首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The prion agent is the infectious particle causing spongiform encephalopathies in animals and humans and is thought to consist of an altered conformation (PrP(Sc)) of the normal and ubiquitous prion protein PrP(C). The interaction of the prion agent with the immune system, particularly the humoral immune response, has remained unresolved. Here we investigated the immunogenicity of full-length native and infectious prions, as well as the specific biological effects of the resulting monoclonal antibodies (MAbs) on the binding and clearance of prions in cell culture and in in vivo therapy. Immunization of prion knockout (Prnp(0/0)) mice with phosphotungstic acid-purified mouse prions resulted in PrP-specific monoclonal antibodies with binding specificities selective for PrP(Sc) or for both PrP(C) and PrP(Sc). PrP(Sc)-specific MAb W261, of the IgG1 isotype, reacted with prions from mice, sheep with scrapie, deer with chronic wasting disease (CWD), and humans with sporadic and variant Creutzfeldt-Jakob disease (CJD) in assays including a capture enzyme-linked immunosorbent assay (ELISA) system. This PrP(Sc)-specific antibody was unable to clear prions from mouse neuroblastoma cells (ScN2a) permanently infected with scrapie, whereas the high-affinity MAb W226, recognizing both isoforms, PrP(Sc) and PrP(C), did clear prions from ScN2a cells, as determined by a bioassay. However, an attempt to treat intraperitoneally prion infected mice with full-length W226 or with a recombinant variable-chain fragment (scFv) from W226 could only slightly delay the incubation time. We conclude that (i) native, full-length PrP(Sc) elicits a prion-specific antibody response in PrP knockout mice, (ii) a PrP(Sc)-specific antibody had no prion-clearing effect, and (iii) even a high-affinity MAb that clears prions in vitro (W226) may not necessarily protect against prion infection, contrary to previous reports using different antibodies.  相似文献   

2.
Direct interaction between endogenous cellular prion protein (PrP(C)) and misfolded, disease-associated (PrP(Sc)) conformers is a key event in prion propagation, which precedes templated conversion of PrP(C) into nascent PrP(Sc) and prion infectivity. Although almost none of the molecular details of this pivotal process are understood, the persistence of individual prion strains suggests that assembly of the prion replicative complex is mechanistically precise. To systematically map defined regions of PrP(C) sequence that bind tightly to PrP(Sc), we have generated a comprehensive panel of over 45 motif-grafted antibodies containing overlapping peptide grafts collectively spanning PrP residues 19-231. Grafted antibody binding experiments, performed under stringent conditions, clearly identified only three distinct and independent high affinity PrP(Sc) recognition motifs. The first of these binding motifs lies at the very N-terminal region of the mature PrP molecule within PrP-(23-33); the second motif lies within PrP-(98-110); and the third is contained within PrP-(136-158). Mutational analyses of these PrP(Sc)-binding regions revealed that reactivity of the 23-33 and 98-110 segments are largely dependent upon the presence of multiple positively charged amino acid residues. These studies yield new insight into critical peptidic components composing one side of the prion replicative interface.  相似文献   

3.
Prion diseases such as Creutzfeldt-Jakob disease are believed to result from the misfolding of a widely expressed normal cellular prion protein, PrPc. The resulting disease-associated isoforms, PrP(Sc), have much higher beta-sheet content, are insoluble in detergents, and acquire relative resistance to proteases. Although known to be highly aggregated and to form amyloid fibrils, the molecular architecture of PrP9Sc) is poorly understood. To date, it has been impossible to elicit antibodies to native PrP(Sc) that are capable of recognizing PrP(Sc) without denaturation, even in Pm-P(o/o) mice that are intolerant of it. Here we demonstrate that antibodies for native PrPc and PrP(Sc) can be produced by immunization of Pm-P(o/o) mice with partially purified PrPc and PrP(Sc) adsorbed to immunomagnetic particles using high-affinity anti-PrP monoclonal antibodies (mAbs). Interestingly, the polyclonal response to PrP(Sc) was predominantly of the immunoglobulin M (IgM) isotype, unlike the immunoglobulin G (IgG) responses elicited by PrP(c) or by recombinant PrP adsorbed or not to immunomagnetic particles, presumably reflecting the polymeric structure of disease-associated prion protein. Although heat-denatured PrP(Sc) elicited more diverse antibodies with the revelation of C-terminal epitopes, remarkably, these were also predominantly IgM suggesting that the increasing immunogenicity, acquisition of protease sensitivity, and reduction in infectivity induced by heat are not associated with dissociation of the PrP molecules in the diseased-associated protein. Adsorbing native proteins to immunomagnetic particles may have general applicability for raising polyclonal or monoclonal antibodies to any native protein, without attempting laborious purification steps that might affect protein conformation.  相似文献   

4.
In prion disease, direct interaction between the cellular prion protein (PrP(C)) and its misfolded disease-associated conformer PrP(Sc) is a crucial, although poorly understood step promoting the formation of nascent PrP(Sc) and prion infectivity. Recently, we hypothesized that three regions of PrP (corresponding to amino acid residues 23-33, 98-110, and 136-158) interacting specifically and robustly with PrP(Sc), likely represent peptidic components of one flank of the prion replicative interface. In this study, we created epitope-tagged mouse PrP(C) molecules in which the PrP sequences 23-33, 98-110, and 136-158 were modified. These novel PrP molecules were individually expressed in the prion-infected neuroblastoma cell line (ScN2a) and the conversion of each mutated mouse PrP(C) substrate to PrP(Sc) compared with that of the epitope-tagged wild-type mouse PrP(C). Mutations within PrP 98-110, substituting all 4 wild-type lysine residues with alanine residues, prevented conversion to PrP(Sc). Furthermore, when residues within PrP 136-140 were collectively scrambled, changed to alanines, or amino acids at positions 136, 137, and 139 individually replaced by alanine, conversion to PrP(Sc) was similarly halted. However, other PrP molecules containing mutations within regions 23-33 and 101-104 were able to readily convert to PrP(Sc). These results suggest that PrP sequence comprising residues 98-110 and 136-140 not only participates in the specific binding interaction between PrP(C) and PrP(Sc), but also in the process leading to conversion of PrP(Sc)-sequestered PrP(C) into its disease-associated form.  相似文献   

5.
The central event in prion disease is thought to be conformational conversion of the cellular isoform of prion protein (PrP(C)) to the insoluble isoform PrP(Sc). We generated polyclonal and monoclonal antibodies by immunizing PrP(C)-null mice with native PrP(C). All seven monoclonal antibodies (mAbs) immunoprecipitated PrP(C), but they immunoprecipitated PrP(Sc) weakly or not at all, thereby indicating preferential reactivities to PrP(C) in solution. Immunoprecipitation using these mAbs revealed a marked loss of PrP(C) in brains at the terminal stage of illness. Histoblot analyses using these polyclonal antibodies in combination of pretreatment of blots dissociated PrP(C) and PrP(Sc) in situ and consistently demonstrated the decrease of PrP(C) at regions where PrP(Sc) accumulated. Interestingly, same mAbs showed immunohistochemical reactivities to abnormal isoforms. One group of mAbs showed reactivity to materials that accumulated in astrocytes, while the other group did so to amorphous plaques in neuropil. Epitope mapping indicated that single mAbs have reactivities to multiple epitopes, thus implying dual specificities. This suggests the importance of octarepeats as a part of PrP(C)-specific conformation. Our observations support the notion that loss of function of PrP(C) may partly underlie the pathogenesis of prion diseases. The conversion of PrP(C) to PrP(Sc) may involve multiple steps at different sites.  相似文献   

6.
The use of anti-PrP antibodies represents one of the most promising strategies for the treatment of prion diseases. In the present study, we screened various anti-PrP antibodies with the aim of identifying those that would block PrP(Sc) replication in prion-infected cell culture. Two antibodies, SAF34 recognizing the flexible octarepeats region on HuPrP protein, and SAF61 directed against PrP amino acid residues (144-152), not only inhibited PrP(Sc) formation in prion-infected neuroblastoma cells but also decreased the PrP(C) levels in non-infected N2a cells. In addition, treatment with both SAF34 and SAF61 antibodies decreased PrP(C) and PrP(Sc) levels in the cells synergistically. In the presence of both antibodies, our results showed that the mode of action which leads to the disappearance of PrP(Sc) in cells is directly coupled to PrP(C) degradation by reducing the half-life of the PrP(C) protein.  相似文献   

7.
PrP(Sc) is believed to serve as a template for the conversion of PrP(C) to the abnormal isoform. This process requires contact between the two proteins and implies that there may be critical contact sites that are important for conversion. We hypothesized that antibodies binding to either PrP(c)or PrP(Sc) would hinder or prevent the formation of the PrP(C)-PrP(Sc) complex and thus slow down or prevent the conversion process. Two systems were used to analyze the effect of different antibodies on PrP(Sc) formation: (i) neuroblastoma cells persistently infected with the 22L mouse-adapted scrapie stain, and (ii) protein misfolding cyclic amplification (PMCA), which uses PrP(Sc) as a template or seed, and a series of incubations and sonications, to convert PrP(C) to PrP(Sc). The two systems yielded similar results, in most cases, and demonstrate that PrP-specific monoclonal antibodies (Mabs) vary in their ability to inhibit the PrP(C)-PrP(Sc) conversion process. Based on the numerous and varied Mabs analyzed, the inhibitory effect does not appear to be epitope specific, related to PrP(C) conformation, or to cell membrane localization, but is influenced by the targeted PrP region (amino vs carboxy).  相似文献   

8.
Cellular PrP is actively cycled between the cell surface and the endosomal pathway. The exact site and mechanism of conversion from PrP(C) to PrP(Sc) remain unknown. We have previously used recombinant antibodies containing grafts of PrP sequence to identify three regions of PrP(C) (aa23-27, 98-110, and 136-158) that react with PrP(Sc) at neutral pH. To determine if any regions of PrP(C) react with PrP(Sc) at an acidic pH similar to that of an endosomal compartment, we tested our panel of grafted antibodies for the ability to precipitate PrP(Sc) in a range of pH conditions. At pH near or lower than 6, PrP-grafted antibodies representing the octapeptide repeat react strongly with PrP(Sc) but not PrP(C). Modified grafts in which the histidines of the octarepeat were replaced with alanines did not react with PrP(Sc). PrP(Sc) precipitated by the octapeptide at pH 5.7 was able to seed conversion of normal PrP to PrP(Sc) in vitro. However, modified PrP containing histidine to alanine substitutions within the octapeptide repeats was still converted to PrP(Sc) in N2a cells. These results suggest that once PrP has entered the endosomal pathway, the acidic environment facilitates the binding of PrP(Sc) to the octarepeat of PrP(C) by the change in charge of the histidines within the octarepeat.  相似文献   

9.
The native conformation of host-encoded cellular prion protein (PrP(C)) is metastable. As a result of a post-translational event, PrP(C) can convert to the scrapie form (PrP(Sc)), which emerges as the essential constituent of infectious prions. Despite thorough research, the mechanism underlying this conformational transition remains unknown. However, several studies have highlighted the importance of the N-terminal region spanning residues 90-154 in PrP folding. In order to understand why PrP folds into two different conformational states exhibiting distinct secondary and tertiary structure, and to gain insight into the involvement of this particular region in PrP transconformation, we studied the pressure-induced unfolding/ refolding of recombinant Syrian hamster PrP expanding from residues 90-231, and compared it with heat unfolding. By using two intrinsic fluorescent variants of this protein (Y150W and F141W), conformational changes confined to the 132-160 segment were monitored. Multiple conformational states of the Trp variants, characterized by their spectroscopic properties (fluorescence and UV absorbance in the fourth derivative mode), were achieved by tuning the experimental conditions of pressure and temperature. Further insight into unexplored conformational states of the prion protein, likely to mimic the in vivo structural change, was obtained from pressure-assisted cold unfolding. Furthermore, salt-induced conformational changes suggested a structural stabilizing role of Tyr150 and Phe141 residues, slowing down the conversion to a beta-sheet form.  相似文献   

10.
At the heart of the pathogenesis of transmissible spongiform encephalopathies (TSEs), such as BSE, scrapie, and Creutzfeldt-Jakob disease, lies a poorly understood structural rearrangement of PrP, an abundant glycoprotein of the nervous and lymphoid systems. The normal form (PrP(C)), rich in alpha-helix, converts into an aberrant beta-sheet-dominated form (PrP(Sc)), which seems to be at the center of the pathotoxic symptoms observed in TSEs. To understand this process better at a molecular level, we have studied the interactions between different peptides derived from bovine PrP and their structural significance. We show that two unstructured peptides derived from the central region of bovine PrP, residues 115-133 and 140-152, respectively, interact stoichiometrically under physiological conditions to generate beta-sheet-dominated fibrils. However, when both peptides are incubated in the presence of a third peptide derived from an adjoining alpha-helical region (residues 153-169), the formation of beta-sheet-rich fibrils is abolished. These data indicate that native PrP(C) helix 1 might inhibit the strong intrinsic beta-sheet-forming propensity of sequences immediately N-terminal to the globular core of PrP(C), by keeping in place intrachain interactions that would prevent these amyloidogenic regions from triggering aggregation. Moreover, these results indicate new ways in which PrP(Sc) formation could be prevented.  相似文献   

11.
Accumulating lines of evidence indicate that the N-terminal domain of prion protein (PrP) is involved in prion susceptibility in mice. In this study, to investigate the role of the octapeptide repeat (OR) region alone in the N-terminal domain for the susceptibility and pathogenesis of prion disease, we intracerebrally inoculated RML scrapie prions into tg(PrPΔOR)/Prnp(0/0) mice, which express mouse PrP missing only the OR region on the PrP-null background. Incubation times of these mice were not extended. Protease-resistant PrPΔOR, or PrP(Sc)ΔOR, was easily detectable but lower in the brains of these mice, compared to that in control wild-type mice. Consistently, prion titers were slightly lower and astrogliosis was milder in their brains. However, in their spinal cords, PrP(Sc)ΔOR and prion titers were abundant and astrogliosis was as strong as in control wild-type mice. These results indicate that the role of the OR region in prion susceptibility and pathogenesis of the disease is limited. We also found that the PrP(Sc)ΔOR, including the pre-OR residues 23-50, was unusually protease-resistant, indicating that deletion of the OR region could cause structural changes to the pre-OR region upon prion infection, leading to formation of a protease-resistant structure for the pre-OR region.  相似文献   

12.
Using circular dichroism, fluorescence, and infrared spectroscopies, we studied the secondary structure of purified hamster PrP(C) in the presence of the mild, nonionic detergent octylglucoside. Under these native conditions, PrP(C) displayed an unexpectedly high beta-sheet component, intermediate between the values previously reported for PrP(Sc) and an isoform of PrP(C) isolated in a zwitterionic detergent. The structure of PrP(C) appeared to depend strongly on the detergent and/or phase. Switching from octylglucoside to zwitterion 3-14 drastically modified PrP secondary structure by increasing the alpha-helix while abolishing the beta-sheet component. In contrast, the conformation of PrP(C) in zwitterion was highly stable, since reverting to octylglucoside did not restore the original native structure. These and other results show that native PrP(C) in octylglucoside has some of the conformational characteristics that make the protein susceptible to conversion into PrP(Sc). Most importantly, this is the first study to demonstrate the intrinsic plasticity of the full-length native PrP(C) isolated from animal brains.  相似文献   

13.
The events leading to the degradation of the endogenous PrP(C) (normal cellular prion protein) have been the subject of numerous studies. Two cleavage processes, α-cleavage and β-cleavage, are responsible for the main C- and N-terminal fragments produced from PrP(C). Both cleavage processes occur within the N-terminus of PrP(C), a region that is significant in terms of function. α-Cleavage, an enzymatic event that occurs at amino acid residues 110 and 111 on PrP(C), interferes with the conversion of PrP(C) into the prion disease-associated isoform, PrP(Sc) (abnormal disease-specific conformation of prion protein). This processing is seen as a positive event in terms of disease development. The study of β-cleavage has taken some surprising turns. β-Cleavage is brought about by ROS (reactive oxygen species). The C-terminal fragment produced, C2, may provide the seed for the abnormal conversion process, as it resembles in size the fragments isolated from prion-infected brains. There is, however, strong evidence that β-cleavage provides an essential process to reduce oxidative stress. β-Cleavage may act as a double-edged sword. By β-cleavage, PrP(C) may try to balance the ROS levels produced during prion infection, but the C2 produced may provide a PrP(Sc) seed that maintains the prion conversion process.  相似文献   

14.
Interspecies transmission of the transmissible spongiform encephalopathies (TSEs), or prion diseases, can result in the adaptation and selection of TSE strains with an expanded host range and increased virulence such as in the case of bovine spongiform encephalopathy and variant Creutzfeldt-Jakob disease. To investigate TSE strain adaptation, we serially passaged a biological clone of transmissible mink encephalopathy (TME) into Syrian golden hamsters and examined the selection of distinct strain phenotypes and conformations of the disease-specific isoform of the prion protein (PrP(Sc)). The long-incubation-period drowsy (DY) TME strain was the predominate strain, based on the presence of its strain-specific PrP(Sc) following interspecies passage. Additional serial passages in hamsters resulted in the selection of the hyper (HY) TME PrP(Sc) strain-dependent conformation and its short incubation period phenotype unless the passages were performed with a low-dose inoculum (e.g., 10(-5) dilution), in which case the DY TME clinical phenotype continued to predominate. For both TME strains, the PrP(Sc) strain pattern preceded stabilization of the TME strain phenotype. These findings demonstrate that interspecies transmission of a single cloned TSE strain resulted in adaptation of at least two strain-associated PrP(Sc) conformations that underwent selection until one type of PrP(Sc) conformation and strain phenotype became predominant. To examine TME strain selection in the absence of host adaptation, hamsters were coinfected with hamster-adapted HY and DY TME. DY TME was able to interfere with the selection of the short-incubation HY TME phenotype. Coinfection could result in the DY TME phenotype and PrP(Sc) conformation on first passage, but on subsequent passages, the disease pattern converted to HY TME. These findings indicate that during TSE strain adaptation, there is selection of a strain-specific PrP(Sc) conformation that can determine the TSE strain phenotype.  相似文献   

15.
J Tatzelt  S B Prusiner    W J Welch 《The EMBO journal》1996,15(23):6363-6373
The fundamental event in prion diseases involves a conformational change in one or more of the alpha-helices of the cellular prion protein (PrP(C)) as they are converted into beta-sheets during the formation of the pathogenic isoform (PrP(Sc)). Here, we show that exposure of scrapie-infected mouse neuroblastoma (ScN2a) cells to reagents known to stabilize proteins in their native conformation reduced the rate and extent of PrP(Sc) formation. Such reagents include the cellular osmolytes glycerol and trimethylamine N-oxide (TMAO) and the organic solvent dimethylsulfoxide (DMSO), which we refer to as 'chemical chaperones' because of their influence on protein folding. Although the chemical chaperones did not appear to affect the existing population of PrP(Sc) molecules in ScN2a cells, they did interfere with the formation of PrP(Sc) from newly synthesized PrP(C). We suggest that the chemical chaperones act to stabilize the alpha-helical conformation of PrP(C) and thereby prevent the protein from undergoing a conformational change to produce PrP(Sc). These observations provide further support for the idea that prions arise due to a change in protein conformation and reveal potential strategies for preventing PrP(Sc) formation.  相似文献   

16.
Although the protein-only hypothesis proposes that it is the conformation of abnormal prion protein (PrP(Sc)) that determines strain diversity, the molecular basis of strains remains to be elucidated. In the present study, we generated a series of mutations in the normal prion protein (PrP(C)) in which a single glutamine residue was replaced with a basic amino acid and compared their abilities to convert to PrP(Sc) in cultured neuronal N2a58 cells infected with either the Chandler or 22L mouse-adapted scrapie strain. In mice, these strains generate PrP(Sc) of the same sequence but different conformations, as judged by infrared spectroscopy. Substitutions at codons 97, 167, 171, and 216 generated PrP(C) that resisted conversion and inhibited the conversion of coexpressed wild-type PrP in both Chandler-infected and 22L-infected cells. Interestingly, substitutions at codons 185 and 218 gave strain-dependent effects. The Q185R and Q185K PrP were efficiently converted to PrP(Sc) in Chandler-infected but not 22L-infected cells. Conversely, Q218R and Q218H PrP were converted only in 22L-infected cells. Moreover, the Q218K PrP exerted a potent inhibitory effect on the conversion of coexpressed wild-type PrP in Chandler-infected cells but had little effect on 22L-infected cells. These results show that two strains with the same PrP sequence but different conformations have differing abilities to convert the same mutated PrP(C).  相似文献   

17.
The central event in the pathogenesis of prion diseases is a profound conformational change of the prion protein (PrP) from an alpha-helical (PrP(C)) to a beta-sheet-rich isoform (PrP(Sc)). The elucidation of the mechanism of conformational transition has been complicated by the challenge of collecting high-resolution biophysical data on the relatively insoluble aggregation-prone PrP(Sc) isoform. In an attempt to facilitate the structural analysis of PrP(Sc), a redacted chimeric mouse-hamster PrP of 106 amino acids (MHM2 PrP106) with two deletions (Delta23-88 and Delta141-176) was expressed and purified from Escherichia coli. PrP106 retains the ability to support PrP(Sc) formation in transgenic mice, implying that it contains all regions of PrP that are necessary for the conformational transition into the pathogenic isoform [Supattapone, S., et al. (1999) Cell 96, 869-878]. Unstructured at low concentrations, recombinant unglycosylated PrP106 (rPrP106) undergoes a concentration-dependent conformational transition to a beta-sheet-rich form. Following the conformational transition, rPrP106 possesses properties similar to those of PrP(Sc)106, such as high beta-sheet content, defined tertiary structure, resistance to limited digestion by proteinase K, and high thermodynamic stability. In GdnHCl-induced denaturation studies, a single cooperative conformational transition between the unstructured monomer and the assembled beta-oligomer was observed. After proteinase K digestion, the oligomers retain an intact core with unusually high beta-sheet content (>80%). Using mass spectrometry, we discovered that the region of residues 134-215 of rPrP106 is protected from proteinase K digestion and possesses a solvent-independent propensity to adopt a beta-sheet-rich conformation. In contrast to the PrP(Sc)106 purified from the brains of neurologically impaired animals, multimeric beta-rPrP106 remains soluble, providing opportunities for detailed structural studies.  相似文献   

18.
Recently, we reported the application of a recombinant chicken IgY monoclonal antibody, Ab3-15, against mammalian prion protein (PrP), for the diagnosis of bovine spongiform encephalopathy in cattle. In this study, we have characterized a soluble, single-chain variable fragment (scFv) form of this antibody, sphAb3-15 using brain homogenates from mice. This sphAb3-15 antibody recognized denatured forms of both PrP(C) and PrP(Sc), and PrP(Sc) after PK-treatment, on Western blotting. In sandwich ELISAs, on dot blots and by immunoprecipitation, sphAb3-15 efficiently bound to PrP from normal brain homogenates, but weakly bound PrP from scrapie-infected brain homogenates. These results suggest that sphAb3-15 selectively recognizes PrP(C) under native conditions and that the epitope recognized by sphAb3-15 may undergo conformational changes during the conversion of PrP(C) into PrP(Sc).  相似文献   

19.
Current methods for diagnosing transmissible spongiform encephalopathies rely on the degradation of the cellular prion protein (PrP(C)) and the subsequent detection of the protease-resistant remnant of the pathological prion isoform PrP(Sc) by antibodies that react with all forms of PrP. We report on a monoclonal antibody, V5B2, raised against a peptide from the C-terminal part of PrP, which recognizes an epitope specific to PrP(Sc). In cryostat sections from Creutzfeldt-Jacob's disease (CJD) patients' brains, V5B2 selectively labels various deposits of PrP(Sc) without any pretreatment for removal of PrP(C). V5B2 does not bind to non-CJD brain samples or to recombinant PrP, either in its native or denatured form. Specificity for PrP is confirmed by a sandwich enzyme-linked immunosorbent assay utilizing V5B2, which discriminates between CJD and normal samples without proteinase K treatment, and by immunoprecipitation from CJD brain homogenate. The PrP(Sc)-specific epitope is disrupted by denaturation. We conclude that the C-terminal part of PrP in disease-associated PrP(Sc) aggregates forms a structural epitope whose conformation is distinct from that of PrP(C).  相似文献   

20.
Elucidation of structure and biological properties of the prion protein scrapie (PrP(Sc)) is fundamental to an understanding of the mechanism of conformational transition of cellular (PrP(C)) into disease-specific isoforms and the pathogenesis of prion diseases. Unfortunately, the insolubility and heterogeneity of PrP(Sc) have limited these studies. The observation that a construct of 106 amino acids (termed PrP106 or miniprion), derived from mouse PrP and containing two deletions (Delta 23-88, Delta 141-176), becomes protease-resistant when expressed in scrapie-infected neuroblastoma cells and sustains prion replication when expressed in PrP(0/0) mice prompted us to generate a corresponding synthetic peptide (sPrP106) to be used for biochemical and cell culture studies. sPrP106 was obtained successfully with a straightforward procedure, which combines classical stepwise solid phase synthesis with a purification strategy based on transient labeling with a lipophilic chromatographic probe. sPrP106 readily adopted a beta-sheet structure, aggregated into branched filamentous structures without ultrastructural and tinctorial properties of amyloid, exhibited a proteinase K-resistant domain spanning residues 134-217, was highly toxic to primary neuronal cultures, and induced a remarkable increase in membrane microviscosity. These features are central properties of PrP(Sc) and make sPrP106 an excellent tool for investigating the molecular basis of the conformational conversion of PrP(C) into PrP(Sc) and prion disease pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号