首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five points are discussed regarding the vesicular structure isolated by fractionation techniques from the brain and liver of the guinea pig. 1. One type of vesicle, fixed by OsO4 and shown in thin sections, is identified with the coated vesicle that has been observed in many varieties of tissues. 2. The vesicle contained in a spherical polygonal "basketwork" shown by the negative-staining techniques is identical with the coated vesicle shown in sections. 3. Despite minute observation of this basketwork we could not confirm the existence of "hairlike projections" extending from the convex cytoplasmic surface of the vesicle. We are inclined to believe, therefore, that the hairlike projections are actually the superimposed visual images of the regular hexagons and pentagons of the network composing the basketwork. 4. We repeat the hypothesis originally advanced by Roth and Porter (1) that the "coating" of the coated vesicle plays a role in the mechanism of the infolding and fission of the membrane; we suggest that these events are caused by the transformation of the regular hexagons (of the coating) into regular pentagons. 5. Finally, we make a suggestion as to the nature of those vesicles which have on their surface subparticles which look like "elementary particles (2)."  相似文献   

2.
Assembly and packing of clathrin into coats   总被引:20,自引:12,他引:8       下载免费PDF全文
We present a model for the packing of clathrin molecules into the characteristic hexagons and pentagons covering coated pits and vesicles. The assembly unit is a symmetrical trimer with three extended legs. Polymerization of these units occurs in seconds under suitable conditions, giving empty polyhedral cages resembling the structures around coated vesicles. Images of small, negatively stained fragments of cages, assembled directly on electron microscope grids, reveal details of the structure, which correlate well with the predicted features of the model. There is one clathrin trimer at each polyhedral vertex, and each leg of the trimer extends along two neighboring polyhedral edges. Quasi-equivalent packing in pentagons and hexagons in polyhedra of different sizes requires a variable joint at the vertex of the molecule and a hinge in each leg. The construction of clathrin coats is remarkable for the extended fibrous contacts that each molecule makes with many others. Such contacts may confer mechanical strength combined with flexibility needed when a vesicle is pinched off from the membrane.  相似文献   

3.
Fixation of HeLa cells with a mixture of 100 mM glutaraldehyde, 2 mg/ml tannic acid and 0.5 mg/ml saponin allows the tannic acid to penetrate intact cells without disruption of membranes or extraction of the cytoplasmic matrix. After subsequent treatment with OsO4 cytoplasmic structures are stained so densely that fine details are visible even in very thin (dark gray) sections. Actin filaments are protected from disruption by OsO4 so that straight, densely stained filaments are seen in the cell cortex, filopodia, ruffling membranes, and stress fibers. Stress fibers also have 15-18-nm densities similar in appearance to myosin filaments. Tannic acid staining reveals that the coats of coated vesicles, pits, and plaques have a 12-nm layer of amorphous material between the membrane and the clathrin basketwork. HeLa cells have very large clathrin-coated membrane plaques on the basal surface. These coated membrane plaques appear to be a previously unrecognized site of cell-substrate adhesion.  相似文献   

4.
Filipin has been widely used as an electron microscopic probe to detect 3-beta-hydroxysterols, principally cholesterol, in cellular membranes. When it complexes with sterol, it forms globular deposits that disrupt the planar organization of the membrane. Previous studies have shown that coated pits and coated vesicles, specialized membranes involved in receptor-mediated endocytosis, do not appear to bind filipin. This has led to the suggestion that these membranes are low in cholesterol compared with the remainder of the plasma membrane. Since coated endocytic vesicles become uncoated vesicles during the transport of internalized ligands to the lysosome, we have carried out studies to determine whether or not the membranes that surround these transport vesicles are unable to bind filipin and therefore, are also low in cholesterol. Cells were incubated with ferritin-conjugated ligands that bind to low density lipoprotein (LDL) receptors in coated pits. After allowing internalization of the conjugates, we fixed the cells in either the presence or absence of filipin. This permitted us to identify all of the vesicles involved in the transport of LDL to the lysosome and to determine whether the membranes of these vesicles were able to bind filipin. We found that, coordinate with the dissociation of the clathrin coat from the endocytic vesicles, the membranes became sensitive to the formation of filipin-sterol complexes. Furthermore, all of the uncoated endocytic vesicle membranes, as well as the lysosomal membranes, bound filipin. This suggests either that coated membrane contains normal cholesterol levels, which is not easily detected with filipin, or that cholesterol rapidly moves into endocytic vesicles after the clathrin coat dissociates from the membrane.  相似文献   

5.
L Orci  B S Glick  J E Rothman 《Cell》1986,46(2):171-184
Isolated Golgi membranes incubated in the presence of ATP and a cytosolic protein fraction form a population of coated buds or vesicles from the Golgi cisternae. The coats do not have the characteristic hexagonal-pentagonal basketwork of clathrin, and do not react with anti-clathrin polyclonal antibody. The conditions that produce these apparently nonclathrin-coated buds also reconstitute protein transport between compartments of the Golgi stack. The membrane of the buds contains the glycoprotein in transit through these Golgi stacks (VSV-encoded G protein). This suggests that protein transport through the Golgi stack is mediated by a new type of coated vesicle that does not contain clathrin. The concentration of G protein in the coated buds reflects the local concentration of G protein in the cisternae, raising the possibility that the Golgi coated vesicles may be "bulk" membrane carriers.  相似文献   

6.
Electron micrographs of tilted specimens of coated vesicles show that their coats are based on polyhedral lattices constructed from 12 pentagons plus a variable number of hexagons. We have identified three such structures among the smaller particles, two containing 108 molecules of clathrin and a third containing 84. The coats of larger particles are believed to be constructed on similar principles. This polymorphism enables a variety of vesicles to be accommodated in an economical manner.  相似文献   

7.
On the structural and functional components of coated vesicles.   总被引:17,自引:0,他引:17  
Despite the diversity of their known functions, coated vesicles from different tissues contain a rather similar spectrum of proteins, in addition to their major coat protein, clathrin. In particular, each coated vesicle preparation shows a doublet of polypeptide species, on sodium dodecyl sulphate-containing gel electrophoresis, of apparent molecular weight in the region 30,000 to 36,000. Using bullock brain as a source, these molecules are found in association with possible trimers or higher multiples of clathrin, obtained by dissolving coated vesicles in cholate. They may play a structural role relating to the vertices or edges of the lattices of pentagons and hexagons of the polyhedral coats.Purified coated vesicles (e.g. from chicken oocytes) seem to contain relatively small amounts of specific proteins in terms of “contents”. This suggests that the bulk of the isolated particles, especially those in the small size range (500 to 800 Å diam.), may be “empty” of contents, although many still retain a lipid vesicle. These empty structures could represent a pool of recycling coated vesicle components formed after release (possibly from larger vesicles (800 to 1500 Å diam.)) of the specific contents, at their particular destination.  相似文献   

8.
In the in vitro hippocampal slice preparation a short tetanus induces long-term potentiation (LTP) and an increase in the post hoc phosphorylation of a 52-kDa protein in synaptosomal plasma membranes (SPM) prepared from these slices. This 52-kDa SPM phosphoprotein closely resembles the predominant phosphoprotein in coated vesicles, pp50, with respect to the insensitivity of its phosphorylation to Ca2+/calmodulin and cyclic AMP. This resemblance prompted us to compare in rat brain the 52-kDa SPM protein with pp50 in isolated coated vesicles. Both proteins appear to be very similar on basis of the following criteria: relative molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, peptide mapping, phospho-amino acid content, and isoelectric point. Since coated vesicles are thought to be involved in receptor-mediated endocytosis and membrane recycling, our data suggest that LTP-correlated changes in 52-kDa phosphorylation may reflect increased coated vesicle activity.  相似文献   

9.
The role of coated vesicles in recycling of synaptic vesicle membrane   总被引:9,自引:0,他引:9  
The uptake of extracellular tracers into synaptic nerve terminals has been a phenomenon of persistent interest. Uptake is into synaptic vesicles, hence vesicles spend part of their life in continuity with the plasma membrane, as expected if exocytosis underlies the quantal discharge of neurotransmitters. However, exactly how or when synaptic vesicles acquire extracellular tracers has not been unambiguously determined. Two schools of thought have developed, one holding that vesicles acquire tracers directly via a reversible exo/endocytotic sequence in which they consistently maintain their biochemical identity during their transient continuity with the plasma membrane, the other holding that synaptic vesicles acquire tracers indirectly, via the formation of clathrin-coated vesicles which are spatially and temporally separate from exocytosis and reverse a temporary loss of the vesicles' individual identity upon merger with the plasma membrane. Efforts to distinguish between these two alternatives have generated an interesting diversity of electron microscopic experiments, many of which are reviewed here. However, definitive determination of which view is correct may ultimately require direct visualization of synaptic vesicle turnover in living nerve terminals. To this end, we here review the results of visualizing endocytosis in tissue cultured cells, where light microscopy can provide sufficient resolution to reveal membrane dynamics in living cells. This has allowed visual discrimination of two different types of endocytosis, one clathrin-mediated (coated vesicle formation) and the other actin-mediated (macropinocytosis). Current work is also reviewed which aims at determining experimental methods for inhibiting each type of endocytosis selectively. Hypertonicity and severe cytoplasmic acidification turn out to inhibit coated vesicle formation, while cytochalasin D and mild cytoplasmic acidification selectively inhibit macropinocytosis. Applied to nerves, these various treatments affect synaptic vesicle turnover in a manner that supports the notion that synaptic vesicle membrane recycles via the "indirect" route of coated vesicle formation.  相似文献   

10.
Using stage-specific assays for receptor-mediated endocytosis of transferrin (Tfn) into perforated A431 cells we show that purified adaptors stimulate coated pit assembly and ligand sequestration into deeply invaginated coated pits. Late events in endocytosis involving membrane fission and coated vesicle budding which lead to the internalization of Tfn are unaffected. AP2, plasma membrane adaptors, are active at physiological concentrations, whereas AP1, Golgi adaptors, are inactive. Adaptor-dependent stimulation of Tfn sequestration requires cytosolic clathrin, but is unaffected by clathrin purified from coated vesicles suggesting that soluble and assembled clathrin pools are functionally distinct. In addition to adaptors and cytosolic clathrin other, as yet unidentified, cytosolic factors are also required for efficient coated pit invagination. These results provide new insight into the mechanisms and regulation of coated pit assembly and invagination.  相似文献   

11.
《The Journal of cell biology》1986,103(6):2619-2627
Previous studies have shown that when human fibroblasts are depleted of intracellular K+, coated pits disappear from the cell surface and the receptor-mediated endocytosis of low density lipoprotein (LDL) is inhibited. We have now used the K+ depletion protocol to study several aspects of coated pit function. First, since coated pits rapidly form when K+-depleted fibroblasts are incubated in the presence of 10 mM KCl, we studied the sequence of assembly of coated pits as visualized in carbon-platinum replicas of inner membrane surfaces from cells that had been incubated in the presence of K+ for various times. New coated pits initially appeared as planar clathrin lattices that increased in size by the formation of polygons at the margin of the lattice. Once the lattice reached a critical size it invaginated to form coated vesicles. Second, we determined that LDL-ferritin can induce clustering of LDL receptors over noncoated membrane on the surface of K+-depleted fibroblasts; however, when these cells are subsequently incubated in the presence of K+, these clusters become associated with newly formed coated pits and are internalized. Finally, we determined that K+ depletion inhibits the assembly of coated pits, but that existing coated pits in K+-depleted cells are able to internalize LDL. These results suggest that the clathrin lattice of coated pits is actively involved in membrane shape change during endocytosis and that the structural proteins of the lattice are cyclically assembled and disassembled in the process.  相似文献   

12.
Cell surface receptor IgM molecules of cultured human lymlphoblastoid cells (WiL2) patch and redistribute into a cap over the Golgi region of the cell after treatment with multivalent anti-IgM antibodies. During and after the redistribution, ligand-receptor clusters are endocytosed into coated pits and coated vesicles. Morphometric analysis of the distribution of ferritin-labeled ligand at EM resolution reveals the following sequence of events in the endocytosis of cell surface IgM: (a) binding of the multivalent ligand in a diffuse cell surface distribution, (b) clustering of the ligand-receptor complexes, (c) recruitment of clathrin coats to the cytoplasmic surface of the cell membrane opposite ligand-receptor clusters, (d) assembly and (e) internalization of coated vesicles, and (f) delivery of label into a large vesicular compartment, presumably partly lysosomal. Most of the labeled ligand enters this pathway. The recruitment of clathrin coats to the membrane opposite ligand-receptor clusters is sensitive to the calmodulin-directed drug Stelazine (trifluoperazine dihydrochloride). In addition, Stelazine inhibits an alternate pathway of endocytosis that does not involve coated vesicle formation. The actin-directed drug dihydrocytochalasin B has no effect on the recruitment of clathrin to the ligand-receptor clusters and the formation of coated pits and little effect on the alternate pathway, but this drug does interfere with subsequent coated vesicle formation and it inhibits capping. Cortical microfilaments that decorate with heavy meromyosin with constant polarity are observed in association with the coated regions of the plasma membrane and with coated vesicles. SDS-polyacrylamide gel electrophoresis analysis of a coated vesicle preparation isolated from WiL2 cells demonstrates that the major polypeptides in the fraction are a 175-kdalton component that comigrates with calf brain clathrin, a 42- kdalton component that comigrates with rabbit muscle actin and a 18.5- kdalton minor component that comigrates with calmodulin as well as 110- , 70-, 55-, 36-, 30-, and 17-kdalton components. These results clarify the pathways of endocytosis in this cell and suggest functional roles for calmodulin, especially in the formation of clathrin-coated pits, and for actin microfilaments in coated vesicle formation and in capping.  相似文献   

13.
Receptor-mediated endocytosis occurs via clathrin-coated pits and is therefore coupled to the dynamic cycle of assembly and disassembly of the coat constituents. These coat proteins comprise part, but certainly not all, of the machinery involved in the recognition of membrane receptors and their selective packaging into transport vesicles for internalization. Despite considerable knowledge about the biochemistry of coated vesicles and purified coat proteins, little is known about the mechanisms of coated pit assembly, receptor-sorting and coated vesicle formation. Cell-free assays which faithfully reconstitute these events provide powerful new tools with which to elucidate the overall mechanism of receptor-mediated endocytosis.  相似文献   

14.
The ultrastructure of the apical zone of lactating rat mammary epithelial cells was studied with emphasis on vesicle coat structures. Typical 40-60 nm ID "coated vesicles" were abundant, frequently associated with the internal filamentous plasma membrane coat or in direct continuity with secretory vesicles (SV) or plasma membrane proper. Bristle coats partially or totally covered membranes of secretory vesicles identified by their casein micelle content. This coat survived SV isolation. Exocytotic fusion of SV membranes and release of the casein micelles was observed. Frequently, regularly arranged bristle coat structures were identified in those regions of the plasma membrane that were involved in exocytotic processes. Both coated and uncoated surfaces of the casein-containing vesicles, as well as typical "coated vesicles", were frequently associated with microtubules and/or microfilaments. We suggest that coat materials of vesicles are related or identical to components of the internal coat of the surface membrane and that new plasma membrane and associated internal coat is produced concomitantly by fusion and integration of bristle coat moieties. Postexocytotic association of secreted casein micelles with the cell surface, mediated by finely filamentous extensions, provided a marker for the integrated vesicle membrane. An arrangement of SV with the inner surface of the plasma membrane is described which is characterized by regularly spaced, heabily stained membrane to membrane cross-bridges (pre-exocytotic attachment plaques). Such membrane-interconnecting elements may represent a form of coat structure important to recognition and interaction of membrane surfaces.  相似文献   

15.
As a final step in endocytosis, clathrin-coated pits must separate from the plasma membrane and move into the cytosol as a coated vesicle. Because these events involve minute movements that conventional light microscopy cannot resolve, they have not been observed directly and their dynamics remain unexplored. Here, we used evanescent field (EF) microscopy to observe single clathrin-coated pits or vesicles as they draw inwards from the plasma membrane and finally lose their coats. This inward movement occurred immediately after a brief burst of dynamin recruitment and was accompanied by transient actin assembly. Therefore, dynamin may provide the trigger and actin may provide the force for movement into the cytosol.  相似文献   

16.
Clathrin-coated vesicles carry traffic from the plasma membrane to endosomes. We report here the first real-time visualization of cargo sorting and endocytosis by clathrin-coated pits in living cells. We have visualized the formation of coats by monitoring the incorporation of fluorescently tagged clathrin or its adaptor AP-2 (adaptor protein 2), and have followed clathrin-mediated uptake of transferrin, single LDL (low-density lipoprotein) and single reovirus particles. The intensity of a cargo-loaded clathrin cluster grows steadily during its lifetime, and the time required to complete assembly is proportional to the size of the cargo particle. These results are consistent with a nucleation-growth mechanism and an approximately constant growth rate. There are no preferred nucleation sites. A proportion of the nucleation events appear to be abortive. Cargo incorporation occurs primarily or exclusively in a newly formed coated pit, and loading appears to commit that pit to finish assembly. Our data led to a model in which coated pits initiate randomly, but collapse with high likelihood unless stabilized, presumably by cargo capture.  相似文献   

17.
The mannose 6-phosphate (Man-6-P) receptor is an integral membrane glycoprotein which mediates intracellular transport and receptor-mediated endocytosis of lysosomal proteins. Clathrin-coated vesicles, which have been shown to be significantly involved in these processes, have also been shown to be a major subcellular site of the receptor. In order to define the orientation of the Man-6-P receptor within the coated vesicle membrane, highly purified preparations of coated vesicles were prepared from bovine brain employing D2O/sucrose gradient centrifugation and Sephacryl S-1000 column chromatography. Using [35S]methionine-labeled lysosomal enzymes secreted by Chinese hamster ovary cells as receptor ligand, significant binding activity was detected only upon permeabilization of the coated vesicle membranes with detergent. Prior treatment of intact vesicles with proteinase K resulted in similar binding activity upon permeabilization. However, examination of the receptor by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting with rabbit anti-receptor serum revealed that proteinase K treatment of intact vesicles reduced the size of the receptor by 12,000 daltons. A similar decrease in size was obtained when the vesicles were treated with carboxypeptidase Y. These results suggest that the Man-6-P receptor is a transmembrane protein with its lysosomal enzyme binding site oriented toward the lumen of the coated vesicle and its C-terminal end exposed to the exterior or cytoplasmic portion of the vesicle membrane.  相似文献   

18.
Clathrin-coated membranes are precursors to coated vesicles in the receptor-mediated endocytic pathway. In this paper we present a physical model for the first steps of the transformation of a clathrin-coated membrane into a coated vesicle. The theory is based on in vitro cytoplasmic acidification experiments of Heuser (J. Cell Biol. 108:401-411) that suggest the transformation proceeds by changes in the chemical environment of the clathrin lattice, wherein the chemical environment determines the amount of intrinsic, or spontaneous, curvature of the network. We show that a necessary step of the transformation, formation of free pentagons in the clathrin network, can proceed via dislocation unbinding, driven by changes in the spontaneous curvature. Dislocation unbinding is shown to favor formation of coated vesicles that are quite small compared to those predicted by the current continuum theories, which do not include the topology of the clathrin lattice.  相似文献   

19.
Endocytosis by random initiation and stabilization of clathrin-coated pits   总被引:29,自引:0,他引:29  
Clathrin-coated vesicles carry traffic from the plasma membrane to endosomes. We report here the real-time visualization of cargo sorting and endocytosis by clathrin-coated pits in living cells. We have detected the formation of coats by monitoring incorporation of fluorescently tagged clathrin or its adaptor AP-2; we have also followed clathrin-mediated uptake of transferrin and of single LDL or reovirus particles. The intensity of a cargo-loaded clathrin cluster grows steadily during its lifetime, and the time required to complete assembly is proportional to the size of the cargo particle. These results are consistent with a nucleation-growth mechanism and an approximately constant growth rate. There are no strongly preferred nucleation sites. A proportion of the nucleation events are weak and short lived. Cargo incorporation occurs primarily or exclusively in a newly formed coated pit. Our data lead to a model in which coated pits initiate randomly but collapse unless stabilized, perhaps by cargo capture.  相似文献   

20.
Does turgor prevent endocytosis in plant cells?   总被引:4,自引:0,他引:4  
Abstract. The energetics of coated vesicle-mediated endocytosis in turgid plant cells are discussed in terms of the known ATP requirement for clathrin cage dissociation and on the basis of the elementary expression for the energy w = P · v, where P corresponds to the turgor and v to the vesicle volume. The authors' calculations indicate that the possibility for formation of coated vesicles by endocytosis is limited to a rather low turgor range (P below about 0.1 MPa). This view is consistent with reports of well-developed clathrin coats on the plasma membranes in those cells having very low turgor such as root hairs and naked flagellates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号