首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Chu CY  Rana TM 《RNA (New York, N.Y.)》2008,14(9):1714-1719
RNA interference (RNAi) is a gene-silencing mechanism by which a ribonucleoprotein complex, the RNA-induced silencing complex (RISC) and a double-stranded (ds) short-interfering RNA (siRNA), targets a complementary mRNA for site-specific cleavage and subsequent degradation. While longer dsRNA are endogenously processed into 21- to 24-nucleotide (nt) siRNAs or miRNAs to induce gene silencing, RNAi studies in human cells typically use synthetic 19- to 20-nt siRNA duplexes with 2-nt overhangs at the 3′-end of both strands. Here, we report that systematic synthesis and analysis of siRNAs with deletions at the passenger and/or guide strand revealed a short RNAi trigger, 16-nt siRNA, which induces potent RNAi in human cells. Our results indicate that the minimal requirement for dsRNA to trigger RNAi is an ~42 Å A-form helix with ~1.5 helical turns. The 16-nt siRNA more effectively knocked down mRNA and protein levels than 19-nt siRNA when targeting the endogenous CDK9 gene, suggesting that 16-nt siRNA is a more potent RNAi trigger. In vitro kinetic analysis of RNA-induced silencing complex (RISC) programmed in HeLa cells indicates that 16-nt siRNA has a higher RISC-loading capacity than 19-nt siRNA. These results suggest that RISC assembly and activation during RNAi does not necessarily require a 19-nt duplex siRNA and that 16-nt duplexes can be designed as more potent triggers to induce RNAi.  相似文献   

4.
Competition for RISC binding predicts in vitro potency of siRNA   总被引:4,自引:3,他引:1  
Short interfering RNAs (siRNA) guide degradation of target RNA by the RNA-induced silencing complex (RISC). The use of siRNA in animals is limited partially due to the short half-life of siRNAs in tissues. Chemically modified siRNAs are necessary that maintain mRNA degradation activity, but are more stable to nucleases. In this study, we utilized alternating 2′-O-methyl and 2′-deoxy-2′-fluoro (OMe/F) chemically modified siRNA targeting PTEN and Eg5. OMe/F-modified siRNA consistently reduced mRNA and protein levels with equal or greater potency and efficacy than unmodified siRNA. We showed that modified siRNAs use the RISC mechanism and lead to cleavage of target mRNA at the same position as unmodified siRNA. We further demonstrated that siRNAs can compete with each other, where highly potent siRNAs can compete with less potent siRNAs, thus limiting the ability of siRNAs with lower potency to mediate mRNA degradation. In contrast, a siRNA with low potency cannot compete with a highly efficient siRNA. We established a correlation between siRNA potency and ability to compete with other siRNAs. Thus, siRNAs that are more potent inhibitors for mRNA destruction have the potential to out-compete less potent siRNAs indicating that the amount of a cellular component, perhaps RISC, limits siRNA activity.  相似文献   

5.
siRNA function in RNAi: a chemical modification analysis   总被引:39,自引:4,他引:35  
Various chemical modifications were created in short-interfering RNAs (siRNAs) to determine the biochemical properties required for RNA interference (RNAi). Remarkably, modifications at the 2'-position of pentose sugars in siRNAs showed the 2'-OHs were not required for RNAi, indicating that RNAi machinery does not require the 2'-OH for recognition of siRNAs and catalytic ribonuclease activity of RNA-induced silencing complexes (RISCs) does not involve the 2'-OH of guide antisense RNA. In addition, 2' modifications predicted to stabilize siRNA increased the persistence of RNAi as compared with wild-type siRNAs. RNAi was also induced with chemical modifications that stabilized interactions between A-U base pairs, demonstrating that these types of modifications may enhance mRNA targeting efficiency in allele-specific RNAi. Modifications altering the structure of the A-form major groove of antisense siRNA-mRNA duplexes abolished RNAi, suggesting that the major groove of these duplexes was required for recognition by activated RISC*. Comparative analysis of the stability and RNAi activities of chemically modified single-stranded antisense RNA and duplex siRNA suggested that some catalytic mechanism(s) other than siRNA stability were linked to RNAi efficiency. Modified or mismatched ribonucleotides incorporated at internal positions in the 5' or 3' half of the siRNA duplex, as defined by the antisense strand, indicated that the integrity of the 5' and not the 3' half of the siRNA structure was important for RNAi, highlighting the asymmetric nature of siRNA recognition for initiation of unwinding. Collectively, this study defines the mechanisms of RNAi in human cells and provides new rules for designing effective and stable siRNAs for RNAi-mediated gene-silencing applications.  相似文献   

6.
The NPM-ALK fusion protein is found in up to 75% of pediatric anaplastic large cell lymphomas (ALCL). The ALK kinase becomes constitutively activated and triggers malignant transformation. Molecular targeting of the tumor-specific NPM-ALK fusion by gene-silencing methods seems to be a promising approach both for the treatment of ALCL and to decipher signaling pathways used by NPM-ALK. We designed and evaluated three chemically synthesized small interfering RNAs (siRNAs) for downregulation of the NPM-ALK fusion mRNA. Compared to HeLa cells transfected with the NPM-ALK expression plasmid only and to an siRNA containing two point mutations, the most potent anti-NPM-ALK siRNA reduced NPM-ALK protein expression in HeLa cells to almost undetectable levels, and the number of cells stained positively for NPM-ALK decreased by 80%. With respect to signaling, expressing of NPM-ALK increased the activity of AKT and ERK in HeLa cells, and this effect could be blocked by the specific siRNA targeting NPM-ALK. Expression of endogenous NPM-ALK mRNA in SR786 ALCL cells decreased by 50%-60% in cells transfected with the NPM-ALK siRNA. However, the amount of NPM-ALK protein was not influenced by a single transfection of the siRNAs against NPM-ALK. Repeated transfections over 8 days led to a significant reduction in NPM-ALK protein but without induction of apoptosis. We believe that the long protein half-life of NPM-ALK, at least 48 hours, limits the application of transiently transfected siRNAs. Nevertheless, RNA interference (RNAi) offers a suitable technique to dissect signaling pathways employed by NPM-ALK and may potentially be used to develop siRNA-based gene therapeutic approaches against NPM-ALK-positive lymphomas.  相似文献   

7.
8.
In order to examine the effect of modifications at the 3' overhang regions of short interfering RNAs (siRNAs) on their gene-silencing activities, we designed and synthesized novel siRNAs having thymidine dimers consisting of a carbamate or a urea linkage at their 3' overhang regions. Suppression of human RNase L protein expression by these siRNAs was analyzed by immunoblot with RNase L-specific antibody. It was found that, at 24 h post-transfection, the modified siRNAs having the thymidine dimers with the carbamate and urea linkage suppress the protein expression 78 and 37 times more efficiently than that with the natural phosphodiester linkage, respectively. Furthermore, the siRNA containing the carbamate linkage was 37 times more resistant to nucleolytic degradation by snake venom phosphodiesterase than the siRNA consisting of the natural phosphodiester linkage. Thus, the RNA duplexes having the thymidine dimers with the carbamate or urea linkage at their 3' overhang regions will be promising candidates for novel siRNA molecules to down-regulate protein expression.  相似文献   

9.
Small interfering RNAs (siRNAs) induce sequence-specific gene silencing in mammalian cells and guide mRNA degradation in the process of RNA interference (RNAi). By targeting endogenous lamin A/C mRNA in human HeLa or mouse SW3T3 cells, we investigated the positional variation of siRNA-mediated gene silencing. We find cell-type-dependent global effects and cell-type-independent positional effects. HeLa cells were about 2-fold more responsive to siRNAs than SW3T3 cells but displayed a very similar pattern of positional variation of lamin A/C silencing. In HeLa cells, 26 of 44 tested standard 21-nucleotide (nt) siRNA duplexes reduced the protein expression by at least 90%, and only 2 duplexes reduced the lamin A/C proteins to <50%. Fluorescent chromophores did not perturb gene silencing when conjugated to the 5'-end or 3'-end of the sense siRNA strand and the 5'-end of the antisense siRNA strand, but conjugation to the 3'-end of the antisense siRNA abolished gene silencing. RNase-protecting phosphorothioate and 2'-fluoropyrimidine RNA backbone modifications of siRNAs did not significantly affect silencing efficiency, although cytotoxic effects were observed when every second phosphate of an siRNA duplex was replaced by phosphorothioate. Synthetic RNA hairpin loops were subsequently evaluated for lamin A/C silencing as a function of stem length and loop composition. As long as the 5'-end of the guide strand coincided with the 5'-end of the hairpin RNA, 19-29 base pair (bp) hairpins effectively silenced lamin A/C, but when the hairpin started with the 5'-end of the sense strand, only 21-29 bp hairpins were highly active.  相似文献   

10.
11.
12.
13.
Ji J  Wernli M  Klimkait T  Erb P 《FEBS letters》2003,552(2-3):247-252
Small interfering RNA duplexes (siRNA) induce gene silencing in various eukaryotic cells, although usually in an incomplete manner. Using chemically synthesized siRNAs targeting the HIV-1 co-receptor CXCR4 or the apoptosis-inducing Fas-ligand (FasL), co-transfection of cells with two or more siRNA duplexes targeting different sites on the same mRNA resulted in an enhanced gene silencing compared with each single siRNA. This was shown in the down-regulation of protein and mRNA expression, and functionally in the inhibition of CXCR4-mediated HIV infection and of FasL-mediated cell apoptosis. Transfection efficiency determined for the FasL-specific siRNAs was dose-dependent and varied among the siRNAs tested, but was not the main reason for the enhanced gene silencing.  相似文献   

14.
15.
16.
17.
18.
siRNAs against luciferase mRNA were modified with amide-linked oligoribonucleosides (amide-linked RNA) at their 3 '-overhangs. Tm values of the modified siRNAs increased compared with that of the unmodified siRNA. These results indicate that the modified overhangs increase the thermodynamic stability of the siRNAs. The modified overhangs improved stability of siRNAs against degradation by nuclease S1 and 50% mouse plasma. Furthermore the modified siRNAs reduced the target gene expression in a similar manner to the unmodified siRNA in cultured cells. These results suggest that the overhang modifications are tolerated for the siRNA activity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号