首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hugo Pettai  Arvi Freiberg  Agu Laisk 《BBA》2005,1708(3):311-321
We have found that long-wavelength quanta up to 780 nm support oxygen evolution from the leaves of sunflower and bean. The far-red light excitations are supporting the photochemical activity of photosystem II, as is indicated by the increased chlorophyll fluorescence in response to the reduction of the photosystem II primary electron acceptor, QA. The results also demonstrate that the far-red photosystem II excitations are susceptible to non-photochemical quenching, although less than the red excitations. Uphill activation energies of 9.8 ± 0.5 kJ mol−1 and 12.5 ± 0.7 kJ mol−1 have been revealed in sunflower leaves for the 716 and 740 nm illumination, respectively, from the temperature dependencies of quantum yields, comparable to the corresponding energy gaps of 8.8 and 14.3 kJ mol−1 between the 716 and 680 nm, and the 740 and 680 nm light quanta. Similarly, the non-photochemical quenching of far-red excitations is facilitated by temperature confirming thermal activation of the far-red quanta to the photosystem II core. The observations are discussed in terms of as yet undisclosed far-red forms of chlorophyll in the photosystem II antenna, reversed (uphill) spill-over of excitation from photosystem I antenna to the photosystem II antenna, as well as absorption from thermally populated vibrational sub-levels of photosystem II chlorophylls in the ground electronic state. From these three interpretations, our analysis favours the first one, i.e., the presence in intact plant leaves of a small number of far-red chlorophylls of photosystem II. Based on analogy with the well-known far-red spectral forms in photosystem I, it is likely that some kind of strongly coupled chlorophyll dimers/aggregates are involved. The similarity of the result for sunflower and bean proves that both the extreme long-wavelength oxygen evolution and the local quantum yield maximum are general properties of the plants.  相似文献   

2.
We identified a spontaneously generated mutant from Synechocystis sp. PCC6803 wild-type cells grown in BG-11 agar plates containing 5 mM Glu and 10 μM DCMU. This mutant carries an R7L mutation on the α-subunit of cyt b559 in photosystem II (PSII). In the recent 2.9 Å PSII crystal structural model, the side chain of this arginine residue is in close contact with the heme propionates of cyt b559. We called this mutant WR7Lα cyt b559. This mutant grew at about the same rate as wild-type cells under photoautotrophical conditions but grew faster than wild-type cells under photoheterotrophical conditions. In addition, 77 K fluorescence and 295 K chlorophyll a fluorescence spectral results indicated that the energy delivery from phycobilisomes to PSII reaction centers was partially inhibited or uncoupled in this mutant. Moreover, WR7Lα cyt b559 mutant cells were more susceptible to photoinhibition than wild-type cells under high light conditions. Furthermore, our EPR results indicated that in a significant fraction of mutant reaction centers, the R7Lα cyt b559 mutation induced the displacement of one of the axial histidine ligands to the heme of cyt b559. On the basis of these results, we propose that the Arg7Leu mutation on the α-subunit of cyt b559 alters the interaction between the APC core complex and PSII reaction centers, which reduces energy delivery from the antenna to the reaction center and thus protects mutant cells from DCMU-induced photo-oxidative stress.  相似文献   

3.
Anomalies in photosynthetic activity of the soybean cell line STR7, carrying a single mutation (S268P) in the chloroplastic gene psbA that codes for the D1 protein of the photosystem II, have been examined using different spectroscopic techniques. Thermoluminescence emission experiments have shown important differences between STR7 mutant and wild type cells. The afterglow band induced by both white light flashes and far-red continuous illumination was downshifted by about 4 °C and the Q band was upshifted by 5 °C. High temperature thermoluminescence measurements suggested a higher level of lipid peroxidation in mutant thylakoid membranes. In addition, the reduction rate of P700+ was significantly accelerated in STR7 suggesting that the mutation led to an activation of the photosystem I cyclic electron flow. Modulated fluorescence measurements performed at room temperature as well as fluorescence emission spectra at 77 K revealed that the STR7 mutant is defective in state transitions. Here, we discuss the hypothesis that activation of the cyclic electron flow in STR7 cells may be a mechanism to compensate the reduced activity of photosystem II caused by the mutation. We also propose that the impaired state transitions in the STR7 cells may be due to alterations in thylakoid membrane properties induced by a low content of unsaturated lipids.  相似文献   

4.
In oxygenic photosynthesis, cyclic electron flow around photosystem I denotes the recycling of electrons from stromal electron carriers (reduced nicotinamide adenine dinucleotide phosphate, NADPH, ferredoxin) towards the plastoquinone pool. Whether or not cyclic electron flow operates similarly in Chlamydomonas and plants has been a matter of debate. Here we would like to emphasize that despite the regulatory or metabolic differences that may exist between green algae and plants, the general mechanism of cyclic electron flow seems conserved across species. The most accurate way to describe cyclic electron flow remains to be a redox equilibration model, while the supramolecular reorganization of the thylakoid membrane (state transitions) has little impact on the maximal rate of cyclic electron flow. The maximum capacity of the cyclic pathways is shown to be around 60 electrons transferred per photosystem per second, which is in Chlamydomonas cells treated with 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and placed under anoxic conditions. Part I of this work (aerobic conditions) was published in a previous issue of BBA-Bioenergetics (vol. 1797, pp. 44–51) (Alric et al., 2010).  相似文献   

5.
The chlorophyll-protein CP43′ (isiA gene) induced by stress conditions in cyanobacteria is shown to serve as an antenna for Photosystem II (PSII), in addition to its known role as an antenna for Photosystem I (PSI). At high light intensity, this antenna is converted to an efficient trap for chlorophyll excitations that protects system II from photo-inhibition. In contrast to the ‘energy-dependent non-photochemical quenching’ (NPQ) in chloroplasts, this photoprotective energy dissipation in cyanobacteria is triggered by blue light. The induction is proportional to light intensity. Induction and decay of the quenching exhibit the same large temperature-dependence.  相似文献   

6.
7.
In this work, we investigated electron transport processes in the cyanobacterium Synechocystis sp. PCC 6803, with a special emphasis focused on oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Redox transients of the photosystem I primary donor P700 and oxygen exchange processes were measured by the EPR method under the same experimental conditions. To discriminate between the factors controlling electron flow through photosynthetic and respiratory electron transport chains, we compared the P700 redox transients and oxygen exchange processes in wild type cells and mutants with impaired photosystem II and terminal oxidases (CtaI, CydAB, CtaDEII). It was shown that the rates of electron flow through both photosynthetic and respiratory electron transport chains strongly depended on the transmembrane proton gradient and oxygen concentration in cell suspension. Electron transport through photosystem I was controlled by two main mechanisms: (i) oxygen-dependent acceleration of electron transfer from photosystem I to NADP+, and (ii) slowing down of electron flow between photosystem II and photosystem I governed by the intrathylakoid pH. Inhibitor analysis of P700 redox transients led us to the conclusion that electron fluxes from dehydrogenases and from cyclic electron transport pathway comprise 20-30% of the total electron flux from the intersystem electron transport chain to P700+.  相似文献   

8.
The stoichiometry of Photosystem II (PSII) to Photosystem I (PSI) reaction centres in spinach leaf segments was determined by two methods, each capable of being applied to monitor the presence of both photosystems in a given sample. One method was based on a fast electrochromic (EC) signal, which in the millisecond time scale represents a change in the delocalized electric potential difference across the thylakoid membrane resulting from charge separation in both photosystems. This method was applied to leaf segments, thus avoiding any potential artefacts associated with the isolation of thylakoid membranes. Two variations of this method, suppressing PSII activity by prior photoinactivation (in spinach and poplar leaf segments) or suppressing PSI by photo-oxidation of P700 (the chlorophyll dimer in PSI) with background far-red light (in spinach, poplar and cucumber leaf segments), each gave the separate contribution of each photosystem to the fast EC signal; the PSII/PSI stoichiometry obtained by this method was in the range 1.5-1.9 for the three plant species, and 1.5-1.8 for spinach in particular. A second method, based on electron paramagnetic resonance (EPR), gave values in a comparable range of 1.7-2.1 for spinach. A third method, which consisted of separately determining the content of functional PSII in leaf segments by the oxygen yield per single turnover-flash and that of PSI by photo-oxidation of P700 in thylakoids isolated from the corresponding leaves, gave a PSII/PSI stoichiometry (1.5-1.7) that was consistent with the above values. It is concluded that the ratio of PSII to PSI reaction centres is considerably higher than unity in typical higher plants, in contrast to a surprisingly low PSII/PSI ratio of 0.88, determined by EPR, that was reported for spinach grown in a cabinet under far-red-deficient light in Sweden [Danielsson et al. (2004) Biochim. Biophys. Acta 1608: 53-61]. We suggest that the low PSII/PSI ratio in the Swedish spinach, grown in far-red-deficient light with a lower PSII content, is not due to greater accuracy of the EPR method of measurement, as suggested by the authors, but is rather due to the growth conditions.  相似文献   

9.
Cytochrome b559 is an essential component of the photosystem II reaction center in photosynthetic oxygen-evolving organisms, but its function still remains unclear. The use of photosystem II preparations from Thermosynechococcus elongatus of high integrity and activity allowed us to measure for the first time the influence of cytochrome b559 mutations on its midpoint redox potential and on the reduction of the cytochrome b559 by the plastoquinone pool (or QB). In this work, five mutants having a mutation in the α-subunit (I14A, I14S, R18S, I27A and I27T) and one in the β-subunit (F32Y) of cytochrome b559 have been investigated. All the mutations led to a destabilization of the high potential form of the cytochrome b559. The midpoint redox potential of the high potential form was significantly altered in the αR18S and αI27T mutant strains. The αR18S strain also showed a high sensitivity to photoinhibitory illumination and an altered oxidase activity. This was suggested by measurements of light induced oxidation and dark re-reduction of the cytochrome b559 showing that under conditions of a non-functional water oxidation system, once the cytochrome is oxidized by P680+, the yield of its reduction by QB or the PQ pool was smaller and the kinetic slower in the αR18S mutant than in the wild-type strain. Thus, the extremely positive redox potential of the high potential form of cytochrome b559 could be necessary to ensure efficient oxidation of the PQ pool and to function as an electron reservoir replacing the water oxidation system when it is not operating.  相似文献   

10.
Flash induced 685 nm fluorescence emission of preilluminated and dark kept Chlamydobotrys stellata has been measured under conditions of CO2-deprivation. The difference in fluorescence intensity between dark kept and preilluminated cells is taken as a measure for the reduced state of the primary stable electron acceptor of photosystem II, Q, at the given intensity of preillumination. CO2 removal from growing cultures of this alga for 15 min diminishes photosynthetic electron transport at the oxidizing side of this photosystem. Prolonged CO2-absence influences also its reducing side. Measurements of flash induced oxygen yields support the conclusion that both sides of photosystem II are affected in the absence of bicarbonate.  相似文献   

11.
Pavel Pospíšil 《BBA》2009,1787(10):1151-1160
Photosysthetic cleavage of water molecules to molecular oxygen is a crucial process for all aerobic life on the Earth. Light-driven oxidation of water occurs in photosystem II (PSII) — a pigment-protein complex embedded in the thylakoid membrane of plants, algae and cyanobacteria. Electron transport across the thylakoid membrane terminated by NADPH and ATP formation is inadvertently coupled with the formation of reactive oxygen species (ROS). Reactive oxygen species are mainly produced by photosystem I; however, under certain circumstances, PSII contributes to the overall formation of ROS in the thylakoid membrane. Under limitation of electron transport reaction between both photosystems, photoreduction of molecular oxygen by the reducing side of PSII generates a superoxide anion radical, its dismutation to hydrogen peroxide and the subsequent formation of a hydroxyl radical terminates the overall process of ROS formation on the PSII electron acceptor side. On the PSII electron donor side, partial or complete inhibition of enzymatic activity of the water-splitting manganese complex is coupled with incomplete oxidation of water to hydrogen peroxide. The review points out the mechanistic aspects in the production of ROS on both the electron acceptor and electron donor side of PSII.  相似文献   

12.
Chlorophyll a fluorescence rise (O-J-I-P transient) was in literature simulated using models describing reactions occurring solely in photosystem II (PSII) and plastoquinone (PQ) pool as well as using complex models which described, in addition to the above, also subsequent electron transport occurring beyond the PQ pool. However, there is no consistency in general approach how to formulate a kinetic model and how to describe particular reactions occurring even in PSII only. In this work, simple kinetic PSII models are considered always with the same electron carriers and same type of reactions but some reactions are approached in different ways: oxygen evolving complex is considered bound to PSII or “virtually” separated from PSII; exchange of doubly reduced secondary quinone PSII electron acceptor, QB, with PQ molecule from the PQ pool is described by one second order reaction or by two subsequent reactions; and all possible reactions or only those which follow in logical order are considered. By combining all these approaches, eight PSII models are formulated which are used for simulations of the chlorophyll a fluorescence transients. It is shown that the different approaches can lead to qualitatively different results. The approaches are compared with other models found elsewhere in the literature and therefore this work can help the readers to better understand the other models and their results.  相似文献   

13.
Oxygen consumption in Mn-depleted photosystem II (PSII) preparations under continuous and pulsed illumination is investigated. It is shown that removal of manganese from the water-oxidizing complex (WOC) by high pH treatment leads to a 6-fold increase in the rate of O2 photoconsumption. The use of exogenous electron acceptors and donors to PSII shows that in Mn-depleted PSII preparations along with the well-known effect of O2 photoreduction on the acceptor side of PSII, there is light-induced O2 consumption on the donor side of PSII (nearly 30% and 70%, respectively). It is suggested that the light-induced O2 uptake on the donor side of PSII is related to interaction of O2 with radicals produced by photooxidation of organic molecules. The study of flash-induced O2 uptake finds that removal of Mn from the WOC leads to O2 photoconsumption with maximum in the first flash, and its yield is comparable with the yield of O2 evolution on the third flash measured in the PSII samples before Mn removal. The flash-induced O2 uptake is drastically (by a factor of 1.8) activated by catalytic concentration (5-10 μM, corresponding to 2-4 Mn per RC) of Mn2+, while at higher concentrations (> 100 μM) Mn2+ inhibits the O2 photoconsumption (like other electron donors: ferrocyanide and diphenylcarbazide). Inhibitory pre-illumination of the Mn-depleted PSII preparations (resulting in the loss of electron donation from Mn2+) leads to both suppression of flash-induced O2 uptake and disappearance of the Mn-induced activation of the O2 photoconsumption. We assume that the light-induced O2 uptake in Mn-depleted PSII preparations may reflect not only the negative processes leading to photoinhibition but also possible participation of O2 or its reactive forms in the formation of the inorganic core of the WOC.  相似文献   

14.
Ana A. Arteni  Ghada Ajlani 《BBA》2009,1787(4):272-3065
In cyanobacteria, the harvesting of light energy for photosynthesis is mainly carried out by the phycobilisome — a giant, multi-subunit pigment-protein complex. This complex is composed of heterodimeric phycobiliproteins that are assembled with the aid of linker polypeptides such that light absorption and energy transfer to photosystem II are optimised. In this work we have studied, using single particle electron microscopy, the phycobilisome structure in mutants lacking either two or all three of the phycocyanin hexamers. The images presented give much greater detail than those previously published, and in the best two-dimensional projection maps a resolution of 13 Å was achieved. As well as giving a better overall picture of the assembly of phycobilisomes, these results reveal new details of the association of allophycocyanin trimers within the core. Insights are gained into the attachment of this core to the membrane surface, essential for efficient energy transfer to photosystem II. Comparison of projection maps of phycobilisomes with and without reconstituted ferredoxin:NADP oxidoreductase suggests a location for this enzyme within the complex at the rod-core interface.  相似文献   

15.
Action spectra for photosystem II (PSII)-driven oxygen evolution and of photosystem I (PSI)-mediated H2 photoproduction and photoinhibition of respiration were used to determine the participation of chlorophyll (Chl) a/b-binding Pcb proteins in the functions of pigment apparatus of Prochlorothrix hollandica. Comparison of the in situ action spectra with absorption spectra of PSII and PSI complexes isolated from the cyanobacterium Synechocystis 6803 revealed a shoulder at 650 nm that indicated presence of Chl b in the both photosystems of P. hollandica. Fitting of two action spectra to absorption spectrum of the cells showed a chlorophyll ratio of 4:1 in favor of PSI. Effective antenna sizes estimated from photochemical cross-sections of the relevant photoreactions were found to be 192 ± 28 and 139 ± 15 chlorophyll molecules for the competent PSI and PSII reaction centers, respectively. The value for PSI is in a quite good agreement with previous electron microscopy data for isolated Pcb-PSI supercomplexes from P. hollandica that show a trimeric PSI core surrounded by a ring of 18 Pcb subunits. The antenna size of PSII implies that the PSII core dimers are associated with ∼ 14 Pcb light-harvesting proteins, and form the largest known Pcb-PSII supercomplexes.  相似文献   

16.
The sensitivity of the D-1 and D-2 polypeptide subunits of photosystem II towards trypsin treatment of the thylakoid membrane has been probed with specific antibodies. As long known, electron flow from water to ferricyanide becomes inhibitor insensitive after this trypsin treatment. We show that under these conditions the D-2 polypeptide is cut by trypsin at arg 234. Also the D-1 polypeptide is cut, probably at arg 238. When short time trypsination of the membrane is done in the presence of inhibitors, electron flow also becomes inhibitor insensitive and the D-2 polypeptide is still cut, but the D-1 polypeptide is cut only under certain conditions. A protection of the D-1 polypeptide is possible with inhibitors of photosystem II of the DCMU/triazine-type and with an artificial acceptor quinone, but not with inhibitors of the phenol-type. In hexane extracted membranes plastoquinone has been removed from the QB site. Both the D-1 and D-2 polypeptides are more trypsin sensitive in such preparations. The D-1, but not the D-2 polypeptide is protected when plastoquinone has been readded to the membrane before the trypsin digestion.The results show that plastoquinone, artificial quinones and inhibitors of photosystem II at the QB site, but also carotene to a lesser extent, have an effect on the conformation of both the D-1 and D-2 polypeptide. it is postulated that the amino acid sequence around arginine 238 of the D-1 polypeptide is part of the QB binding niche. Furthermore this sequence is modified or its conformation is changed if the QB site is occupied by either plastoquinone or a DCMU-type inhibitor because under these conditions arginine 238 is less accessible to the trypsin. If the QB site, however, is empty, the amino acid sequence with arg 238 is very trypsin sensitive. This property of modulation or the conformation of the amino acid sequence of the D-1 polypeptide by the state of the QB site is likely to be relevant also for the events in the rapid turnover of the D-1 polypeptide.Abbreviations BNT 2-bromo-4-nitro-thymol - DCMU dichlorophenyldimethylurea - PMSF phenylmethylsulfonylfluoride - SDS sodium dodecylsulfate  相似文献   

17.
Hepatitis virus replication in the liver is often accompanied by inflammation resulting in the formation of reactive oxygen species (ROS) and nitric oxide (NO) and these may induce cell death. We investigated whether the expression of HBx or HCV core protein in HepG2 cells has an influence on the sensitivity of these cells for oxidative radicals. Our previous study, using the inducible HBV model of HepAD38, revealed that oxidative-stress-related genes are upregulated by virus replication. In the present study, we examined the intracellular pro-oxidant status with dichlorofluorescein (DCF) in HepG2 cell lines transfected with HBx, HbsAg and HCV core. Baseline intracellular oxidative levels were not different in the cell lines expressing viral proteins as compared to control. However, when these cells were exposed to H(2)O(2), the viral protein expressing cells, especially those expressing HBx, showed a reduced level of ROS. This suggests that HBx and HCV core transfected cells can convert H(2)O(2) to less reactive compounds at a higher rate than the control cells. When HBx or HCV core expressing cells were exposed to peroxynitrite (a highly reactive product formed under physiological conditions through interaction of superoxide (O(2)(-)) with NO) these cells were less sensitive to induction of cell death. In addition, these cell lines were less prone to cell death when exposed to H(2)O(2) directly. In conclusion, HBx and HCV core expression in HepG2 cells leads to a survival benefit under oxidative stress which in vivo can be induced during inflammation.  相似文献   

18.
Role of thylakoid protein kinases in photosynthetic acclimation   总被引:7,自引:0,他引:7  
Rochaix JD 《FEBS letters》2007,581(15):2768-2775
Photosynthetic organisms are able to adjust to changes in light quality through state transition, a process which leads to a balancing of the light excitation energy between the antennae systems of photosystem II and photosystem I. A genetic approach has been used in Chlamydomonas with the aim of elucidating the signaling chain involved in state transitions. This has led to the identification of a small family of Ser-Thr protein kinases associated with the thylakoid membrane and conserved in algae and land plants. These kinases appear to be involved both in short and long term adaptations to changes in the light environment.  相似文献   

19.
Ferrous iron cations Fe(II) can effectively bind to the donor side of the manganese-depleted photosystem II (PSII(-Mn)) and in this way block electron transfer from diphenylcarbazide (DPC) to the major donor for P680, YZ. The present study was focused on the characteristic features of this process. The oxidation and subsequent binding of Fe(II) cations to PSII(-Mn) may proceed in the absence of an artificial electron acceptor, and therefore we investigated the role of O2 as a putative endogenous acceptor. Oxygen was shown to participate in the blockade of YZ by Fe cations, apparently as a structural element of Fe cluster formed at the donor side of PSII(-Mn). The kinetic study of blocking YZ by Fe(II) as dependent on light intensity demonstrated that the quantum efficiency of Fe cations binding to the donor side of PSII(-Mn) considerably exceeded that of Mn cations. We also compared the possibilities of extracting the native Mn cluster and reconstructed Fe cations from PSII and an alternative electron transport from DPC to P680+ under the conditions of the YZ blockade by Fe cations. Neither an alternative donor for P680, YD , nor cytochrome b 559 participated in the latter process. As a whole, our evidence shows that many features of binding Fe cation to the donor side of PSII(-Mn) are in common with photoassembling the Mn cluster.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 12–20.Original Russian Text Copyright © 2005 by Lovyagina, Davletshina, Kultysheva, Timofeev, Ivanov, Semin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号