首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
阿周存  杨元  张思仲  张炜  林立 《遗传学报》2006,33(2):111-116
染色体异常和Y染色体微缺失被认为是两个白种人群中常见的生精障碍相关遗传因素。为了解中国无精症、严重寡精症患者中的染色体异常和Y染色体微缺失,运用染色体G显带技术,在358个原发无精症(256人)和严重寡精症(102人)不育患者中进行染色体核型分析;同时运用多重PCR技术,在核型正常的患者和100个正常生育男性中,对Y染色体AZF区微缺失进行筛查。在358个患者中,39人(10.9%)发现有染色体异常,Klinefelter(47,XYY)最为常见。无精症患者性染色体异常频率明显高于严重寡精症患者(12.1%VS1%)。在319个核型正常的患者中,46(14.4%)发现有AZF区微缺失,无精症和寡精症患者中Y染色体微缺失频率分别为15%和13.1%,AZFc区的微缺失最为常见,AZFa区的微缺失只见于无精症患者,正常生育男性中未发现AZF区的微缺失。结果显示,在中国无精症、严重寡精症患者中,大约25%的患者有染色体异常或Y染色体AZF区微缺失,提示这两种遗传异常是中国人群生精障碍的重要相关遗传病因,有必要在男性不育的诊断以及利用细胞浆内精子注射技术进行辅助生育时,对患者的这些遗传异常进行筛查。  相似文献   

2.
Chromosomal abnormality and Y chromosome microdeletion are regarded as two frequent genetic causes associated with spermatogenic failure in Caucasian population. To investigate the distribution of the two genetic defects in Chinese patients with azoospermia or severe oligozoospermia, karyotype analysis by G-banding was carried out in 358 idiopathic infertile men, including 256 patients with azoospermia and 102 patients with severe oligozoospermia, and screening of AZF region microdeletion of Y chromosome by multiplex PCR was performed in those patients without detectable chromosomal abnormality and 100 fertile controls. Of 358 patients, 39(10.9%) were found to have chromosomal abnormalities in which Klinefelters syndrome (47, XXY) was the most common chromosomal aberration. The incidence of sex chromosomal abnormality in patients with azoospermia was significantly higher than that in patients with severe oligozoospermia (12.1% vs 1%). Among the rest of the 319 patients with normal karyotype, 46 (14.4%) were found to have microdeletions in AZF region. The prevalence rates of AZF microdeletion was 15% and 13.1% in patients with azoospermia and severe oligozoospermia respectively. The microdeletion in AZFc was the most frequent deletion and all the microdeletions in AZFa were found in azoospermic patients. No microdeletion in AZF region was detected in fertile controls. In conclusion, chromosomal abnormality and AZF region microdeletion of Y chromosome might account for about 25% of Chinese infertile patients with azoospermia or severe oligozoospermia, suggesting the two abnormalities are important genetic etiology of spematogenic failure in Chinese population and it is essential to screen them during diagnosis of male infertility before in vitro assisted fertilization by introcytoplasmic sperm injection.  相似文献   

3.
Choi JH  Shin YL  Kim GH  Seo EJ  Kim Y  Park IS  Yoo HW 《Hormone research》2005,63(6):294-299
BACKGROUND: Endocrine abnormalities, including hypocalcemia, thyroid dysfunction, and short stature, are associated with chromosome 22q11.2 microdeletion syndrome. This study was undertaken to examine the frequencies and clinical features of endocrine abnormalities in patients with 22q11.2 microdeletion syndrome. METHODS: We analyzed 61 patients with 22q11.2 microdeletion syndrome diagnosed based on the verification of microdeletion by fluorescent in situ hybridization (FISH) using a probe of the DiGeorge syndrome critical region (TUPLE1) at 22q11.2 and a control probe, ARSA at 22q13. Serum total calcium, phosphorus, and intact parathyroid hormone (PTH) levels were measured, thyroid function test was performed, and serum IGF-1 and IGFBP-3 levels were also estimated. Height and weight of patients were compared with individual chronological ages. RESULTS: Hypocalcemia was found in 20 patients (32.8%), and overt hypoparathyroidism in 8 (13.1%). Two patients (3.3%) showed autoimmune thyroid diseases, 1 each with Graves' disease and Hashimoto thyroiditis. Ten patients (16.4%) were below the third percentile in height, but the serum IGF-1 level was normal in 9 out of these 10 patients. CONCLUSION: Our findings show that patients with chromosome 22q11.2 microdeletion syndrome present with variable endocrine manifestations and variable clinical phenotypes. In addition to FISH analysis, careful endocrine evaluations are required in patients with this microdeletion syndrome, particularly for those with hypoparathyroidism or thyroid dysfunction.  相似文献   

4.
Summary A cytogenetic survey was carried out on 200 patients with mental retardation and multiple congenital anomalies, and on 200 normal adult controls. Patients with a known syndrome were excluded from the survey. Chromosome analyses were carried out on blind-coded slides using the ASG banding technique as the routine stain. After the initial analyses (at least 15 cells per person) the slides were decoded, destained and reused for C and Q band polymorphism studies.Five major chromosome abnormalities were detected in the patient group during the survey. They included three patients with de novo, apparently balanced, reciprocal translocations, karyotypes 46,XY,rcp(3;16)(q21;p12); 46,XX,rcp(5;8)(p15;q22); and 46,XX,rcp(5;12)(p11;q24); one with karyotype 47,XX,+mar and one with karyotype 46,XX,der(13),t(13;?)(q34;?). One additional patient whose karyotype in lymphocytes was 46,XX,inv(9)(p11;q13) was found to have a mosaic karyotype 46,XX,inv(9)(p11;q13)/46,XX,inv(9) (p11;q13),der(12),t(12;?)(p13;?) in cultured skin fibroblasts. None of the 200 controls had a major chromosome abnormality.From the combined results of this and previous surveys it is now apparent that about 6.2% of the unclassifiable mentally retarded patients with three or more congenital anomalies and about 0.7% of the controls reveal major chromosome abnormalities.  相似文献   

5.
Chromosome translocations have been known to affect disjunction of chromosomes unrelated to the translocation in the mouse and in Drosophila. However, in humans, an interchromosomal effect in chromosome translocations has not been demonstrated. The availability of techniques that allow the study of nondisjunction in sperm cells has permitted us to evaluate the possibility of an interchromosomal effect in male translocation heterozygotes. In this study, multicolor fluorescence in situ hybridization was used to determine levels of disomy for the clinically relevant chromosomes X, Y, 13, 18, and 21 in 332,858 spermatozoa from nine reciprocal translocation heterozygotes and nine controls with normal karyotypes. The specific translocations studied were as follows: t(10;12)(p26.1;p13.3), t(2;18)(p21;q11.2), t(3;19)(p25;q12), t(5;8)(q33;q13), t(11;22)(q23;q11), t(3;4)(p25;p16), t(8;9) (q24.2;q32), t(10;18)(q24.1;p11.2), and t(4;10)(q33;p12.2). Comparisons of disomy rates between carriers and controls were performed by using the Mann-Whitney test. Our results showed that the rates of sex chromosome hyperhaploidy were similar in controls (0.21%) and in translocation carriers (0.19%). Similarly, the frequencies of disomy for chromosomes 13, 18, and 21 did not differ significantly between controls and carriers (0.05% versus 0.08%, 0.07% versus 0.03%, and 0.14% versus 0.20%, respectively). Sex chromosome nondisjunction was more common than nondisjunction of chromosomes 13 and 18 both in controls (P=0.0057) and in carriers (P=0.0008). Similarly, the rates of chromosome disomy for chromosome 21 were higher than those for chromosomes 13 and 18 in both controls (P=0.0031) and translocation carriers (P=0.0057). In our study, the excess of chromosome 21 disomy versus disomy of the other autosomes was more pronounced in carriers than in controls. Thus, although the difference of disomy 21 between controls and carriers was not statistically significant, it is worthy of attention.  相似文献   

6.
Wilms tumor, a common childhood renal tumor, occurs in both a heritable and a nonheritable form. The heritable form may occasionally be attributed to a chromosome deletion at 11p13, and tumors from patients with normal constitutional chromosomes often show deletion or rearrangement of 11p13. It has been suggested that a germinal or somatic mutation may occur on one chromosome 11 and predispose to Wilms tumor and that a subsequent somatic genetic event on the normal homologue at 11p13 may permit tumor development. To study the frequency and mechanism of such tumor-specific genetic events, we have examined the karyotype and chromosome 11 genotype of normal and tumor tissues from 13 childhood renal tumor patients with different histologic tumor types and associated clinical conditions. Tumors of eight of the 12 Wilms tumor patients, including all viable tumors examined directly, show molecular evidence of loss of 11p DNA sequences by somatic recombination (four cases), chromosome loss (two cases), and recombination (two cases) or chromosome loss and duplication. One malignant rhabdoid tumor in a patient heterozygous for multiple 11p markers did not show any tumor-specific 11p alteration. These findings confirm the critical role of 11p sequences in Wilms tumor development and reveal that mitotic recombination may be the most frequent mechanism by which tumors develop.  相似文献   

7.
A de novo complex chromosomal rearrangement is very rare but likely to be present in a child with developmental disabilities and physical alterations. A child presented in this study showed global developmental delay and some typical phenotypes. Initial karyotyping and FISH analysis in the patient showed an apparently de novo balanced translocation between chromosome 3 and 8, t(3;8)(q13.1;q24.2). Further analysis using multiplex ligation-dependent probe amplification and array-based comparative genomic hybridization revealed a cryptic microdeletion on 3p13 region. Nearly one-third of balanced rearrangements are reported to involve cryptic disruptions at breakpoints, however, the microdeletion of the proposita was present in non-translocated region of the chromosome 3. After careful reevaluation of the results, a pericentric inversion, inv(3)(p13q13.1) that induced deletion was revealed. The clinical features of developmental delay in cognition, language, and motor function and facial and physical phenotype of the proposita were similar to those found in the children with 3p13 deletion. This case shows that combined molecular cytogenetic techniques with routine karyotyping are very useful to identify subtle genomic changes associated with abnormal phenotypes.  相似文献   

8.
Most patients with neurofibromatosis (NF1) are endowed with heterozygous mutations in the NF1 gene. Approximately 5% show an interstitial deletion of chromosome 17q11.2 (including NF1) and in most cases also a more severe phenotype. Here we report on a 7-year-old girl with classical NF1 signs, and in addition mild overgrowth (97th percentile), relatively low OFC (10th-25th percentile), facial dysmorphy, hoarse voice, and developmental delay. FISH analysis revealed a 17q11.2 microdeletion as well as an unbalanced 7p;13q translocation leading to trisomy of the 7q36.3 subtelomeric region. The patient's mother and grandmother who were phenotypically normal carried the same unbalanced translocation. The 17q11.2 microdeletion had arisen de novo. Array comparative genomic hybridization (CGH) demonstrated gain of a 550-kb segment from 7qter and loss of 2.5 Mb from 17q11.2 (an atypical NF1 microdeletion). We conclude that the patient's phenotype is caused by the atypical NF1 deletion, whereas 7q36.3 trisomy represents a subtelomeric copy number variation without phenotypic consequences. To our knowledge this is the first report that a duplication of the subtelomeric region of chromosome 7q containing functional genes (FAM62B, WDR60, and VIPR2) can be tolerated without phenotypic consequences. The 17q11.2 microdeletion (containing nine more genes than the common NF1 microdeletions) and the 7qter duplication were not accompanied by unexpected clinical features. Most likely the 7qter trisomy and the 17q11.2 microdeletion coincide by chance in our patient.  相似文献   

9.
22q11微缺失与先天性心脏病的关系的研究   总被引:4,自引:0,他引:4  
应用染色体荧光原位杂交(FISH)技术,对25例不同表型的先天性心脏病患者外周血标本进行22q11微缺失的检测,以探讨先天性心脏病与22q11微缺失的关系。受检的23例单纯性先天性心脏病患者,无22q11缺失者为19例,发生缺失者为4例;2例法鲁氏四联症伴心外多发畸形患者,有22q11缺失。上述结果表明,先天性心脏病与22q11微缺失有关。  相似文献   

10.
Seventy-seven patients with aniridia, referred for cytogenetic analysis predominantly to assess Wilms tumor risk, were studied by fluorescence in situ hybridization (FISH), through use of a panel of cosmids encompassing the aniridia-associated PAX6 gene, the Wilms tumor predisposition gene WT1, and flanking markers, in distal chromosome 11p13. Thirty patients were found to be chromosomally abnormal. Cytogenetically visible interstitial deletions involving 11p13 were found in 13 patients, 11 of which included WT1. A further 13 patients had cryptic deletions detectable only by FISH, 3 of which included WT1. Six of these, with deletions <500 kb, share a similar proximal breakpoint within a cosmid containing the last 10 exons of PAX6 and part of the neighboring gene, ELP4. Two of these six patients were mosaic for the deletion. The remaining four had chromosomal rearrangements: an unbalanced translocation, t(11;13), with a deletion including the WAGR (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation) region, and three balanced rearrangements with what appear to be position effect breakpoints 3' of PAX6: (a) a t(7;11) with the 11p13 breakpoint approximately 30 kb downstream of PAX6, (b) a dir ins(12;11) with a breakpoint >50 kb from PAX6, and (c) an inv(11)(p13q13) with a breakpoint >75 kb downstream of PAX6. The proportion and spectrum of chromosome anomalies in familial (4/14, or 28.5%) and sporadic (26/63, or 41%) cases are not significantly different. An unexpectedly high frequency of chromosomal rearrangements is associated with both sporadic and familial aniridia in this cohort.  相似文献   

11.
Among 11,915 consecutive patients and 37 normal controls who had chromosome analysis at the Mayo Clinic between 1978 and 1984, 83 had a single sporadic metaphase with a 7;14 translocation. In 81 of the translocations, the breakpoints were at 14q11 and either 7q34 (type I) or 7p13 (type II): type I translocations occurred in 42 patients, and type II, in 39. The two other translocations had different breakpoints: one was t(7;14)(q11;q32), and the other was t(7;14)(p13;q32). All type I and type II translocations occurred in phytohemagglutinin-stimulated lymphocyte cultures; their combined incidence was 4.88 X 10(-4) per metaphase (81 of 165,991 metaphases) in such cultures. No type I or II translocation was found among 6,713 fibroblast metaphases, 33,463 amniocyte metaphases, or 68,972 bone marrow and unstimulated peripheral blood metaphases. One variant 7;14 translocation occurred in a phytohemagglutinin-stimulated culture, and the other occurred in a fibroblast culture. We did not find a correlation of sporadic 7;14 translocations with any month or season of the year or with patient age or sex. Of the 83 patients, 78 had various clinical disorders, three had ataxia-telangiectasia, one was a normal control, and one was an artificial insemination donor. Follow-up studies on 64 (77%) patients indicate that, to date, none have developed any malignant process subsequent to chromosome analysis. Except for ataxia-telangiectasia, the occurrence of types I and II translocations in lymphocyte cultures may have little, if any, clinical significance. The biological significance of these translocations may be the association of genes in chromosome bands 14q11, 7p13, and 7q34 with the normal physiology of lymphocytes such as the alpha- and beta-chains for T-cell antigen receptor.  相似文献   

12.
Recent studies have identified PRDM9, a zinc finger (ZF) protein, as a key regulator of meiotic recombination. As both recurrent genomic disorders and chromosomal non-disjunction are known to be associated with specific unusual patterns of recombination, we hypothesized a possible link between PRDM9 ZF variation and susceptibility to microdeletion syndromes and/or trisomy. We sequenced the PRDM9 ZF domain in 271 parents of patients with de novo microdeletions of known parental origin (velocardiofacial syndrome, the 17q21.31 microdeletion syndrome, Prader-Willi/Angelman syndrome and Williams-Beuren syndrome), and in 61 parents of individuals with a supernumerary X chromosome. We compared PRDM9 ZF genotype frequencies between parents in whose germ line the de novo rearrangement occurred and their spouses. We observed a significantly increased frequency (p?=?0.006) of PRDM9 variants in parents who transmitted de novo 7q11.23 deletions to their offspring. These data suggest that certain PRDM9 alleles may be associated with an increased susceptibility to recurrent 7q11.23 microdeletions that cause Williams-Beuren syndrome. However, as the majority of parents who transmitted a de novo microdeletion/supernumerary X chromosome to their offspring have the common AA genotype, we conclude that none of the rearrangements we have studied are dependent on specific non-A PRDM9 alleles.  相似文献   

13.
A contiguous gene syndrome due to deletions of the proximal short arm of chromosome 11 is described in eight patients belonging to four families. The main clinical features are multiple exostoses, enlarged parietal foramina, craniofacial dysostosis, and mental retardation. The patients have cytogenetic and/or molecular deletions of chromosome 11p11-p13. These deletions are located between the centromere and D11S914 in a region of approximately 20cM. The present study confirms the presence of a multiple exostoses gene on chromosome 11p. Furthermore, it suggests that the gene for isolated foramina parietalie permagna and genes associated with craniofacial dysostosis and mental retardation reside in the same chromosomal region.  相似文献   

14.
Summary In the present investigation we test the hypothesis that deficiencies in the X chromosome affect sister chromatid exchange (SCE) frequencies in human fibroblast cell lines. Our results show increased mean SCE frequencies in cell lines with abnormalities of the X chromosome: 45,X; 46,X,del(X) (q13), 46,X,del(X)(p11), and 46,X,i(Xq); control cell lines were 46,XX. In only one abnormal line [46,X,del(X)(p11)] was the increase not significant after correcting for multiple comparisons. If SCE formation is replication-dependent, the increased SCE frequencies might merely reflect the prolonged cell cycle we reported previously in cell lines with X chromosome abnormalities (Simpson and LeBeau 1981). Other explanations for differences between cell lines are possible, e.g., that deleted loci on the X chromosome affect cellular uptake of bromodeoxyuridine (BrDU). However, specific mechanisms were not explored directly.  相似文献   

15.
Spontaneous and radiation-induced chromosome damage in cultured lymphocytes was examined in a pilot study of 11 patients with idiopathic hemochromatosis and matched controls. Increased frequencies of chromosome breaks were found in the patients, both spontaneously and after exposure to ionizing radiation, but the differences between patients and controls were not statistically significant (p greater than 0.05) when individual data were analyzed. When pooled (group) data for patients and controls were compared, significant increases in spontaneous and radiation-induced chromosome breaks were found among the patients. The results suggest that iron overload may lead to chromosome damage in idiopathic hemochromatosis.  相似文献   

16.
Familial aniridia and translocation t(4;11)(q22;p13) without Wilms' tumor   总被引:12,自引:2,他引:10  
A family with dominantly inherited aniridia in three generations is presented. All three patients had an apparently balanced chromosome translocation t(4;11)(q22;p13). The patients were otherwise clinically normal and without signs of Wilms' tumor; their erythrocyte catalase activities were within the normal range. We suggest that in this family aniridia is caused either by a submicroscopic deletion at the translocation breakpoint 11p13 or by a position effect on the same chromosome segment. Furthermore, the loci for aniridia and Wilms' tumor susceptibility are separate. It follows that the WAGR complex is caused by a mutation of more than one gene located at 11p13. The theoretical implications of a presumably defective allele causing a mendelian dominant phenotype are discussed.  相似文献   

17.
Cytogenetic studies in multiple myeloma (MM) are hampered by the hypo-proliferative nature of plasma cells. In order to circumvent this problem, we have used a combination of immunolabeling of cytoplasmic Ig light chains (λ or κ) and FISH (cIg-FISH), which allowed a comprehensive detection of the most common and/or recurrent molecular cytogenetic aberrations on fixed bone marrow cells of 70 Tunisian patients. Translocations involving the chromosome 14q32 region were observed in 32 cases (45.7%), including 18 cases with a t(11;14), 8 cases with a t(4;14), and 2 cases with a t(14;16). Deletions of the 13q14 region (D13S319/RB1) were detected in 18.6%, and deletions of the 17p13 region (TP53) in 5.7% of the cases, respectively. Of all patients with a D13S319/RB1 deletion, 61.5% also carried a 14q32 translocation, whereas TP53 deletions were associated with a t(11;14) in 2 cases (50%) and a D13S319 deletion in 1 case (25%). Our results suggest that there is a correlation between the presence of 14q32 translocations and chromosome 13q14 deletions in MM patients and that cIg-FISH is more sensitive as compared to conventional karyotyping in detecting molecular cytogenetic abnormalities in this disease.  相似文献   

18.
We describe eight patients who have alpha thalassemia which cannot be accounted for by the Mendelian inheritance of abnormal alpha globin genes. Apart from the hematologic abnormality, the other universal clinical finding is mild to moderate mental handicap; there is also a broad spectrum of associated dysmorphic features. Initial analysis of the alpha globin gene complex (which maps to chromosome band 16p13.3), demonstrated that the alpha thalassemia results from failure of the patient to inherit an alpha globin allele from one of the parents. Using a combined molecular and cytogenetic approach, we have extended this analysis to show that all of these patients have 16p deletions which are variable in extent but limited to the terminal band 16p13.3; in at least four cases the deletion results from unbalanced chromosome translocation, and hence aneuploidy of a second chromosome is also present. The relatively nonspecific clinical phenotype contrasts with the other currently known microdeletion syndromes; this may reflect ascertainment bias in the recognition of such syndromes. This work represents the first step in the characterization of a new microdeletion syndrome that is probably underdiagnosed at present.  相似文献   

19.
One hundred eighty-three human single copy clones were isolated from the Livermore Laboratory chromosome 11 library (ID code LL11NSO1) and 112 of them were mapped to chromosome 11. Using a panel of somatic cell hybrids segregating chromosome 11 translocations and short arm deletions, 54 of the clones were assigned to one of nine segments on the short arm of chromosome 11; the remainder were assigned to the long arm. Nine of these clones map to 11p13, and four of the nine [57(D11S89), 530(D11S90), 706(D11S93), and 1104(D11S95)] are confined to the same segment within p13 that contains catalase (CAT), the beta subunit of follicle stimulating hormone (FSHB), and the Wilms' tumor-aniridia (WAGR) gene complex.  相似文献   

20.
Two classes of genes are the targets of mutations involved in human tumorigenesis: oncogenes, the activation of which leads to growth stimulation, and tumor suppressor genes, which become tumorigenic through loss of function, often through allelic deletion. To obtain evidence for a role for tumor suppressor genes in thyroid tumorigenesis, we examined DNA from 80 thyroid neoplasms for loss of heterozygosity in multiple chromosomal loci using 19 polymorphic genomic probes. None of the informative thyroid tumors studied had allelic loss detected with probes for chromosome 2q (D2S44), 3p (D3F15S2, D3S32), 3q (D3S46), 4p (D4S125), 6p (D6S40), 8q (D8S39), 9q (D9S7), 12p (D12S14), 13q (D13S52), 17p (D17S30), or 18q (D18S10). One of eight of the follicular adenomas had a 10q deletion detected with marker D10S15, and one of 26 had a 10q deletion detected with D10S25. One of two of the follicular carcinomas had an 11p deletion in the H-ras locus. The most significant findings were on chromosome 11q13, the site containing the putative gene predisposing to multiple endocrine neoplasia type I. Four of 27 follicular adenomas had loss of heterozygosity for probes in this region. Allelic deletions were detected with the following probes: D11S149, PYGM, D11S146, and INT2. None of 13 informative papillary carcinomas and none of two follicular carcinomas had loss of heterozygosity detectable with these 11q13 markers. Allelic loss is a relatively infrequent event in human thyroid tumors. Deletions of chromosome 11q13 are present in about 14% of follicular, but not papillary, neoplasms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号