the intensity for all the tryptophan bands within the instrumental response time, followed by a partial recovery with a time constant of 30 ps and no further changes up to 1 ns. In the 238 nm UVRR spectra, a fast recovering component was observed in addition to the 30 ps time constant component. A comparison between the spectra of the WT and Y174F mutant of SRII indicates that Tyr174 changes its structure and/or environment upon chromophore photoisomerization. These data represent the first real-time observation of the structural change of Tyr174, of which functional importance was pointed out previously.  相似文献   

17.
The pKa values of ionizable groups that lie between the active site region of bacteriorhodopsin (bR) and the extracellular surface of the protein are reported. Glu-204 is found to have an elevated pKa in the resting state of bR, suggesting that it corresponds to the proton-releasing group in bR. Its elevated pKa is predicted to be due in part to strong repulsive interactions with Glu-9. Following trans-cis isomerization of the retinal chromophore and the transfer of a proton to Asp-85, polar groups on the protein are able to interact more strongly with the ionized state of Glu-204, leading to a substantial reduction of its pKa. This suggests a general mechanism for proton release in which isomerization and subsequent charge separation initially produce a new electrostatic balance in the active site of bR. Here it is proposed that those events in turn drives a conformational change in the protein in which the ionized state of Glu-204 can be stabilized through interactions with groups that were previously inaccessible. Whether these groups should be identified with polar moieties in the protein, bound waters, or Arg-82 is an important mechanistic question whose elucidation will require further study.  相似文献   

18.
19.
Microbial rhodopsins are a family of seven-helical transmembrane proteins containing retinal as chromophore. Sensory rhodopsin II (SRII) triggers two very different responses upon light excitation, depending on the presence or the absence of its cognate transducer HtrII: Whereas light activation of the NpSRII/NpHtrII complex activates a signalling cascade that initiates the photophobic response, NpSRII alone acts as a proton pump.Using single-molecule force spectroscopy, we analysed the stability of NpSRII and its complex with the transducer in the dark and under illumination. By improving force spectroscopic data analysis, we were able to reveal the localisation of occurring forces within the protein chain with a resolution of about six amino acids. Distinct regions in helices G and F were affected differently, depending on the experimental conditions. The results are generally in line with previous data on the molecular stability of NpSRII. Interestingly, new interaction sites were identified upon light activation, whose functional importance is discussed in detail.  相似文献   

20.
Archaeal rhodopsins possess a retinal molecule as their chromophores, and their light energy and light signal conversions are triggered by all-trans to 13-cis isomerization of the retinal chromophore. Relaxation through structural changes of the protein then leads to functional processes, proton pump in bacteriorhodopsin and transducer activation in sensory rhodopsins. In the present paper, low-temperature Fourier transform infrared spectroscopy is applied to phoborhodopsin from Natronobacterium pharaonis (ppR), a photoreceptor for the negative phototaxis of the bacteria, and infrared spectral changes before and after photoisomerization are compared with those of bacteriorhodopsin (BR) at 77 K. Spectral comparison of the C--C stretching vibrations of the retinal chromophore shows that chromophore conformation of the polyene chain is similar between ppR and BR. This fact implies that the unique chromophore-protein interaction in ppR, such as the blue-shifted absorption spectrum with vibrational fine structure, originates from both ends, the beta-ionone ring and the Schiff base regions. In fact, less planer ring structure and stronger hydrogen bond of the Schiff base were suggested for ppR. Similar frequency changes upon photoisomerization are observed for the C==N stretch of the retinal Schiff base and the stretch of the neighboring threonine side chain (Thr79 in ppR and Thr89 in BR), suggesting that photoisomerization in ppR is driven by the motion of the Schiff base like BR. Nevertheless, the structure of the K state after photoisomerization is different between ppR and BR. In BR, chromophore distortion is localized in the Schiff base region, as shown in its hydrogen out-of-plane vibrations. In contrast, more extended structural changes take place in ppR in view of chromophore distortion and protein structural changes. Such structure of the K intermediate of ppR is probably correlated with its high thermal stability. In fact, almost identical infrared spectra are obtained between 77 and 170 K in ppR. Unique chromophore-protein interaction and photoisomerization processes in ppR are discussed on the basis of the present infrared spectral comparison with BR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号