首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ineffective Frankia endophytes were retrieved from various wet soils by using Alnus glutinosa clones as trapping plants. No pure cultures could be isolated from these ineffective nodules. Therefore, the phylogenetic position of these endophytes was determined by sequence analysis of cloned PCR products of bacterial 16S rDNA, derived from nodules. The results showed that all nodule endophytes belong to a hitherto undescribed cluster of the Frankia phylogenetic tree. The position of these uncultured ineffective Frankia nodule endophytes is different from that of the ineffective Frankia isolates derived from A. glutinosa nodules, even when originating from the same geographical location. This suggests a bias in current isolation techniques.  相似文献   

2.
The structure of nitrogen-fixing nodules produced by Rhizobium infection of the non-legume Parasponia andersonii was examined by light and electron (both SEM and TEM) microscopy. Comparisons were made with the nodules previously described on P. rugosa. Like the nodules on different non-legumes formed by other types of endophytes, the Rhizobium nodules on Parasponia resembled modified roots by having a central vascular bundle surrounded by an endophyte-infected zone. The intimate association between the Rhizobium and the host nodule cell was compared with the Rhizobium association found in legumes. The rhizobia were not released from the infection thread as happens in the legume. The infection thread, which propagates the Rhizobium infection to new cells, was transformed within a nodule cell from a darkly stained (light microscopy) or very electron-dense (TEM) structure to a number of thread types. The walls of the threads varied greatly in thickness and often the thread structures were without rigid walls and were only enclosed by a plasma membrane. If the rhizobia are transformed into bacteroids, as in the legumes, it would have to occur when the threads had reached their mature size, when bacterial division had ceased. Nitrogen fixation was considered to occur in all thread types.  相似文献   

3.
We investigated the presence of endophytic rhizobia within the roots of the wetland wild rice Oryza breviligulata, which is the ancestor of the African cultivated rice Oryza glaberrima. This primitive rice species grows in the same wetland sites as Aeschynomene sensitiva, an aquatic stem-nodulated legume associated with photosynthetic strains of Bradyrhizobium. Twenty endophytic and aquatic isolates were obtained at three different sites in West Africa (Senegal and Guinea) from nodal roots of O. breviligulata and surrounding water by using A. sensitiva as a trap legume. Most endophytic and aquatic isolates were photosynthetic and belonged to the same phylogenetic Bradyrhizobium/Blastobacter subgroup as the typical photosynthetic Bradyrhizobium strains previously isolated from Aeschynomene stem nodules. Nitrogen-fixing activity, measured by acetylene reduction, was detected in rice plants inoculated with endophytic isolates. A 20% increase in the shoot growth and grain yield of O. breviligulata grown in a greenhouse was also observed upon inoculation with one endophytic strain and one Aeschynomene photosynthetic strain. The photosynthetic Bradyrhizobium sp. strain ORS278 extensively colonized the root surface, followed by intercellular, and rarely intracellular, bacterial invasion of the rice roots, which was determined with a lacZ-tagged mutant of ORS278. The discovery that photosynthetic Bradyrhizobium strains, which are usually known to induce nitrogen-fixing nodules on stems of the legume Aeschynomene, are also natural true endophytes of the primitive rice O. breviligulata could significantly enhance cultivated rice production.  相似文献   

4.
Eighty bacterial isolates from root nodules of the leguminous plants Phaseolus vulgaris, Campylotropis spp. and Cassia spp. grown in China were classified into five groups by phenotypic analyses, SDS-PAGE of whole-cell proteins, PCR-based 16S rRNA gene restriction-fragment-length-polymorphism and sequencing. Thirty-three isolates from the three plant genera were identified as Agrobacterium tumefaciens because they are closely related to the type strain of A. tumefaciens. Fourteen isolates from P. vulgaris grown in Yunnan and Inner Mongolia were classified as R. leguminosarum bv. phaseoli based on their close relationship with the type strain in numerical taxonomy and in 16S rDNA phylogeny. Twenty-seven isolates from Campylotropis delavayi, P. vulgaris and four species of Cassia grown in the central zones of China were classified into three groups within the genus Bradyrhizobium. One of these three groups could be defined as Bradyrhizobium japonicum. Our results demonstrated that P. vulgaris and the species of Campylotropis and Cassia could form nodules with diverse rhizobia in Chinese soils, including novel lineages associated with P. vulgaris. These results also offered information about the convergent evolution between rhizobia and legumes since the rhizobial populations associated with P. vulgaris in Chinese soils were completely different from those in Mexico, the original cite of this plant. Some rhizobial species could be found in all of the three leguminous genera.  相似文献   

5.
Several bacterial isolates were recovered from surface-sterilized root nodules of Arachis hypogaea L. (peanut) plants growing in soils from Córdoba, Argentina. The 16S rDNA sequences of seven fast-growing strains were obtained and the phylogenetic analysis showed that these isolates belonged to the Phylum Proteobacteria, Class Gammaproteobacteria, and included Pseudomonas spp., Enterobacter spp., and Klebsiella spp. After storage, these strains became unable to induce nodule formation in Arachis hypogaea L. plants, but they enhanced plant yield. When the isolates were co-inoculated with an infective Bradyrhizobium strain, they were even found colonizing pre-formed nodules. Analysis of symbiotic genes showed that the nifH gene was only detected for the Klebsiella-like isolates and the nodC gene could not be amplified by PCR or be detected by Southern blotting in any of the isolates. The results obtained support the idea that these isolates are opportunistic bacteria able to colonize nodules induced by rhizobia.  相似文献   

6.
The capacity to bind to biomolecules is considered to be the basis for any physiological role of boron (B). Legume arabinogalactan protein‐extensin (AGPE), a major component of the infection thread matrix of legume nodules is a potential B‐ligand. Therefore, its role in infection threads development was investigated in Pisum sativum grown under B deficiency. Using the AGPE‐specific antibody MAC265, immunochemical analysis revealed that a 175 kDa MAC265 antigen was abundant in +B but much weaker in –B nodule extracts. A B‐dependent complex involving AGPE and rhamnogalacturonan II (RGII) could be co‐purified using anti‐RGII antiserum. Following fractionation of –B nodules, MAC265 antigens were mostly associated with the bacterial pellet. Immunogold staining confirmed that AGPE was closely associated with the surface of rhizobia in the lumen of threads in ?B nodules whereas in +B nodules, AGPE was separated from the bacterial surface by a sheath of capsular polysaccharide. Interestingly, colonies of rhizobia grown in free‐living culture without B developed low capsule production. Therefore, we propose that B could be important for apical growth of infection threads by strengthening thread wall through a B‐dependent AGPE‐RGII interaction and by promoting bacterial advance through a B‐dependent production of a stable rhizobial capsule that prevents AGPE attachment.  相似文献   

7.
The possible application of rhizobial symbiotic genes as markers for the search and primary identification of rhizobia from temperate-zone legumes was studied. It was shown that conservative sym genes nifH and nifD could be used as markers for rapid search of rhizobia among the analyzed isolates, while more variable genes nifK and nodC could be used for their primary identification. Efficiency of the proposed method was shown in analysis of bacterial isolates obtained from Onobrychis arenaria and Astragalus cicer root nodules.  相似文献   

8.
Intrinsic resistance to low concentrations of antibiotics was used to characterise 83 isolates from nodules of cowpea (Vigna unguiculata) and field bean (Phaseolus vulgaris). Characterisation and differentiation of isolates from cowpea was made difficult by associated fast-growing bacteria inside the nodule tissue. Thus, reliable pure culture was difficult to secure without repeated isolation and even via nodulation of the appropriate homologous host. Although the technique may be satisfactory for differentiation and identification of fast-growing rhizobia, it is rated inferior to serology on aspects of facility, time and accuracy where rhizobia from cowpea nodules are concerned. Fingerprint patterns of isolates revealed considerable heterogeneity amongst the populations even where there was commonality of location and/or host plant. Pure cultures of slow-growing rhizobia from V. unguiculata nodules were generally more resistant to the concentrations of antibiotics used than fast-growing nodule bacteria from P. vulgaris.  相似文献   

9.
Diversity among Rhizobia Effective with Robinia pseudoacacia L.   总被引:3,自引:1,他引:2       下载免费PDF全文
The diversity of rhizobia that form symbioses with roots of black locust (Robinia pseudoacacia L.), an economically important leguminous tree species, was examined by inoculating seedling root zones with samples of soil collected from the United States, Canada, and China. Bacteria were isolated from nodules, subcultured, and verified to be rhizobia. The 186 isolates varied significantly in their resistance to antibiotics and NaCl, their growth on different carbohydrates, and their effect on the pH of culture media. Most isolates showed intermediate antibiotic resistance, the capacity to use numerous carbohydrates, and a neutral to acid pH response. Isolates had greater similarity within sampling locations than among sampling locations. The isolates were grouped by using numerical taxonomy techniques, and representative strains of 37 groups were selected. The mean generation times of these isolates ranged from 3 to 9 h, and the protein profile of each of the 37 isolates was unique. Nitrogen fixation, total nitrogen accumulation, and plant growth varied significantly among black locust seedlings inoculated with the representative isolates. We conclude that great variation exists among Rhizobium spp. that nodulate black locust, and selection of strains for efficiency of the symbiotic association appears possible.  相似文献   

10.
Among the leguminous trees native to Uruguay, Parapiptadenia rigida (Angico), a Mimosoideae legume, is one of the most promising species for agroforestry. Like many other legumes, it is able to establish symbiotic associations with rhizobia and belongs to the group known as nitrogen-fixing trees, which are major components of agroforestry systems. Information about rhizobial symbionts for this genus is scarce, and thus, the aim of this work was to identify and characterize rhizobia associated with P. rigida. A collection of Angico-nodulating isolates was obtained, and 47 isolates were selected for genetic studies. According to enterobacterial repetitive intergenic consensus PCR patterns and restriction fragment length polymorphism analysis of their nifH and 16S rRNA genes, the isolates could be grouped into seven genotypes, including the genera Burkholderia, Cupriavidus, and Rhizobium, among which the Burkholderia genotypes were the predominant group. Phylogenetic studies of nifH, nodA, and nodC sequences from the Burkholderia and the Cupriavidus isolates indicated a close relationship of these genes with those from betaproteobacterial rhizobia (beta-rhizobia) rather than from alphaproteobacterial rhizobia (alpha-rhizobia). In addition, nodulation assays with representative isolates showed that while the Cupriavidus isolates were able to effectively nodulate Mimosa pudica, the Burkholderia isolates produced white and ineffective nodules on this host.  相似文献   

11.
A cultivation-independent approach was used to identify potentially nitrogen-fixing endophytes in seven sweet potato varieties collected in Uganda and Kenya. Nitrogenase reductase genes (nifH) were amplified by PCR, and amplicons were cloned in Escherichia coli. Clones were grouped by restriction fragment length polymorphism analysis, and representative nifH genes were sequenced. The resulting sequences had high homologies to nitrogenase reductases from alpha-, beta-, and gamma-Proteobacteria and low G+C Gram positives, however, about 50% of the sequences derived from rhizobia. Several highly similar or even identical nitrogenase reductase sequences clustering with different bacterial genera and species, including Sinorhizobium meliloti, Rhizobium sp. NGR234, Rhizobium etli, Klebsiella pneumoniae, and Paenibacillus odorifer, could be detected in different plants grown in distinct geographic locations. This suggests that these bacterial species preferentially colonize African sweet potato as endophytes and that the diazotrophic, endophytic microflora is determined only to a low degree by the plant genotype or the soil microflora.  相似文献   

12.
In the course of a study on rhizobia nodulating six indigenous legume shrubs from the Canary Islands, one Rhizobium and 27 Bradyrhizobium Canarian isolates were characterised. It was found that those ascribed to Bradyrhizobium were promiscuous and formed effective nodules not only in their original host but on Chamecytisus proliferus subsp. proliferus (Tagasaste) as well. However, Rhizobium isolate RES-1 was more specific and only nodulated on its host (Teline canariensis). The serotyping of these isolates required a broad antisera panel due to the great antigenic diversity of these rhizobia, that appeared to be due to differences in their lipopolysaccharides, the main antigenic determinants, that showed great structural diversity. The 28 isolates studied produced 22 easily distinguishable electrophoretic profiles of lipopolysaccharides. Protein or plasmid electrophoretic profiles were equally or less discriminating than the lipopolysaccharides profiles and were more difficult to compare. The comparison of the lipopolysaccharide electrophoretic patterns is a more reliable and discriminating method than serotyping or electrophoretic protein and plasmid profile analysis for the identification of Bradyrhizobium strains. No correlation between the lipopolysaccharide profiles of the isolates and the plant from which they were obtained or their geographical origin was observed.  相似文献   

13.
Colony characteristics, growth in litmus milk, precipitation in calcium glycerophosphate medium and utilization of carbon sources of the root-nodule bacteria isolated from the tropical legumes Leucaena, Mimosa, Acacia, Sesbania and Lablab were similar to fast-growing rhizobia of temperate legumes, particularly Rhizobium meliloti. In agglutination tests, isolates from each host shared antigens with one or more of five Rhizobium strains from Leucaena. Infective characteristics of the fast-growing rhizobia were studied in modified Leonard jars and in agar culture. Cross-infections by rhizobia between these plants were common and the association often effective. Lablab was effectively nodulated by its own fast-growing isolate but only formed root swellings, possibly ineffective pseudonodules, with the other isolates. Slow-growing rhizobia which were able to nodulate Macroptilium atropurpureus were unable to form nodules on these legumes except Lablab which was considered more akin to the cowpea group. All fast-growing isolates nodulated, often effectively, Vigna unguiculata and V. unguiculata ssp. sesquipedalis. The isolate from Lablab also effectively nodulated a number of other tropical legumes which have previously only been reported to nodulate with slow-growing nodule bacteria and it also produced ineffective nodulation on Medicago sativa. This is the first record of an effective fast-growing isolate from Lablab.  相似文献   

14.
A collection of rhizobia isolated from Acacia tortilis subsp. raddiana nodules from various arid soils in Tunisia was analyzed for their diversity at both taxonomic and symbiotic levels. The isolates were found to be phenotypically diverse. The majority of the isolates tolerated 3% NaCl and grew at 40 °C. Genetic characterization emphasized that most of the strains (42/50) belong to the genus Ensifer, particularly the species Ensifer meliloti, Ensifer garamanticus, and Ensifer numidicus. Symbiotic properties of isolates showed diversity in their capacity to nodulate their host plant and to fix atmospheric nitrogen. The most effective isolates were closely related to E. garamanticus. Nodulation tests showed that 3 strains belonging to Mesorhizobium genus failed to renodulate their host plant, which is surprising for symbiotic rhizobia. Furthermore, our results support the presence of non-nodulating endophytic bacteria belonging to the Acinetobacter genus in legume nodules.  相似文献   

15.
In this study, bacteria hosted in root nodules of single plants of legume Arachis hypogaea L. (peanut) cv Tegua Runner growing at field were isolated. The collection of nodule isolates included both fast and slow growing strains. Their genetic diversity was assessed in order to identify the more frequently rhizobial strain associated to nodules from single plants. Molecular fingerprinting of 213 nodular isolates indicated heterogeneity, absence of a dominant genotype and, therefore, of a unique strains highly competitive. Efficient nitrogen-fixing isolates were identified as Bradyrhizobium sp. by phylogenetic analysis of the sequences of their 16S rRNA genes. The genetic diversity of 68 peanut nodulating isolates from all the collected plants was also analyzed. Considering their ERIC-PCR profiles, they were grouped in eighteen different OTUs for 60% similarity cut-off. Results obtained in this study indicate that the genetic diversity of rhizobia occupying nodules from single plant is very high, without the presence of a dominant strain. Therefore, the identification of useful peanut rhizobia for agricultural purposes requires strongly the selection, among the diverse population, of a very competitive genotype in combination with a high-symbiotic performance.  相似文献   

16.
Soybean rhizobia were isolated from two soils with different cropping histories from Hubei province in central China. The first, from Honghu county, has been under soybean cultivation for decades. All of the isolates obtained from nodules on soybeans growing in this soil were fast-growing, acid-producing rhizobia. However, slow-growing, alkali-producing isolates were obtained at higher dilutions of the same soil. The second soil, from Wuchang county, has been under rice cultivation with no record of previous soybean cultivation. All of the soybean rhizobia recovered from this soil, and at higher dilutions of the soil, were typical slow-growing, alkali-producing isolates. The isolates from both soils were grouped by using intrinsic antibiotic resistance, gel immunodiffusion, and fluorescent-antibody procedures. Representative isolates were tested for symbiotic effectiveness with four soybean cultivars (Peking, Davis, Williams, and Ai Jiao Zao) in a pot experiment. There were significant cultivar-rhizobial interactions. Moreover, on each cultivar, there was at least one fast-growing isolate among these new rhizobia that was as effective as the highly effective slow-growing reference strain USDA 110.  相似文献   

17.
Soybean rhizobia were isolated from two soils with different cropping histories from Hubei province in central China. The first, from Honghu county, has been under soybean cultivation for decades. All of the isolates obtained from nodules on soybeans growing in this soil were fast-growing, acid-producing rhizobia. However, slow-growing, alkali-producing isolates were obtained at higher dilutions of the same soil. The second soil, from Wuchang county, has been under rice cultivation with no record of previous soybean cultivation. All of the soybean rhizobia recovered from this soil, and at higher dilutions of the soil, were typical slow-growing, alkali-producing isolates. The isolates from both soils were grouped by using intrinsic antibiotic resistance, gel immunodiffusion, and fluorescent-antibody procedures. Representative isolates were tested for symbiotic effectiveness with four soybean cultivars (Peking, Davis, Williams, and Ai Jiao Zao) in a pot experiment. There were significant cultivar-rhizobial interactions. Moreover, on each cultivar, there was at least one fast-growing isolate among these new rhizobia that was as effective as the highly effective slow-growing reference strain USDA 110.  相似文献   

18.
A collection of 74 rhizobial isolates recovered from nodules of the desert woody legumes Prosopis glandulosa, Psorothamnus spinosus, and Acacia constricta were characterized by using 61 nutritional and biochemical tests. We compared isolates from A. constricta and Prosopis glandulosa and tested the hypothesis that the rhizobia from a deep-phreatic rooting zone of a Prosopis woodland in the Sonoran Desert of southern California were phenetically distinct from rhizobia from surface soils. Cluster analysis identified four major homogeneous groups. The first phenon contained slow-growing (SG) Prosopis rhizobia from surface and deep-phreatic-soil environments. These isolates grew poorly on most of the media used in the study, probably because of their requirement for a high medium pH. The second group of isolates primarily contained SG Prosopis rhizobia from the deep-phreatic rooting environment and included two fast-growing (FG) Psorothamnus rhizobia. These isolates were nutritionally versatile and grew over a broad pH range. The third major phenon was composed mainly of FG Prosopis rhizobia from surface and dry subsurface soils. While these isolates used a restricted range of carbohydrates (including sucrose) as sole carbon sources, they showed better growth on a range of organic acids as sole carbon sources and amino acids as sole carbon and nitrogen sources than did other isolates in the study. They grew better at 36°C than at 26°C. The FG Acacia rhizobia from surface-soil environments formed a final major phenon that was distinct from the Prosopis isolates. They produced very high absorbance readings on all of the carbohydrates tested except sucrose, grew poorly on many of the other substrates tested, and preferred a 36 to a 26°C incubation temperature. The surface populations of Prosopis rhizobia required a higher pH for growth and, under the conditions used in this study, were less tolerant of low solute potential and high growth temperature than were phreatic-soil isolates. SG Prosopis rhizobia from phreatic and surface soils were physiologically distinct, suggesting adaptation to their respective soil environments.  相似文献   

19.
The diversity of rhizobia that form symbioses with roots of black locust (Robinia pseudoacacia L.), an economically important leguminous tree species, was examined by inoculating seedling root zones with samples of soil collected from the United States, Canada, and China. Bacteria were isolated from nodules, subcultured, and verified to be rhizobia. The 186 isolates varied significantly in their resistance to antibiotics and NaCl, their growth on different carbohydrates, and their effect on the pH of culture media. Most isolates showed intermediate antibiotic resistance, the capacity to use numerous carbohydrates, and a neutral to acid pH response. Isolates had greater similarity within sampling locations than among sampling locations. The isolates were grouped by using numerical taxonomy techniques, and representative strains of 37 groups were selected. The mean generation times of these isolates ranged from 3 to 9 h, and the protein profile of each of the 37 isolates was unique. Nitrogen fixation, total nitrogen accumulation, and plant growth varied significantly among black locust seedlings inoculated with the representative isolates. We conclude that great variation exists among Rhizobium spp. that nodulate black locust, and selection of strains for efficiency of the symbiotic association appears possible.  相似文献   

20.
张爱梅  殷一然  孔维宝  朱学泰  孙坤 《生态学报》2021,41(20):8212-8221
根瘤是微生物侵染植物根部并与之形成的共生结构,这些微生物都可被称为植物内生菌。豆科植物根瘤中的内生菌常常又被称为根瘤菌,而侵染非豆科植物形成根瘤的主要是放线菌弗兰克氏菌,这些非豆科植物又被称为放线菌结瘤植物。西藏沙棘是一种典型的放线菌结瘤植物,由于其分布生境的特殊性,对其根瘤内生菌的研究具有重要的生态意义。对于西藏沙棘根瘤内生菌的研究,培养方法因难以模拟自然条件而不易获得纯培养,高通量测序技术对其多样性的研究提供了便利。因此,本研究以生长在甘肃省天祝县金强河河滩地的西藏沙棘根瘤为材料,采用16S rRNA基因扩增子高通量测序方法,结合OTU分析,对西藏沙棘根瘤内生菌的多样性进行探讨。实验结果表明,西藏沙棘根瘤内生菌具有丰富的多样性,根瘤内的优势属为共生固氮的弗兰克氏菌属(Frankia),其相对丰度为47.63%,共检测到7个弗兰克氏菌属的OTUs;根瘤内除弗兰克氏菌外,还存在大量的非弗兰克氏菌,共检测到1523个OTUs,隶属于22个门、33个纲、69个目、113个科和202个属,相对丰度排名前9的属中有25个非弗兰克氏菌属的OTUs。该研究也表明,西藏沙棘根瘤内生菌具有丰富的多样性,西藏沙棘根瘤中不仅存在着可共生固氮的弗兰克氏菌,并且还分布着非弗兰克氏菌;在同一根瘤样品中,弗兰克氏菌属还具有不同的物种。本研究不仅拓展了西藏沙棘根瘤内生菌多样性的研究方法,还为同一寄主植物中弗兰克氏菌多样性的研究提供了分析思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号