首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dimorphecolic acid (9-OH-18:2Delta(10)(trans)(,12)(trans)) is the major fatty acid of seeds of Dimorphotheca species. This fatty acid contains structural features that are not typically found in plant fatty acids, including a C-9 hydroxyl group, Delta(10),Delta(12)-conjugated double bonds, and trans-Delta(12) unsaturation. Expressed sequence tag analysis was conducted to determine the biosynthetic origin of dimorphecolic acid. cDNAs for two divergent forms of Delta(12)-oleic acid desaturase, designated DsFAD2-1 and Ds-FAD2-2, were identified among expressed sequence tags generated from developing Dimorphotheca sinuata seeds. Expression of DsFAD2-1 in Saccharomyces cerevisiae and soybean somatic embryos resulted in the accumulation of the trans-Delta(12) isomer of linoleic acid (18: 2Delta(9)(cis)(,12)(trans)) rather than the more typical cis-Delta(12) isomer. When co-expressed with DsFAD2-1 in soybean embryos or yeast, DsFAD2-2 converted 18:2Delta(9)(cis)(,12)(trans) into dimorphecolic acid. When DsFAD2-2 was expressed alone in soybean embryos or together with a typical cis-Delta(12)-oleic acid desaturase in yeast, trace amounts of the cis-Delta(12) isomer of dimorphecolic acid (9-OH-18:2Delta(10)(trans,)(12)(cis)) were formed from DsFAD2-2 activity with cis-Delta(12)-linoleic acid [corrected]. These results indicate that DsFAD2-2 catalyzes the conversion of the Delta(9) double bond of linoleic acid into a C-9 hydroxyl group and Delta(10)(trans) double bond and displays a substrate preference for the trans-Delta(12), rather than the cis-Delta(12), isomer of linoleic acid. Overall these data are consistent with a biosynthetic pathway of dimorphecolic acid involving the concerted activities of DsFAD2-1 and DsFAD2-2. The evolution of two divergent Delta(12)-oleic acid desaturases for the biosynthesis of an unusual fatty acid is unprecedented in plants.  相似文献   

2.
A previous study showed that oleic acid was converted by mixed ruminal microbes to stearic acid and also converted to a multitude of trans octadecenoic acid isomers. This study traced the metabolism of one of these trans C18:1 isomers upon its incubation with mixed ruminal microbes. Unlabeled and labeled (18-[13C]trans-9 C18:1) elaidic acid were each added to four in vitro batch cultures with three cultures inoculated with mixed ruminal bacteria and one uninoculated culture. Samples were taken at 0, 12, 24, and 48 h and analyzed for 13C enrichment in component fatty acids by gas chromatography-mass spectrometry. At 0 h of incubation, enrichment was detected only in elaidic acid. By 48 h of incubation, 13C enrichment was 18% (P < 0.01) for stearic acid, 7% to 30% (P < 0.01) for all trans C18:1 isomers having double bonds between carbons six through 16, and 5% to 10% for cis-9 and cis-11 monoenes. After 48 h, 13C enrichment in the uninoculated cultures was only detected in the added elaidic acid. This study shows trans fatty acids exposed to active ruminal cultures are converted to stearic acid but also undergo enzymic isomerization yielding a multitude of positional and geometric isomers.  相似文献   

3.
The multienzyme complex for fatty acid oxidation was purified from Pseudomonas fragi, which was grown on oleic acid as the sole carbon source. This complex exhibited enoyl-CoA hydratase [EC 4.2.1.17], 3-hydroxyacyl-CoA dehydrogenase [EC 1.1.1.35], 3-oxoacyl-CoA thiolase [EC 2.3.1.16], cis-3,trans-2-enoyl-CoA isomerase [EC 5.3.3.3], and 3-hydroxyacyl-CoA epimerase [EC 5.1.2.3] activities. The molecular weight of the native complex was estimated to be 240,000. Two types of subunits, with molecular weights of 73,000 and 42,000, were identified. The complex was composed of two copies each of the 73,000- and 42,000-Da subunits. The beta-oxidation system was reconstituted in vitro using the multienzyme complex, acyl-CoA synthetase and acyl-CoA oxidase. This reconstituted system completely oxidized saturated fatty acids with acyl chains of from 4 to 18 carbon atoms as well as unsaturated fatty acids having cis double bonds extending from odd-numbered carbon atoms. However, unsaturated fatty acids having cis double bonds extending from even-numbered carbon atoms were not completely oxidized to acetyl-CoA: about 5 mol of acetyl-CoA was produced from 1 mol of linoleic or alpha-linolenic acid, and about 2 mol of acetyl-CoA from 1 mol of gamma-linolenic acid. These results suggested that the 3-hydroxyacyl-CoA epimerase in the complex was not operative. When the epimerase was by-passed by the addition of 2,4-dienoyl-CoA reductase to the reconstituted system, unsaturated fatty acids with cis double bonds extending from even-numbered carbon atoms were also completely degraded to acetyl-CoA.  相似文献   

4.
The objective of this study was to compare the effects of linoleic acid (cis,cis-C18:2(n-6)) and its hydrogenation products elaidic (trans-C18:1(n-9)) and stearic acid (C18:0) on serum lipoprotein levels in humans. Twenty-six men and 30 women, all normolipemic and apparently healthy, completed the trial. Three experimental diets were supplied to every subject for 3 weeks each, in random order (multiple cross-over). The Linoleate-diet provided 12.0% of total energy intake as linoleic acid, 2.8% as stearic acid, and 0.1% as trans fatty acids. The Stearate-diet supplied 3.9 energy % as linoleic acid, 11.8% stearic acid, and 0.3% trans fatty acids. The Trans-diet provided 3.8 energy % as linoleic acid, 3.0% stearic acid, and 7.7% as monounsaturated trans fatty acids, largely elaidic acid (trans-C18:1(n-9)). Other nutrients were constant. Fasting blood was sampled at the end of each dietary period. Mean (+/- SD) serum LDL cholesterol was 109 +/- 24 mg/dl (2.83 +/- 0.63 mmol/l) on the Linoleate-diet. It rose to 116 +/- 27 mg/dl (3.00 +/- 0.71 mmol/l) on the Stearate-diet (change, 7 mg/dl or 0.17 mmol/l, P = 0.0008) and to 119 +/- 25 mg/dl (3.07 +/- 0.65 mmol/l) on the Trans-diet (change, 9 mg/dl or 0.24 mmol/l, P less than 0.0001). High density lipoprotein (HDL) cholesterol decreased by 2 mg/dl (0.06 mmol/l, P less than 0.0001) on the Stearate-diet and by 4 mg/dl (0.10 mmol/l, P less than 0.0001) on the Trans-diet, both relative to linoleic acid. Our findings show that 7.7% of energy (mean, 24 g/day) of trans fatty acids in the diet significantly lowered HDL cholesterol and raised LDL cholesterol relative to linoleic acid. Combination with earlier results (Mensink, R. P., and M. B. Katan. 1990. N. Engl. J. Med. 323: 439-445) suggests a linear dose-response relation. Replacement of linoleic acid by stearic acid also caused somewhat lower HDL cholesterol and higher LDL cholesterol levels. Hydrogenation of linoleic acid to either stearic or trans fatty acids produces fatty acids that may increase LDL and decrease HDL cholesterol relative to linoleic acid itself.  相似文献   

5.
Several grams of labelled trans linoleic and linolenic acids with high chemical and isomeric purities (>97%) have been prepared for human metabolism studies. A total of 12.5 g of (9Z, 12E)-[1-(13)C]-octadeca-9,12-dienoic acid and 6.3 g of (9Z,12Z, 15E)-[1-(13)C]-octadeca-9,12,15-trienoic acid were obtained in, respectively, seven steps (7.8% overall yield) and 11 steps (7% overall yield) from 7-bromo-heptan-1-ol. The trans bromo precursors used for the labelling were synthesised by using copper-catalysed couplings. The trans fatty acids were then obtained via the nitrile derivatives. A total of 23.5 g of (9Z,12Z)-[1-(13)C]-octadeca-9, 12-dienoic acid and 10.4 g of (9Z,12Z,15Z)-[1-(13)C]-octadeca-9,12, 15-trienoic acid were prepared in five steps in, respectively, 32 and 18% overall yield. Large quantities of bromo and chloro precursors were synthesised from the commercially available acid according to Barton's procedure. In all cases, the main impurities (>0.5%) of each labelled fatty acid have been characterised.  相似文献   

6.
Effects on the linoleic acid metabolism in vivo of three dietary fats, rich in either oleic acid, trans fatty acids or alpha-linolenic acid, and all with the same linoleic acid content, were investigated in male Wistar rats. After 6 weeks of feeding, the rats were intubated with [1-14C]linoleic acid and [3H]oleic acid. The incorporation of these radiolabels into liver, heart and serum was investigated 2, 4, 8, 24 and 48 h after intubation. The amount of 14C-labelled arachidonic acid incorporated into the liver phospholipid of the group fed the oleic acid-rich diet was significantly higher than that of the other groups. However, compared to the trans fatty acids-containing diet, the oleic acid-rich diet induced only a slightly higher arachidonic acid level in the phospholipid fraction of the tissues as determined by GLC. Dietary alpha-linolenic acid more than halved the arachidonic acid levels. Our results do not support the hypothesis that the delta 6-desaturase system actually determines the polyunsaturated fatty acid levels in tissue lipids by regulating the amount of polyunsaturated fatty acids (e.g., arachidonic acid) synthesized. The biosynthesis of polyunsaturated fatty acids only is not sufficient to explain the complicated changes in fatty acid compositions as observed after feeding different dietary fats.  相似文献   

7.
Divergent forms of the plant Delta(12)-oleic-acid desaturase (FAD2) have previously been shown to catalyze the formation of acetylenic bonds, epoxy groups, and conjugated Delta(11),Delta(13)-double bonds by modification of an existing Delta(12)-double bond in C(18) fatty acids. Here, we report a class of FAD2-related enzymes that modifies a Delta(9)-double bond to produce the conjugated trans-Delta(8),trans-Delta(10)-double bonds found in calendic acid (18:3Delta(8trans,10trans,12cis)), the major component of the seed oil of Calendula officinalis. Using an expressed sequence tag approach, cDNAs for two closely related FAD2-like enzymes, designated CoFADX-1 and CoFADX-2, were identified from a C. officinalis developing seed cDNA library. The deduced amino acid sequences of these polypeptides share 40-50% identity with those of other FAD2 and FAD2-related enzymes. Expression of either CoFADX-1 or CoFADX-2 in somatic soybean embryos resulted in the production of calendic acid. In embryos expressing CoFADX-2, calendic acid accumulated to as high as 22% (w/w) of the total fatty acids. In addition, expression of CoFADX-1 and CoFADX-2 in Saccharomyces cerevisiae was accompanied by calendic acid accumulation when induced cells were supplied exogenous linoleic acid (18:2Delta(9cis,12cis)). These results are thus consistent with a route of calendic acid synthesis involving modification of the Delta(9)-double bond of linoleic acid. Regiospecificity for Delta(9)-double bonds is unprecedented among FAD2-related enzymes and further expands the functional diversity found in this family of enzymes.  相似文献   

8.
Microbial biohydrogenation of oleic acid to trans isomers in vitro   总被引:5,自引:0,他引:5  
Ruminant products are significant sources of dietary trans fatty acids. Trans fatty acids, including various conjugated linoleic acid isomers, have been shown to act as metabolic modifiers of lipid metabolism. Trans fatty acids originate from biohydrogenation of dietary unsaturated fatty acids by gut microbes; however, the exact synthetic pathways are unclear. It was our goal to examine the biohydrogenation pathway for oleic acid, where oleic acid is hydrogenated directly to stearic acid. Our objective in this study was to trace the time course of appearance of 13C in labeled oleic acid to determine if trans monoenes are formed from the 13C-labeled oleic acid or if the 13C appears only in stearic acid as described in reviews of earlier work. Enrichments were calculated from the mass abundance of 13C in major fatty acid fragments and expressed as a percentage of total carbon isotopomers. Significant 13C enrichment was found in stearic acid, oleic acid, trans-6, trans-7, and in all trans C18:1 in positions 9-16. We concluded that the biohydrogenation of oleic acid by mixed ruminal microbes involves the formation of several positional isomers of trans monoenes rather than only direct biohydrogenation to form stearic acid as previously described.  相似文献   

9.
Although endogenous synthesis of conjugated linoleic acid (CLA) in the mammary gland of lactating cows has been already well documented, no study has determined so far as to which tissue and/or organ is involved in CLA synthesis in the growing ruminant except one study showing that CLA synthesis does not occur in ruminant liver. In this context, adipose tissue appears to be a good candidate for endogenous synthesis of CLA in the growing ruminant. The aim of this study was to compare the respective metabolisms of 11trans 18:1 (vaccenic acid, VA) and 9cis,11trans 18:2 (rumenic acid) to that of stearic acid (the preferential substrate of Δ9 desaturase) in adipose tissues (subcutaneous, SC and intermuscular, IM) of six Charolais steers by using the in vitromethod of incubated tissue slices. Samples of SC and IM adipose tissues were incubated at 37°C for 16 h under an atmosphere of 95% O2/5% CO2 in a medium supplemented with 0.75 mM of fatty acid (FA) mixture (representative of circulating non-esterified FA) and 186 μM [1-14C]-18:0 or 58.6 μM [1-14C]-VA or 56 μM [1-14C]-9cis,11trans CLA. Viability of explants was verified by measuring metabolic functions (glucose uptake and glucose-6-phosphate dehydrogenase activity). After 16 h of incubation, FA uptake was similar for all FA (18:0, VA and 9cis,11trans 18:2) in both SC and IM adipose tissues (around 40%). Once in adipose tissue, all FA were preferentially esterified (>80% of cell FA) favouring neutral lipid synthesis (around 90% of esterified FA). Stearic acid was highly (27%) desaturated into oleic acid in SC adipose tissue whereas this desaturation was much lower (6.8%) in IM adipose tissue (P < 0.0001). VA was desaturated into 9cis,11trans CLA at a low extent of about 2.5% to 4.4% in both adipose tissues probably because of a limited affinity of Δ9 desaturase for VA. 9cis,11trans CLA was itself converted by desaturation into 6cis, 9cis,11trans 18:3 at the intensity of 10.8% and 14.5% of cell 9cis,11trans CLA in SC and IM adipose tissues, respectively. In conclusion, bovine adipose tissues of the growing ruminant were especially involved in the endogenous synthesis of CLA from VA and in its desaturation into conjugated derivative, mainly 6cis, 9cis,11trans 18:3, of which biological properties need to be elucidated.  相似文献   

10.
The solvent-tolerant bacterium Pseudomonas putida S12, which adapts its membrane lipids to the presence of toxic solvents by a cis to trans isomerization of unsaturated fatty acids, was used to study possible in vivo regiospecificity of the isomerase. Cells were supplemented with linoleic acid (C18:2delta9-cis,delta12-cis), a fatty acid that cannot be synthesized by this bacterium, but which was incorporated into membrane lipids up to an amount of 15% of total fatty acids. After addition of 1-octanol, which was used as an activator of the cis-trans isomerase, the linoleic acid was converted into the delta9-trans,delta12-cis isomer, while the delta9-cis,delta12-trans and delta9-trans,epsilon12-trans isomers were not synthesized. Thus, for the first time, regiospecific in vivo formation of novel, mixed cis/trans isomers of dienoic fatty acid chains was observed. The maximal conversion (27-36% of the chains) was obtained at 0.03-0.04% (v/v) octanol, after 2 h. The observed regiospecificity of the enzyme, which is located in the periplasmic space, could be due to penetration of the enzyme to a specific depth in the membrane as well as to specific molecular recognition of the substrate molecules.  相似文献   

11.
12.
Ricinoleic acid (12-hydroxy-cis-9-octadecaenoic acid) was an effective substrate for conjugated linoleic acid (CLA) production by washed cells of Lactobacillus plantarum AKU 1009a. The CLA produced was a mixture of cis-9,trans-11- and trans-9,trans-11-octadecadienoic acids. Addition of alpha-linolenic acid to the culture medium increased the CLA productivity of the washed cells. In the presence of lipase, castor oil, in which the main fatty acid component is ricinoleic acid, also was a substrate for CLA.  相似文献   

13.
Cultured rat kidney cells absorbed exogenous linoleic acid (cic, cis-18:2n-6) and esterified it mostly into glycerophospholipids. As the concentration of 18:2 was increased (5-200 microM) the quantity absorbed increased linearly and the amount esterified in the triacylglycerol increased. The cells possessed active acyl delta 6-desaturase and elongase which facilely converted 18:2n-6 to 20:4n-6. At low intracellular concentrations of 18:2n-6 other unsaturated fatty acids, i.e., gamma-linolenic (18:3n-6), alpha-linolenic (18:3n-3), dihomo-gamma-linolenic (20:3n-6), and especially trans, trans-linoleic acid (trans, trans-18:2n- -6) at concentrations ranging from 25 to 200 microM depressed delta 6-desaturase activity. However, suppression of 20:4 synthesis even by trans, trans-18:2 was readily overcome by increasing the concentration of available cis, cis-18:2n-6.  相似文献   

14.
Five Lactobacillus strains (2 L. gasseri, 2 L. plantarum and 1 L. reuteri) were cultured in modified MRS medium containing fatty acids (FAs) instead of Tween 80 for 24 h at 37 degrees C, to learn the effect of saturated and unsaturated FAs on the Lactobacillus growth. Free FAs included palmitic (16:0), palmitoleic (c9-16:1), stearic (18:0), oleic (c9-18:1), elaidic (t9-18:1), cis-vaccenic (c11-18:1), vaccenic (t11-18:1), linoleic (c9, c12-18:2), conjugated linoleic (c9, t11- and t10, c12-18:2), alpha-linolenic (c9, c12, c15-18:3), alpha-eleostearic (c9, t11, t13-18:3), eicosapentaenoic (20:5), and docosahexaenoic (22:6) acids. Among free FAs, oleic acid stimulated the growth of all Lactobacillus strains, whereas palmitoleic acid had almost no affect on the Lactobacillus growth. Saturated FAs such as stearic and palmitic acids inhibited or did not affect the Lactobacillus growth. Polyunsaturated FAs such as alpha-linolenic, eicosapentaenoic and docosahexaenoic acids strongly inhibited the Lactobacillus growth at 7.6 x 10(-4) m. Octadecenoic acids such as oleic, elaidic, cis-vaccenic and vaccenic acids remarkably promoted the growth of L. gasseri, regardless of the different double bond positions and configurations. When oleic or cis-vaccenic acid was incubated with L. gasseri, the FAs was transformed to cyclopropane FAs (methyleneoctadecanoic acids) after incorporation into the cells. On the other hand, trans FAs such as elaidic and vaccenic acids incorporated into the cells were not converted to another FAs. Conjugated linoleic and alpha-eleostearic acids having a trans double bond promoted the Lactobacillus growth. The growth of L. gasseri was also stimulated by trans-rich free FAs from hydrogenated canola and fish oils. These results showed that octadecenoic acid and trans FAs had strong promotion activities for the Lactobacillus growth due to their incorporation into membrane lipids.  相似文献   

15.
The purpose of this study was to determine whether adult humans can recycle carbon from alpha-linolenic acid (18:3n-3) into saturated (SFA) and monounsaturated (MUFA) fatty acids. Six men and six women consumed 700 mg [U-13C]-18:3n-3. Blood was collected over 21 days and breath over 24h. [13C]-labelled SFA and MUFA were detected in plasma phosphatidylcholine (PC) and triacylglycerol (TAG). Total labelled fatty acid incorporation into SFA and MUFA was five- and 25-fold greater in PC than TAG in men and women, respectively. [13C]-16:0 was the major labelled fatty acid in both fractions. Total [13C] incorporation into SFA and MUFA was 20% greater in men than women, and related positively (r(2) = 0.35, P<0.05) to the fractional recovery of labelled 18:3n-3 as 13CO2 on breath. These results suggest that the extent of partitioning towards beta-oxidation and carbon recycling may regulate the availability of 18:3n-3 for conversion to longer-chain fatty acids.  相似文献   

16.
The wild-type Aspergillus niger (V35) does not require fatty acids for growth. Four unsaturated fatty acid auxotrophs designated as UFA1, UFA2, UFA3, and UFA4 have been produced from this organism by treating the conidia of the wild-type strain with a mutagen, N-methyl-N'-nitro-N-nitrosoguanidine, followed by isolation on media containing monounsaturated fatty acids and the nonionic detergent, Brij 58. Optimal growth of the mutants comparable with that of the wild type was achieved with medium supplemented with C16 or C18 unsaturated fatty acids containing at least one cis double bond at the delta 9 position. Some other fatty acids (18:1 delta 11 cis and 16:1 delta 9 trans) support growth to some extent. The mutants do not grow at all in the presence of saturated fatty acids. Fatty acid analyses of the mutant, UFA2, grown in the presence of different fatty acid supplements reveal that it may be defective in a desaturase system. Experiments with unlabeled and [1-14C]palmitoyl-CoA have shown that the microsomes of the mutant (UFA2) contain a partially defective delta 9-desaturase system.  相似文献   

17.
Single nucleotide polymorphisms in the coding region of the bovine stearoyl-CoA desaturase 1 gene have been predicted to result in p.293A (alanine at amino acid 293) and p.293V (valine at amino acid 293) alleles at the stearoyl-CoA desaturase1 locus. The objectives of this study were to evaluate the extent to which genotypes at the stearoyl-CoA desaturase 1 locus and stage of lactation influence milk fatty acid composition in Canadian Holstein cows. Cows with the p.293AA genotype had higher C10 index, C12 index and C14 index and higher concentrations of C10:1 (10 carbon fatty acid with one double bond), C12:1 (12 carbon fatty acid with one double bond) and myristoleic acid (C14:1) compared with the p.293AV or p.293VV cows. Cows had higher C18 index and total index, and lower C10 index, C12 index, C14 index and CLA index during early lactation compared with the subsequent lactation stages. Early lactation was also characterized by higher concentrations of oleic acid (C18:1 cis -9), vaccenic acid (C18:1 trans -11), linoleic acid (C18:2), monounsaturated fatty acids and total polyunsaturated fatty acids, and lower concentrations of capric acid (C10:0), C10:1, lauric acid (C12:0), C12:1, myristic acid (C14:0), myristoleic acid (C14:1), palmitic acid (C16:0) and total saturated fatty acids compared with the subsequent lactation stages. Neither the stearoyl-CoA desaturase 1 genotype nor the stage of lactation had an influence on conjugated linoleic acid concentrations in milk.  相似文献   

18.
[1-14C]Arachidonic acid was incubated with homogenates of the fungus, Saprolegnia parasitica. The products consisted of comparable amounts of two epoxy alcohols, 15-Ls-hydroxy-11,12-epoxy-5cis,8cis,13trans- eicosatrienoic acid and 15-hydroxy-13,14-epoxy-5cis,8cis,11cis-eicosatrienoic acid. Results of incubations carried out in the presence of nordihydroguaiaretic acid, 5,8,11,14-eicosatetraynoic acid, p-hydroxymercuribenzoate as well as glutathione peroxidase plus reduced glutathione demonstrated that transformation of arachidonic acid into epoxy alcohols occurred with the formation of 15-Ls-hydroperoxy-5cis,8cis,11cis,13trans- eicosatetraenoic acid (15-HPETE) as an intermediate. The pathway involved a lipoxygenase catalyzing the oxygenation of arachidonic acid at the 15L position to produce 15-HPETE, and a hydroperoxide isomerase activity which catalyzed conversion of 15-HPETE into the two epoxy alcohols. Studies with 15-[18O2]HPETE demonstrated that both oxygens of 15-HPETE were retained in the epoxy alcohols. Furthermore, experiments with mixtures of 15-[18O2]-and 15-[16O2]HPETE showed that conversion of 15-HPETE into epoxy alcohols occurred by an intramolecular transfer of hydroperoxide oxygen.  相似文献   

19.
20.
In order to study the effects of saturated fatty acids on delta6-desaturase activity, rat hepatocytes in primary culture were incubated with lauric (C12:0), myristic (C14:0) or palmitic (C16:0) acids. After optimization, the standard in vitro conditions for the measurement of delta6-desaturase activity were as follows: 60 micromol x L(-1) alpha-linolenic acid (C18:3n-3), reaction time of 20 min and protein content of 0.4 mg. Data showed that cell treatment with 0.5 mmol x L(-1) myristic acid during 43 h specifically increased delta6-desaturase activity. This improvement, reproducible for three substrates of delta6-desaturase, i.e. oleic acid (C18:1n-9), linoleic acid (C18:2n-6) and alpha-linoleic acid (C18:3n-3) was dose-dependent in the range 0.1-0.5 mmol x L(-1) myristic acid concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号