首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P K Herman  J Rine 《The EMBO journal》1997,16(20):6171-6181
Saccharomyces cerevisiae spore germination is a process in which quiescent, non-dividing spores become competent for mitotic cell division. Using a novel assay for spore uncoating, we found that spore germination was a multi-step process whose nutritional requirements differed from those for mitotic division. Although both processes were controlled by nutrient availability, efficient spore germination occurred in conditions that did not support cell division. In addition, germination did not require many key regulators of cell cycle progression including the cyclin-dependent kinase, Cdc28p. However, two processes essential for cell growth, protein synthesis and signaling through the Ras protein pathway, were required for spore germination. Moreover, increasing Ras protein activity in spores resulted in an accelerated rate of germination and suggested that activation of the Ras pathway was rate-limiting for entry into the germination program. An early step in germination, commitment, was identified as the point at which spores became irreversibly destined to complete the uncoating process even if the original stimulus for germination was removed. Spore commitment to germination required protein synthesis and Ras protein activity; in contrast, post-commitment events did not require ongoing protein synthesis. Altogether, these data suggested a model for Ras function during transitions between periods of quiescence and cell cycle progression.  相似文献   

2.
SG mutant and aged wild type spores of the cellular slime mold Dictyostelium discoideum germinate in the absence of an externally applied activation treatment. This type of germination is referred to as autoactivation. During the swelling stage of autoactivation, spores release a factor, the autoactivator, capable of stimulating germination in subsequent spore populations. The autoactivator was not present in the dormant spore, but it or a precursor was produced internally during the first hour of autoactivation. This production was sensitive to moderately high temperatures (+31° C) and was completely destroyed by heat activation (45° C for 30 min). Internal production of the autoactivator was not sensitive to protein synthesis inhibitors. However, the release of the activator from the spore appeared to be regulated by protein synthesis. Internal autoactivator was also produced in the aged wild type strain during the postautoactivation lag phase. The activator could not be directly isolated from within the germinating spore. Its activity on the rest of the spore population was dependent upon its release from the germinating spore. A model is presented integrating the effects of heat, cycloheximide, autoinhibitor and autoactivator on spores of D. discoideum.  相似文献   

3.
This study describes the modulation of the ouabain-insensitive Na(+)-ATPase activity from renal proximal tubule basolateral membranes (BLM) by protein kinase C (PKC). Two PKC isoforms were identified in BLM, one of 75 kDa and the other of 135 kDa. The former correlates with the PKC isoforms described in the literature but the latter seems to be a novel isoform, not yet identified. Both PKC isoforms of BLM are functional since a protein kinase C activator, TPA, increased the total hydroxylamine-resistant 32P(i) incorporation from [gamma-32P]ATP into the BLM. In parallel, TPA stimulated the Na(+)-ATPase activity from BLM in a dose-dependent manner, the effect being reversed by the PKC inhibitor sphingosine. The stimulatory effect of TPA on Na(+)-ATPase involved an increase in the V(max) (from 13.4+/-0.6 nmol P(i) mg(-1) min(-1) to 25.2+/-1.4 nmol P(i) mg(-1) min(-1), in the presence of TPA, P<0.05) but did not change the apparent affinity for Na(+) (K(0.5)=14.5+/-2.1 mM in control and 10.0+/-2.1 mM in the presence of TPA, P>0.07). PKC involvement was further confirmed by stimulation of the Na(+)-ATPase activity by the catalytic subunit of PKC (PKC-M). Finally, the phosphorylation of an approx. 100 kDa protein in the BLM (the suggested molecular mass of Na(+)-ATPase [1]) was induced by TPA. Taken together, these findings indicate that PKCs resident in BLM stimulate Na(+)-ATPase activity which could represent an important mechanism of regulation of proximal tubule Na(+) reabsorption.  相似文献   

4.
AIMS: To determine the effectiveness of tert-butyl hydroperoxide (tBHP) plus the cationic surfactant cetyltrimethyl ammonium bromide (CTAB) and a tetra-amido macrocyclic ligand (TAML) activator in killing spores of Bacillus subtilis and the mechanisms of spore resistance to and killing by this reagent. METHODS AND RESULTS: Killing of spores of B. subtilis by tBHP was greatly stimulated by the optimum ratio of concentrations of a TAML activator (1.7 micromol l(-1)) to tBHP (4.4%, vol/vol) plus a low level (270 mg l(-1)) of CTAB. Rates of killing of spores lacking most DNA protective alpha/beta-type small, acid-soluble spore proteins (alpha(-)beta(-) spores) or the major DNA repair protein, RecA, by tBHP plus CTAB and a TAML activator were essentially identical to that of wild-type spore killing. Survivors of wild-type and alpha(-)beta(-) spores treated with tBHP plus CTAB and a TAML activator also exhibited no increase in mutations. Spores lacking much coat protein either because of mutation or chemical decoating were much more sensitive to this reagent than were wild-type spores, but were more resistant than growing cells. Wild-type spores killed with this reagent retained their large pool of dipicolinic acid (DPA), and the survivors of spores treated with this reagent were sensitized to wet heat. The tBHP plus CTAB and TAML activator-killed spores germinated with nutrients, albeit more slowly than untreated spores, but germinated faster than untreated spores with dodecylamine. The killed spores were also germinated by application of 150 and 500 megaPascals of pressure for 15 min and by lysozyme treatment in hypertonic medium, but these spores lysed shortly after their germination. CONCLUSIONS: The combination of tBHP plus CTAB and a TAML activator is effective in killing B. subtilis spores. The spore coat is a major factor in spore resistance to this reagent system, which does not kill spores by DNA damage or by inactivating some component needed for spore germination. Rather, this reagent system appears to kill spores by damaging the spore's inner membrane in some fashion. SIGNIFICANCE AND IMPACT OF THE STUDY: This work demonstrates that tBHP plus CTAB and a TAML activator is an effective and mild decontaminant for spores of Bacillus species. Evidence has also been obtained on the mechanisms of spore resistance to and killing by this reagent system.  相似文献   

5.
12-O-tetradecanoyl phorbol 13-acetate (TPA) and 1,2-dioctanoyl-sn-glycerol (diC8) activate protein kinase C (PKC) in transformed fetal bovine aortic endothelial GM 7373 cells. Both molecules cause a similar increase in membrane-associated PKC activity and in the phosphorylation of a PKC-specific endogenous 87-kDa substrate in intact cells. Even though both TPA and diC8 exert a mitogenic activity in GM 7373 cells, only TPA induces also an increase in cell-associated plasminogen activator (PA) activity. Down-regulation of PKC which follows TPA-pretreatment completely abolishes the mitogenic activity of diC8 and the mitogenic and PA-inducing activity of TPA. However, both the PKC inhibitor H-7 and the down-regulation of PKC which follows a prolonged stimulation with diC8 do not abolish the PA-inducing activity of TPA. The PA-inducing activity of TPA is instead inhibited in cultures incubated in the presence of 1 mM EGTA or in a calcium-free medium. The data indicate that TPA and diC8 induce a different pattern of cellular activation in GM 7373 cells and that the PA-inducing activity of TPA might not be mediated by PKC.  相似文献   

6.
Using two types of anti-phosphopeptide antibodies which specifically recognize vimentin phosphorylated by protein kinase C (PKC) at two distinct PKC sites, we found that PKC acted as a mitotic vimentin kinase. Temporal change of vimentin phosphorylation by PKC differed form changes by cdc2 kinase. The mitosis-specific vimentin phosphorylation by PKC was dramatically enhanced by treatment with a PKC activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), while no phosphorylation of vimentin by PKC was observed in interphase cells treated with TPA. By contrast, the disruption of subcellular compartmentalization of interphase cells led to vimentin phosphorylation by PKC. Cytoplasmic and nuclear membranes are fragmented and dispersed in the cytoplasm and some bind to vimentin during mitosis. Thus, targeting of activated PKC, coupled with the reorganization of intracellular membranes which contain phospholipids essential for activation, leads to the mitosis-specific phosphorylation of vimentin. We propose that during mitosis, PKC may phosphorylate an additional subset of proteins not phosphorylated in interphase.  相似文献   

7.
The effect of phorbol esters and so the involvement of Ca2+/phospholipid-dependent protein kinase (protein kinase C;PKC) in the release of acetylcholine (ACh) was studied using Torpedo electric organ synaptosomes. 12-O-Tetradecanoylphorbol 13-acetate (TPA), a known activator of PKC, induced neurotransmitter release in a concentration-dependent manner and increased the potassium-evoked release of ACh. The effect of TPA was shown to be independent of the extrasynaptosomal calcium concentration. TPA-induced ACh release was reversed by H-7, an inhibitor of PKC activity. This drug showed no effect on potassium-evoked ACh release. Botulinum toxin, a strong blocker of potassium-induced ACh release in that synaptosomal preparation, showed no inhibitory effect on the TPA-induced ACh release. Our results suggest that activation of PKC potentiates the release of an ACh pool that is not releasable by potassium depolarization, independently of the extracellular calcium concentration.  相似文献   

8.
The mechanisms of muscarinic receptor-linked increase in cAMP accumulation in SH-SY5Y human neuroblastoma cells has been investigated. The dose-response relations of carbachol-induced cAMP synthesis and carbachol-induced rise in intracellular free Ca2+ were similar. The stimulated cAMP synthesis was inhibited by about 50% when cells were entrapped with the Ca2+ chelator BAPTA or in the presence of the protein kinase C (PKC) inhibitor staurosporine. Production of cAMP could be induced also by the Ca2+ ionophore, ionomycin and by TPA, an activator of PKC. When added together TPA and ionomycin had a synergistic effect. When cAMP synthesis was activated with cholera toxin, PGE1 or PGE1 + pertussis toxin carbachol stimulated cAMP production to the same extent as in control cells. Ca2+ and protein kinase C thus seem to be the mediators of muscarinic-receptor linked cAMP synthesis by a direct action on adenylate cyclase.  相似文献   

9.
Treatment of cultured human hepatoma HepG2 cells with the protein kinase C (PKC) activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), results in an increase in tyrosine phosphorylation of several proteins, including the focal adhesion kinase (FAK) and paxillin using anti-phosphotyrosine Western blotting and immunoprecipitation. However, when cells are in suspension or in the presence of cytochalasin D which disrupts the intracellular network of actin microfilaments, TPA loses its ability to stimulate tyrosine phosphorylation of FAK and paxillin but it still activates mitogen-activated protein kinase (MAPK) and induces PKC translocation from cytosol to the membrane in HepG2 cells. On the other hand, PD98059, a specific inhibitor of mitogen-activated protein kinase kinase, blocks TPA-induced MAPK activation but has no effect on TPA-induced tyrosine phosphorylation. Our findings suggest that TPA-induced tyrosine phosphorylation of FAK and paxillin in human hepatoma cells is PKC dependent and requires the integrity of the cell cytoskeleton but is uncoupled to the signal transduction pathway of PKC leading to the translocation of PKC and MAPK activation.  相似文献   

10.
Abstract: We studied the effects of 12- O -tetradecanoylphorbol 13-acetate (TPA), a protein kinase C (PKC) activator, and calyculin A (CLA), an inhibitor of type 1 and 2A serine/threonine phosphatases, on serotonin uptake by a human placenta choriocarcinoma cell line (BeWo) and COS-7 cells expressing recombinant serotonin transporter (SET). In BeWo cells, treatment with TPA decreased imipramine-sensitive serotonin uptake with a reduction in V max without affecting K m. CLA also decreased imipramine-sensitive serotonin uptake in a manner similar to that of TPA. TPA and CLA also decreased the uptake activity of recombinant SET expressed in COS-7 cells as seen in BeWo cells. These effects of TPA and CLA were reversed by staurosporine, a protein kinase inhibitor. To elucidate whether the inhibitory effects of TPA and CLA were due to direct phosphorylation of SET by PKC, site-directed mutagenesis of five putative PKC phosphorylation sites in SET was performed. Serotonin uptake was also down-regulated by TPA and CLA in all nine mutants, suggesting that these inhibitory modulation of SET activity did not act via direct phosphorylation of SET by PKC.  相似文献   

11.
The elicitor-induced activation of the potato pathogenesis-related gene PR-10a is positively controlled by a protein kinase(s) that affects the binding of the nuclear factors PBF-1 (for PR-10a binding factor-1) and PBR-2 to an elicitor response element (ERE). In this study, we have identified a kinase that has properties similar to the conventional isoenzymes of the mammalian protein kinase C (PKC) family. the treatment of potato tuber discs with specific inhibitors of PKC abolished the elicitor-induced binding of the nuclear factor PBF-2 to the ERE. This correlated with a reduction in the accumulation of the PR-10a protein. In contrast, treatment of the tuber discs with 12-O-tetradecanoylphorbol 13-acetate (TPA), an activator of PKC, led to an increase in binding of PBF-2 to the ERE and the corresponding increase in the level of the PR-10a protein, mimicking the effect seen with the elicitor arachidonic acid. Biochemical characterization of proteins extracted from the particulate fraction of potato tubers demonstrated that a kinase belonging to the conventional isoforms of PKC is present. This was confirmed by immunoprecipitation with antibodies specific to the conventional isoforms of human PKC and in-gel kinase assays. The ability of the immunoprecipitates to phosphorylate the alpha-peptide (a PKC specific substrate) in the presence of the coactivators calcium, phosphatidylserine, and TPA strongly suggested that the immunoprecipitated kinase is similar to the kinase characterized biochemically. Finally, the similar effects of the various modulators of PKC activity on the elicitor-induced resistance against a compatible race of Phytophthora infestans implicate this kinase in the overall defense response in potato.  相似文献   

12.
TPA (12-O-tetradecanoylphorbol-13-acetate), a well-known activator of protein kinase C (PKC), can experimentally induce reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) in certain latently infected cells. We selectively blocked the activity of PKC isoforms by using GF 109203X or rottlerin and demonstrated that this inhibition largely decreased lytic KSHV reactivation by TPA. Translocation of the PKCdelta isoform was evident shortly after TPA stimulation. Overexpression of the dominant-negative PKCdelta mutant supported an essential role for the PKCdelta isoform in virus reactivation, yet overexpression of PKCdelta alone was not sufficient to induce lytic reactivation of KSHV, suggesting that additional signaling molecules participate in this pathway.  相似文献   

13.
M Mitsuhashi  D G Payan 《Life sciences》1988,43(18):1433-1440
The present study was undertaken in order to examine the effect of protein kinase C (PKC) on histamine H1 receptors (H1R) present on the smooth muscle cell line, DDT1MF-2. [3H]-pyrilamine binding revealed that specific [3H]-pyrilamine binding sites were reduced by pretreatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of PKC, but not the Kd. The TPA analogue, 4 alpha phorbol 12,13-didecanoate, which does not activate PKC, failed to induce down-regulation of H1R. TPA-induced down-regulation of H1R was inhibited by pretreatment with 1-(5-Isoquinilinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), a PKC inhibitor, in a dose dependent manner. The H-7 analogue, H-8, which is a less potent inhibitor of PKC, but a potent inhibitor of cyclic nucleotide dependent protein kinase, had no effect on H1R. Moreover, treatment with TPA inhibited histamine-induced increases in [Ca2+]i in cells loaded with the fluorescent indicator, indo-1. These data suggest that H1R in DDT1MF-2 cells are functionally regulated by PKC.  相似文献   

14.
Application of 2,5-norbornadiene, a competitive inhibitor of ethylene, effectively inhibited the germination of Botrytis cinerea Pers. ex Fr. spores. The transfer of spores from 2,5-norbornadiene to air relieved inhibition by norbornadiene, indicating that its effects are non-toxic and reversible. Ethephon (2-chloroethylophosphonic acid), which stimulates spore germination of B. cinerea , does not affect germination in the presence of norbornadiene. However, ethephon appeared to be effective in relieving inhibition, when norbornadiene was removed from the atmosphere surrounding spores. The addition of ethylene to an atmosphere enriched with norbornadiene, counteracted the inhibition of spore germination. The inhibition of spore germination by 2,5-norbornadiene and the reversal of this effect by ethephon or ethylene, indicate that the action of ethylene is indispensable for germination of B. cinerea spores.  相似文献   

15.
The role of protein kinase C (PKC) in the multihormonally regulated ACTH secretory responses of rat anterior pituitary cells was examined in control cells or after pretreatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of PKC. Using affinity-purified polyclonal antiserum raised against purified rat brain PKC, immunoprecipitable PKC was demonstrated in [35S]methionine-labeled cells appearing as a doublet of 78/80 kilodaltons. Long-term treatment (24 h) of cells with 0.6 microM TPA caused the specific loss of immunologically reactive PKC. Consistently, TPA pretreatment decreased the amount of phosphatidylserine-dependent protein kinase activity measured in vitro by 90%. In control cells, vasopressin (AVP) stimulated ACTH secretion and potentiated ACTH secretion stimulated by CRF. After a 24-h treatment with 0.6 microM TPA, secretory responses to AVP and the potentiating effect of AVP on CRF action were completely abolished. In contrast, CRF action on ACTH secretion, thought to be mediated by cAMP, was unaffected. Similarly, forskolin- and 8 bromo-cAMP-induced ACTH secretion remained unchanged after TPA pretreatment. These results indicate a crucial role for PKC in mediating the effects of AVP on ACTH secretion and on the potentiating action of AVP on CRF-induced secretion from corticotropic cells of the anterior pituitary.  相似文献   

16.
17.
The effect of various phospholipase A2 and protein kinase inhibitors on the arachidonic acid liberation in bovine platelets induced by the protein kinase activator 12-O-tetradecanoylphorbol-13-acetate (TPA) was studied. TPA stimulates arachidonic acid release mainly by activating group IV cytosolic PLA2 (cPLA2), since inhibitors of this enzyme markedly inhibited arachidonic acid formation. However, group VI Ca2+-independent PLA2 (iPLA2) seems to contribute to the arachidonic acid liberation too, since the relatively specific iPLA2 inhibitor bromoenol lactone (BEL) decreased arachidonic acid generation in part. The pronounced inhibition of the TPA-induced arachidonic acid release by the protein kinase C (PKC) inhibitors GF 109203X and Ro 31-82220, respectively, and by the p38 MAP kinase inhibitor SB 202190 suggests that the activation of the PLA2s by TPA is mediated via PKC and p38 MAP kinase.  相似文献   

18.
Prostaglandin F2alpha (PGF2alpha) significantly induced p42/p44 mitogen-activated protein (MAP) kinase activity in osteoblast-like MC3T3-E1 cells. PD98059, a selective inhibitor of MAP kinase kinase, inhibited PGF2alpha-induced interleukin-6 (IL-6) synthesis as well as PGF2alpha-induced p42/p44 MAP kinase activation. PD98059 suppressed the IL-6 synthesis induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC) activator, or NaF, an activator of heterotrimeric GTP-binding protein, as well as the p42/p44 MAP kinase activation by TPA or NaF. Calphostin C, a highly potent and specific inhibitor of PKC, inhibited the PGF2alpha-induced p42/p44 MAP kinase activity. These results strongly suggest that PKC-dependent p42/p44 MAP kinase activatioin is involved in PGF2alpha-induced IL-6 synthesis in osteoblasts.  相似文献   

19.
We have purified a yeast protein kinase that is phospholipid-dependent and activated by Diacylglycerol (DAG) in the presence of Ca2+ or by the tumour-promoting agent tetradecanoyl-phorbol acetate (TPA). The properties of this enzyme are similar to those of the mammalian protein kinase C (PKC). The enzyme was purified using chromatography on DEAE-cellulose followed by hydroxylapatite. The latter chromatography separated the activity to three distinguishable sub-species, analogous to the mammalian PKC isoenzymes. The fractions enriched in PKC activity contain proteins that specifically bind TPA, are specifically phosphorylated in the presence of DAG and recognized by anti-mammalian PKC antibodies.  相似文献   

20.
The synthetic fluorescent derivatives of 12-O-tetradecanoylphorbol-13-acetate (TPA), dansyl-TPA, dansyl-TPA-20-acetate and dansyl-TPA-13-desacetate, have ID50 values in the [3H]PDBu binding assay of 2nM, 30nM and 1000nM respectively; the ID50 value of TPA is 4nM. Dansyl-TPA is also equipotent with TPA as an activator of protein kinase C(PKC) producing half maximum stimulation at 2nM. Dansyl-TPA-13-desacetate is almost as potent as dansyl-TPA, while dansyl-TPA-20-acetate is completely inactive as an activator of PKC. The cellular uptake of these fluorescent TPA derivatives tends to parallel their activity in the [3H]PDBu binding assay. Treatment of C3H 10T1/2 cells with 100nM dansyl-TPA results in intense fluorescence of the entire cytoplasm, while the nucleus is virtually devoid of fluorescence. The uptake of fluorescence is quenched by an excess of TPA. Thus, dansyl-TPA rapidly enters cells and binds to specific sites distributed throughout the cytoplasm. Presumably these sites reflect the cellular localization of phorbol ester receptors and protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号