首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligosaccharides with the general structure UA-(GlcNAc-GlcUA-)m-aManOH (m = 1-5) (where UA represents uronic acid, GlcNAc N-acetylglucosamine, GlcUA glucuronic acid and aManOH anhydromannitol) were prepared from low-sulphated heparan sulphates of bovine lung origin by nitrous acid deaminative cleavage followed by reduction. Analysis of the methylene signals in the 100 MHz 13C-n.m.r. spectrum of the tetrasaccharide (m = 1) shows that, whereas the extent of C-6 O-sulphation in the GlcNAc is approx. 65%, in the aManOH [formerly a GlcNSO3 (N-sulphoglucosamine) residue in the parent heparan sulphate] it is only approx. 10%. In the higher oligosaccharides (m = 2-5) the gross extent of C-6 O-sulphation of GlcNAc residues falls systematically with increasing oligosaccharide size, whereas that in the aManOH residues remains below 10%. There is also evidence that the C-6 O-sulphation of the GlcNAc residues is confined to the GlcNAc residue adjacent to the non-reducing terminal uronic acid residue. It is therefore tentatively proposed that the GlcNAc in the sequence -GlcNSO3-UA-GlcNAc- might be a favoured substrate for the 6-O-sulphotransferase. It is concluded that in the low-sulphated heparan sulphates GlcNSO3 residues that do not occur in (GlcNSO3-UA-)n blocks tend to have a significantly smaller extent of C-6 O-sulphation than do GlcNAc residues that occur in -GlcNSO3-UA-GlcNAc-GlcUA-GlcNSO3-sequences.  相似文献   

2.
The disaccharide repeating-units of heparan sulfate   总被引:11,自引:0,他引:11  
Five disaccharides have been isolated after degradation of heparan sulfate by heparinase (heparin lyase) and heparitinase (heparan sulfate lyase) and are suggested to represent the repeating units of the polysaccharide. They all contain a 4,5-unsaturated uronic acid residue and are: (a) A trisulfated disaccharide that is apparently identical to a disaccharide repeating-unit of heparin; (b) a disulfated disaccharide that seems unique for heparan sulfate and contains 2-deoxy-2-sulfamidoglucose and uronic acid sulfate residues; (c) a nonsulfated disaccharide containing a 2-acetamido-2-deoxyglucose residue; (d) a monosulfated disaccharide containing a 2-acetamido-2-deoxyglucose sulfate residue; and (e) a monosulfated disaccharide containing a 2-deoxy-2-sulfamidoglucose residue. Yields of these disaccharides from different heparan sulfate fractions are discussed in relation to possible arrangements of these units in the intact polymer.  相似文献   

3.
1. A method was developed for determination of the uronic acid composition of heparin-like glycosaminoglycans. Polymers or oligosaccharides are degraded to monosaccharides by a combination of acid hydrolysis and deamination with HNO2. The resulting uronic acid monosaccharides (accounting for about 70% of the uronic acid contents of the starting materials) are isolated and converted into the corresponding aldono-1,4-lactones, which are separated by g.l.c. The calculated ratios of glucuronic acid/iduronic acid are reproducible within 5%. 2. Samples of heparin from pig intestinal mucosa (molar ratio of sulphate/disaccharide unit, 2.40) and heparan sulphate from human aorta (sulphate/disaccharide ratio, 0.46) were subjected to uronic acid analysis. l-Iduronic acid constituted 77% and 19% respectively of the total uronic acid contents. 3. The correlation between the contents of sulphate and iduronic acid indicated by this finding also applied to the fractionated deamination products of the two polymers. The sulphated fragments varied in size from disaccharide to octasaccharide (or larger) and showed sulphate/disaccharide molar ratios in the range of 0.05–2.0. The proportion of iduronic acid increased with increasing ester sulphate contents of the oligosaccharides. 4. Previous studies on the biosynthesis of heparin in a cell-free system have shown that l-iduronic acid residues are formed by C-5 epimerization of d-glucuronic acid units at the polymer level; the process requires concomitant sulphation of the polymer. The results obtained in the present structural study conform to these findings, and suggest further that similar mechanisms may operate in the biosynthesis of heparan sulphate. The epimerization reaction appears to be linked to the sulphation of hydroxyl groups but does not seem to require sulphation of the target uronic acid residues. The significance of sulphamino groups in relation to the formation of iduronic acid is unknown.  相似文献   

4.
Three, specifically self-associating variants of heparan sulphate (HS2-A, HS3-A, and HS4-A) from beef lung were subjected to (a) deaminative cleavage of bonds between 2-deoxy-2-sulphoaminoglucose and uronic acid and (b) periodate oxidation of glucuronic acid residues in fully N-acetylated block-regions. In addition, the periodate-oxidised and alkali-cleaved chains were re-oxidised with periodate to identify the glucuronic acid residues in the N-sulphate-containing regions. The results showed that HS2-A was distinguished by much longer (GlcA-GlcNAc)n-segments than HS3-A and HS4-A. The latter two species were characterised by the structure of the variously N-acetyl- and N-sulphate-containing regions. In HS3-A, there was a significant contribution from segments composed of both N-acetylated and N-sulphated 2-amino-2-deoxyglucose residues. The N-sulphate-rich regions contained chiefly iduronic acid. In contrast, HS4-A had mixed or alternating arrangements of the two epimeric uronic acids in the N-sulphate-rich regions. These differences may be the basis for specific self-associations between heparan sulphate chains.  相似文献   

5.
Rat liver cells grown in primary cultures in the presence of [35S]sulphate synthesize a labelled heparan sulphate-like glycosaminoglycan. The characterization of the polysaccharide as heparan sulphate is based on its resistance to digestion with chondroitinase ABC or hyaluronidase and its susceptibility to HNO2 treatment. The sulphate groups (including sulphamino and ester sulphate groups) are distributed along the polymer in the characteristic block fashion. In 3H-labelled heparan sulphate, isolated after incubation of the cells with [3H]galactose, 40% of the radioactive uronic acid units are l-iduronic acid, the remainder being d-glucuronic acid. The location of heparan sulphate at the rat liver cell surface is demonstrated; part of the labelled polysaccharide can be removed from the cells by mild treatment with trypsin or heparitinase. Further, a purified plasma-membrane fraction isolated from rats previously injected with [35S]sulphate contains radioactively labelled heparan sulphate. A proteoglycan macromolecule composed of heparan sulphate chains attached to a protein core can be solubilized from the membrane fraction by extraction with 6m-guanidinium chloride. The proteoglycan structure is degraded by treatment with papain, Pronase or alkali. The production of heparan [35S]sulphate by rat liver cells incubated in the presence of [35S]sulphate was followed. Initially the amount of labelled polysaccharide increased with increasing incubation time. However, after 10h of incubation a steady state was reached where biosynthetic and degradative processes were in balance.  相似文献   

6.
Heparin, heparan sulphate, and various derivatives thereof have been oxidised with periodate at pH 3.0 and 4° and at pH 7.0 and 37°. Whereas oxidation under the latter conditions destroys all of the nonsulphated uronic acids, treatment with periodate at low pH and temperature causes selective oxidation of uronic acid residues. The reactivity of uronic acid residues depends on the nature of neighbouring 2-amino-2-deoxyglucose residues. d-Glucuronic acid residues are susceptible to oxidation when flanked by N-acetylated amino sugars, but resistant when adjacent residues are either unsubstituted or N-sulphated. L-Iduronic acid residues in their natural environment (2-deoxy-2-sulphoamino-d-glucose) are resistant to oxidation, whereas removal of N-sulphate groups renders a portion of these residues periodate-sensitive. Oxidised uronic acid residues in heparin-related glycans may be cleaved by alkali, producing a series of oligosaccharide fragments. Thus, periodate oxidation-alkaline elimination provides an additional method for the controlled degradation of heparin.  相似文献   

7.
A particular heparan sulphate fraction which possessed the largest proportion of high affinity variants for human low density lipoprotein contained almost equal proportions of the repeating units l-iduronosyl(O-sulphate)N-sulphamidoglucosamine and d-glucoronosyl-N-acetylglucosamine. The heparan sulphate was fractionated on lipoprotein-agarose into three populations. Results of periodate oxidation—alkaline elimination indicated that the size of the completely N-sulphated block regions increased with increasing affinity. In contrast, the number of consecutive l-iduronosyl(O-sulphate)-containing repeats decreased with increasing affinity towards lipoprotein. After selective periodate oxidation—alkaline scission of d-glucoronic acid residues only a portion of the heparan sulphate fragments retained high affinity for lipoprotein. This portion consisted of fragments larger than dodecasaccharide which contained both l-iduronic acid-O-sulphate and non-sulphated uronic acid residues (−) 2:1). No affinity or little affinity was displayed by fragments (of comparable size) that contained only sulphated l-iduronic acid residues.  相似文献   

8.
Heparan sulphate proteoglycans (HSPGs) are widely distributed in animal tissues, but their most prominent locations are cell surface membranes and basement membranes. Their influence on various fundamental aspects of cell behaviour (e.g. cell adhesion, growth and morphogenesis) are dependent on the specific binding properties of the heparan sulphate (HS) chains. These polysaccharides are complex structures in which N-sulphated glucosamine and ester sulphate groups tend to be clustered in discrete regions of the chain separated by sequences enriched in N-acetylglucosamine residues, but with a low sulphate concentration. The sulphated domains contain the sugar residue sequences for interaction with specific proteins essential for HS function. In this review, we describe the plasma membrane HSPGs and their role in regulating the activity of basic fibroblast growth factor (bFGF).  相似文献   

9.
Bacterial chondroitinases and heparitinases are potentially useful tools for structural studies of chondroitin sulfate and heparin/heparan sulfate. Substrate specificities of Flavobacterium chondroitinase C, as well as heparitinases I and II, towards the glycosaminoglycan-protein linkage region -HexA-HexNAc-GlcA-Gal-Gal-Xyl-Ser (where HexA represents glucuronic acid or iduronic acid and HexNAc represents N-acetylgalactosamine or N-acetylglucosamine) were investigated using various structurally defined oligosaccharides or oligosaccharide-serines derived from the linkage region. In the case of oligosaccharide-serines, they were labeled with a chromophore dimethylaminoazobenzenesulfonyl chloride (DABS-Cl), which stably reacted with the amino group of the serine residue and rendered high absorbance for microanalysis. Chondroitinase C cleaved the GalNAc bond of the pentasaccharides or hexasaccharides derived from the linkage region of chondroitin sulfate chains and tolerated sulfation of the C-4 or C-6 of the GalNAc residue and C-6 of the Gal residues, as well as 2-O-phosphorylation of the Xyl residue. In contrast, it did not act on the GalNAc-GlcA linkage when attached to a 4-O-sulfated Gal residue. Heparitinase I cleaved the innermost glucosaminidic bond of the linkage region oligosaccharide-serines of heparin/heparan sulfate irrespective of substitution by uronic acid, whereas heparitinase II acted only on the glucosaminidic linkages of the repeating disaccharide region, but not on the innermost glucosaminidic linkage. These defined specificities of chondroitinase C, as well as heparitinases I and II, will be useful for preparation and structural analysis of the linkage oligosaccharides.  相似文献   

10.
Heparan sulphate and heparin are chemically related alpha beta-linked glycosaminoglycans composed of alternating sequences of glucosamine and uronic acid. The amino sugars may be N-acetylated or N-sulphated, and the latter substituent is unique to these two polysaccharides. Although there is general agreement that heparan sulphate is usually less sulphated than heparin, reproducible differences in their molecular structure have been difficult to identify. We suggest that this is because most of the analytical data have been obtained with degraded materials that are not necessarily representative of complete polysaccharide chains. In the present study intact heparan sulphates, labelled biosynthetically with [3H]glucosamine and Na2(35)SO4, were isolated from the surface membranes of several types of cells in culture. The polysaccharide structure was analysed by complete HNO2 hydrolysis followed by fractionation of the products by gel filtration and high-voltage electrophoresis. Results showed that in all heparan sulphates there were approximately equal numbers of N-sulpho and N-acetyl substituents, arranged in a similar, predominantly segregated, manner along the polysaccharide chain. O-Sulphate groups were in close proximity to the N-sulphate groups but, unlike the latter, the number of O-sulphate groups could vary considerably in heparan sulphates of different cellular origins ranging from 20 to 75 O-sulphate groups per 100 disaccharide units. Inspection of the published data on heparin showed that the N-sulphate frequency was very high (greater than 80% of the glucosamine residues are N-sulphated) and the concentration of O-sulphate groups exceeded that of the N-sulphate groups. We conclude from these and other observations that heparan sulphate and heparin are separate families of N-sulphated glycosaminoglycans.  相似文献   

11.
Heparan sulfate isolated from mammalian arterial tissue inhibits the growth of homologous arterial smooth muscle cells when added to subconfluent cell cultures at a concentration of 50 to 100 micrograms/ml culture medium. Disintegration of the heparan sulfate molecule by hydrazinolysis that deacetylates N-acetylglucosaminyl residues and by subsequent treatment with nitrous acid at pH 3.9 results in the formation of a mixture of oligosaccharides which was further resolved into sulfate-enriched oligosaccharides with antiproliferative activity in an in vitro bioassay system. A decasaccharide and dodeca/tetradecasaccharide fraction had a significantly higher antiproliferative effect on arterial smooth muscle cells than the native heparan sulfate molecule. The antiproliferative oligosaccharides have a sulfate content of 0.9 to 1.2 sulfate groups/disaccharide unit and consist of 60 to 70% monosulfated, disulfated, and trisulfated disaccharide units. Up to 32% of the sulfate groups were in 2-position of the uronic acid. In contrast, nitrous acid degradation of heparan sulfate at pH 1.5, which cleaves glycosidic linkages of N-sulfoglucosaminyl residues, results in the formation of sulfate-poor or sulfate-free oligosaccharides without antiproliferative potency. The results indicate that (a) heparan sulfate has a heterogeneous molecular organization where sulfate-rich domains are separated by sulfate-poor sequences and that (b) the antiproliferative activity of heparan sulfate resides in domains enriched with 2-O-sulfated uronic acid residues.  相似文献   

12.
Tetrasaccharides with the general structure UA-GlcNAc-GlcUA-aManOH (where UA represents uronate, GlcNAc N-acetylglucosamine, GlcUA glucuronate and aManOH anhydromannitol) were prepared from low-sulphated heparan sulphates of bovine lung origin by complete nitrous acid deaminative cleavage followed by reduction and fractionated by gel filtration. Ion-exchange chromatography of the tetrasaccharides yielded three major fractions in approximate yields of 37%, 45% and 14%. These were shown to be non-, mono- and di-sulphated respectively. Complete structural characterization of the tetrasaccharide fractions by quantitative high-field n.m.r. spectroscopy showed that each fraction contained only two discrete species and led to the following observations. (1) All of the uronate residues in the tetrasaccharides (and in larger oligosaccharides) are unsulphated, and hence sulphated iduronate [IdUA(2SO3)] must occur exclusively within -GlcNSO3-IdUA(2SO3)-GlcNSO3- sequences (where GlcNSO3 represents N-sulpho-glucosamine) in the parent polymers. (2) The GlcNAc residues in the tetrasaccharides are more highly C-6-O-sulphated than are the aManOH residues, and furthermore sulphation on the aManOH appears to occur only where the GlcNAc is also sulphated. (3) Where the GlcNAc is C-6-O-sulphated, iduronate is the major non-reducing terminal residue, whereas glucuronate predominates in this position if the GlcNAc is unsulphated. The quantitative data obtained are used to determine the degree of C-6-O-sulphation of glucosamine residues in specific sequences within the parent heparan sulphates.  相似文献   

13.
Heparan sulfate isolated from bovine arterial tissue by a multistep purification procedure or from arterial tissue proteoheparan sulfate by beta-elimination exhibits antiproliferative activity toward arterial smooth muscle cells when added to subconfluent cell cultures in a concentration of 50-100 micrograms/ml medium. Enzymatic disintegration of heparan sulfate by heparitinases I and II and isolation of the resulting oligosaccharides indicate that the antiproliferative activity of the heparan sulfate molecule resides in a sulfate-rich octa/decasaccharide domain which is separated by longer sequences of sulfate-free or sulfate-poor N-acetylglucosamine containing disaccharide units. The octa/decasaccharide fraction has a 3-4-fold higher antiproliferative activity than the native heparan sulfate molecule and contains 45% of a disulfated disaccharide which consists of 2-O-sulfated uronic acid and N-sulfated glucosamine (UA(2S)-GlcNS and 12% of a trisulfated disaccharide (UA(2S)-GlcNS(6S). A sulfate-rich hexasaccharide fraction containing 14% of the disulfated disaccharide but 18% of the trisulfated disaccharide has negligible antiproliferative activity. The results indicate the presence of specific structural determinants in the arterial heparan sulfate molecule which may have the function of an endogenous inhibitor of arterial smooth muscle cell growth.  相似文献   

14.
Tegumental tissues of paired adult Schistosoma mansoni were removed by treatment with Triton X-100 and recovered by centrifugation. The chloroform-methanol insoluble residues of this isolated tegumental fraction and of the denuded carcasses were analysed for glycosaminoglycan (GAG) and sialic acid contents. Treatment with GAG-specific enzymes followed by electrophoretic analysis showed that both the carcass and tegument contained heparin and/or heparan sulfate, chondroitin sulfate and hyaluronic acid. All these except hyaluronic acid were present in the tegumental fraction. Based on uronic acid content, about 73% of the total GAG was in the tegumental membrane, 15% in the tegmental matrix and the remaining 12% was in the carcass. The presence of heparin-like polysaccharide may present entrapment of the schistosoma by the hosts' blood-clotting process.  相似文献   

15.
The molecular structure of human skin fibroblast heparan sulphate was examined by specific chemical or enzymic depolymerization and high-resolution separation of the resulting oligosaccharides and disaccharides. Important features of the molecular organization, disaccharide composition and O-sulphate disposition of this heparan sulphate were identified. Analysis of the products of HNO2 hydrolysis revealed a polymer in which 53% of disaccharide units were N-acetylated and 47% N-sulphated, with an N-/O-sulphate ratio of 1.8:1. These two types of disaccharide unit were mainly located in separate domains. Heparitinase and heparinase scission indicated that the iduronate residues (37% of total hexuronate) were largely present in contiguous disaccharide sequences of variable size that also contained the majority of the N-sulphate groups. Most of the iduronate residues (approx. 70%) were non-sulphated. About 8-10% of disaccharide units were cleaved by heparinase, but only a minority of these originated from contiguous sequences in the intact polymer. Trisulphated disaccharide units [alpha-N-sulpho-6-sulphoglucosaminyl-(1----4)-iduronate 2-sulphate], which are the major structural units in heparin, made up only 3% of the disaccharide units in heparan sulphate. O-Sulphate groups (approx. 26 per 100 disaccharide units) were distributed almost evenly among C-6 of N-acetylglucosamine, C-2 of iduronate and C-6 of N-sulphated glucosamine residues. The results indicate that the sulphated regions of heparan sulphate have distinctive and potentially variable structural characteristics. The high content of non-sulphated iduronate in this heparan sulphate species suggests a conformational versatility that could have important implications for the biological properties of the polymer.  相似文献   

16.
1. Heparan sulphate from bovine lung was fractionated with cetylpyridinium chloride. Solubilisation of complexes was accomplished by increasing concentrations of NaCl in a step-wise manner. Fractions I-IV, which were low-sulphated, contained more D-glucuronic acid than L-iduronic acid, fraction V contained equal proportions while fraction VI was L-iduronic acid-rich. 2. Gel chromatography of heparan sulphates II-IV in 0.5 M sodium acetate yielded extremely asymmetric profiles, while fractions V, VI and heparin did not. 3. Heparan sulphate IV was separated into aggregatable and non-aggregatable species by gel chromatography in 0.5 M sodium acetate. The particle/molecular weights of the two species were determined by light scattering. In 0.15 M NaCl or KCl the aggregatable chains yielded particle weights of 60 000-100 000 while the molecular weight was 20 000 (in 4.0 M guanidine HCl). Non-aggregatable chains afforded 'monomeric' values in 0.15 M NaCl or KCl. 4. Periodate oxidation of D-glucuronic acid residues in N-acetylated block regions followed by scission in alkali was used to fragment aggregating and non-aggregating heparan sulphate IV. The former chains yielded, on average, shorter oligosaccharides than did the latter. Reoxidation of the remaining D-glucuronic acid residues (adjacent to N-sulphated amino sugars) in the oligosaccharides followed by alkaline cleavage resulted in distinctly different fragmentation patterns in the two cases. The iduronate-containing oligosaccharides derived from aggregatable chains were markedly degraded into fragments ranging from glucosamine-L-iduronic acid-glucosamine-(C-3 fragment) to higher saccharides. Only higher saccharides were obtained from fragments of non-aggregatable chains. 5. It is concluded that self-associating heparan sulphates comprise both D-glucuronic acid- and L-iduronic acid-containing repeating units and that these units are arranged in an alternating or mixed fashion. These characteristics are analogous to those observed with self-associating dermatan sulphate species (Fransson, L.-A. and C?ster, L. (1979) Biochim. Biophys. Acta 582, 132-144).  相似文献   

17.
Chondroitin ABC and AC lyases split hexosaminidic linkages in galactosaminoglycans and hyaluronic acid. Even-numbered oligosaccharides from hyaluronic acid with either D-glucuronic acid or N-acetylglucosamine in non-reducing position were used, prior to and after reduction with sodium borohydride, as substrates for chondroitin ABC and AC lyases. These substrates allowed elucidation of the effects of the nearest neighborhood of the bond to be split on the action of the enzymes. The results indicate that chondroitin ABC lyase acts strictly as an endolyase towards hyaluronate and requires the presence of a disaccharide in both reducing and non-reducing positions of the endohexosaminidic bond to be split. None of the hexosaminidic bonds of the tetrasaccharide GlcNAc-GlcUA-GlcNAc-GlcUA is split by chondroitin ABC lyase. In contrast chondroitin AC lyase acts also as an exoglycosidase towards hyaluronate and recognizes only the amino sugar and the uronic acid residue that are linked via the hexosaminidic bond which is split. Thus, the N-acetylglucosamine and glucuronic acid residues at both ends of a tetrasaccharide with the structure GlcNAc-GlcUA-GlcNAc-GlcUA are liberated.  相似文献   

18.
1. The incorporation of [(35)S]sulphate in vivo into the acid-soluble intermediates extracted from young rat skin showed three sulphated hexosamine-containing components. 2. The rates of synthesis of these components were determined in vivo by measuring the incorporation of radioactivity from [U-(14)C]glucose into their isolated hexosamine moieties. 3. The incorporation of radioactivity from [U-(14)C]glucose into the isolated hexosamine and uronic acid moieties of the acid glycosaminoglycans was also measured. These results, combined with those obtained on the intermediary pathways of hexosamine and uronic acid biosynthesis previously determined in this tissue, indicated that the acid-soluble sulphated hexosamine-containing components were not precursors of the sulphated hexosamine found in the acid glycosaminoglycans. 4. The rates of synthesis of the acid glycosaminoglycan fractions were calculated from the incorporation of radioactivity from [U-(14)C]glucose into the hexosamine moiety. The sulphated components containing principally dermatan sulphate, chondroitin 6-sulphate and in smaller amounts, chondroitin 4-sulphate, heparan sulphate and heparin appeared to be turning over about twice as rapidly as hyaluronic acid and about four times as rapidly as the small keratan sulphate fraction. The relative rates of synthesis of the sulphated glycosaminoglycans were calculated from the incorporation of [(35)S]sulphate and were in agreement with those from (14)C-labelling studies.  相似文献   

19.
Resonances from the main repeating unit of heparan, →4)-β- -GlcA-(1→4)-- -GlcNAc-(1→, have been assigned by using a sample of the capsular polysaccharide of E. coli K5. Comparison of the spectra of heparan sulphate samples before and after O- and/or N-desulphation, with re-N-acetylation or re-N-sulphation, allowed assignment of some of the H-1 doublets in terms of sequence effects. Chemical shifts for H-1 of unsulphated uronic acid residues are influenced by 6-sulphation of the nearest neighbor GlcN on the reducing side; those of GlcN residues vary according to whether they have IdoA or GlcA as the nearest neighbour on the reducing side. The H-1 doublets due to residues in the binding sequence for antithrombin have been assigned by comparison of the spectra of heparins having high and low affinities for immobilised antithrombin.  相似文献   

20.
Plasma diamine oxidase (DAO) values are enhanced by intravenous injection of heparin which releases the enzyme, synthesized in small bowel enterocytes, from binding sites located on endothelial cells of the intestinal microvasculature. Intestinal DAO, in analogy with lipoprotein lipase (another heparin-released enzyme), is believed to be electrostatically linked to endothelial binding sites composed of a glycosaminoglycan (GAG) which is presumably heparan sulphate, but the complete mechanism of enzyme release is not known. In this study we assayed in rats the DAO-releasing capability of heparan sulphate, dermatan sulphate, chondroitin sulphate A and hyaluronic acid, all heparin related compounds. Heparan sulphate, a compound with the same hexosamine as heparin but with a lower concentration of sulphated iduronic acid, induced a very high release of DAO (3-fold less than heparin), while the other tested GAGs, composed of higher proportions of non sulphated uronic acid and with galactosamine instead of glucosamine, induced a significantly lower release. In rats treated with 60 mg heparan sulphate the significant decrease in ileal mucosal DAO activity indicates that, in analogy with heparin, the high plasma enzymatic activity induced is of enterocytic origin. It is suggested that the high charge density of the compounds tested, due to the degree of sulphatation, is the decisive factor in promoting the release of intestinal DAO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号