首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metazoan organisms have many tRNA genes responsible for decoding amino acids. The set of all tRNA genes can be grouped in sets of common amino acids and isoacceptor tRNAs that are aminoacylated by corresponding aminoacyl-tRNA synthetases. Analysis of tRNA alignments shows that, despite the high number of tRNA genes, specific tRNA sequence motifs are highly conserved across multicellular eukaryotes. The conservation often extends throughout the isoacceptors and isodecoders with, in some cases, two sets of conserved isodecoders. This study is focused on non-Watson–Crick base pairs in the helical stems, especially GoU pairs. Each of the four helical stems may contain one or more conserved GoU pairs. Some are amino acid specific and could represent identity elements for the cognate aminoacyl tRNA synthetases. Other GoU pairs are found in more than a single amino acid and could be critical for native folding of the tRNAs. Interestingly, some GoU pairs are anticodon-specific, and others are found in phylogenetically-specific clades. Although the distribution of conservation likely reflects a balance between accommodating isotype-specific functions as well as those shared by all tRNAs essential for ribosomal translation, such conservations may indicate the existence of specialized tRNAs for specific translation targets, cellular conditions, or alternative functions.  相似文献   

2.
The specificity of transfer RNA aminoacylation by cognate aminoacyl-tRNA synthetase is a crucial step for synthesis of functional proteins. It is established that the aminoacylation identity of a single tRNA or of a family of tRNA isoacceptors is linked to the presence of positive signals (determinants) allowing recognition by cognate synthetases and negative signals (antideterminants) leading to rejection by the noncognate ones. The completion of identity sets was generally tested by transplantation of the corresponding nucleotides into one or several host tRNAs which acquire as a consequence the new aminoacylation specificities. Such transplantation experiments were also useful to detect peculiar structural refinements required for optimal expression of a given aminoacylation identity set within a host tRNA. This study explores expression of the defined yeast aspartate identity set into different tRNA scaffolds of a same specificity, namely the four yeast tRNA(Arg) isoacceptors. The goal was to investigate whether expression of the new identity is similar due to the unique specificity of the host tRNAs or whether it is differently expressed due to their peculiar sequences and structural features. In vitro transcribed native tRNA(Arg) isoacceptors and variants bearing the aspartate identity elements were prepared and their aminoacylation properties established. The four wild-type isoacceptors are active in arginylation with catalytic efficiencies in a 20-fold range and are inactive in aspartylation. While transplanted tRNA(1)(Arg) and tRNA(4)(Arg) are converted into highly efficient substrates for yeast aspartyl-tRNA synthetase, transplanted tRNA(2)(Arg) and tRNA(3)(Arg) remain poorly aspartylated. Search for antideterminants in these two tRNAs reveals idiosyncratic features. Conversion of the single base-pair C6-G67 into G6-C67, the pair present in tRNA(Asp), allows full expression of the aspartate identity in the transplanted tRNA(2)(Arg), but not in tRNA(3)(Arg). It is concluded that the different isoacceptor tRNAs protect themselves from misaminoacylation by idiosyncratic pathways of antidetermination.  相似文献   

3.
Du X  Wang ED 《Biochemistry》2002,41(34):10623-10628
Leucyl-tRNA synthetase (LeuRS), one of the class Ia aminoacyl-tRNA synthetases, joins Leu to tRNA(Leu) and excludes noncognate amino acids in protein synthesis. In this study, Escherichia coli LeuRS mutants at amino acid E292, which was located in the connective polypeptide 1 insertion region, were synthesized. Although mutated LeuRS showed little change in structure compared with wild-type LeuRS, the mutants were impaired in activity to varying extents. It was also showed that mutations did not affect the adenylation reaction. However, mutated LeuRS can mischarge tRNA(Leu) isoacceptors tRN or tRN with isoleucine to different extents. Isoleucylation of tRN was more than that of tRN. The mutant LeuRS-E292S, which was picked out as an example for the investigation of the relationship between tRNA(Leu) isoacceptors and editing function, can discriminate the Watson-Crick base pair of the first base pair of tRNA(Leu) from the wobble base pair. The tRNA(Leu) with the Watson-Crick base pair may result in more isoleucylated product than that with the wobble base pair. The same phenomenon happened to another mutant, LeuRS-A293D. It seems that the flexibility of the first base pair affects the editing reaction of LeuRS. The results indicate that the flexibility of the first base pair of tRNA(Leu) may probably affect the mischarged 3'-end of tRNA(Leu) shuttling from synthetic site to editing site and that the transferred acceptor arm of tRNA(Leu) may interact with LeuRS in the region around E292.  相似文献   

4.
Transfer RNAs from Escherichia coli, yeast (Sacharomyces cerevisiae), and calf liver were subjected to controlled hydrolysis with venom exonuclease to remove 3'-terminal nucleotides, and then reconstructed successively with cytosine triphosphate (CTP) and 2'- or 3'-deoxyadenosine 5'-triphosphate in the presence of yeast CTP(ATP):tRNA nucleotidyltransferase. The modified tRNAs were purified by chromatography on DBAE-cellulose or acetylated DBAE-cellulose and then utilized in tRNA aminoacylation experiments in the presence of the homologous aminoacyl-tRNA synthetase activities. The E. coli, yeast, and calf liver aminoacyl-tRNA synthetases specific for alanine, glycine, histidine, lysine, serine, and threonine, as well as the E. coli and yeast prolyl-tRNA synthetases and the yeast glutaminyl-tRNA synthetase utilized only those homologous modified tRNAs terminating in 2'-deoxyadenosine (i.e., having an available 3'-OH group). This is interpreted as evidence that these aminoacyl-tRNA synthetases normally aminoacylate their unmodified cognate tRNAs on the 3'-OH group. The aminoacyl-tRNA synthetases from all three sources specific argining, isoleucine, leucine, phenylalanine, and valine, as well as the E. coli and yeast enzymes specific for methionine and the E. coli glutamyl-tRNA synthetase, used as substrates exclusively those tRNAs terminating in 3'-deoxyadenosine. Certain aminoacyl-tRNA synthetases, including the E. coli, yeast, and calf liver asparagine and tyrosine activating enzymes, the E. coli and yeast cysteinyl-tRNA synthetases, and the aspartyl-tRNA synthetase from yeast, utilized both isomeric tRNAs as substrates, although generally not at the same rate. While the calf liver aspartyl- and cysteinyl-tRNA synthetases utilized only the corresponding modified tRNA species terminating in 2'-deoxyadenosine, the use of a more concentrated enzyme preparation might well result in aminoacylation of the isomeric species. The one tRNA for which positional specificity does seem to have changed during evolution is tryptophan, whose E. coli aminoacyl-tRNA synthetase utilized predominantly the cognate tRNA terminating in 3'-deoxyadenosine, while the corresponding yeast and calf liver enzymes were found to utilize predominantly the isomeric tRNAs terminating in 2'-deoxyadenosine. The data presented indicate that while there is considerable diversity in the initial position of aminoacylation of individual tRNA isoacceptors derived from a single source, positional specificity has generally been conserved during the evolution from a prokaryotic to mammalian organism.  相似文献   

5.
The decipherment of the tRNA’s operational code, known as the identity problem, requires the location of the sites in the tRNA structure that are involved in their correct recognition by the corresponding aminoacyl-tRNA synthetase. In this work, we determine the identity elements of each tRNA isoacceptor by means of the variation of information measure from information theory. We show that all isoacceptors exhibit sites associated with some bases of the anticodon. These sites form clusters that are scattered along the tRNA structure. The clusters determine the identity elements of each tRNA. We derive a catalogue of clustered sites for each tRNA that expands previously reported elements.  相似文献   

6.
A simple procedure to label individual tRNA species in a total tRNA preparation has been developed. The principle of the method is as follows: total crude tRNA (from E. coli) is incubated in the presence of a crude aminoacyl-tRNA synthetase preparation, containing most aminoacyl-tRNA synthetases and only one specific amino acid corresponding to the tRNA species which is intended to be labelled. This achieves the purpose of charging the desired tRNA species thereby protecting its 3'OH-terminus; obviously all the other tRNA species will have a free 3'OH group. Periodate oxidation, followed by beta-elimination, destroys any free 3'OH. After deacylation of the specific aminoacylated tRNA at pH 8.8 the only free 3'OH group will be the one of the desired tRNA species. High specific activity (32P)-pCp is ligated to this 3'OH by means of T4-RNA ligase. Two-dimensional polyacrylamide gel electrophoresis (2D-PGE) and sequence analysis of the isolated tRNA show that the method is very specific. Individually labelled tRNA species can be used as probes for cloning tRNA genes.  相似文献   

7.
The coating of a C18-reversed-phase high performance liquid chromatography support (octadecylsilyl-Hypersil) with a tetraalkylammonium salt (methyltrioctylammonium chloride) produces a chromatographic matrix with both ionic and hydrophobic character. Using this material oligonucleotides and tRNAs can be separated with high resolution. The observed resolution is in part due to the apparent lack of diffusion processes occurring during chromatography with this matrix. Some tRNAs can be obtained in high purity from a bulk tRNA mixture after a single chromatographic step. In general it is more efficient to use the matrix as the last step of a purification procedure for a particular tRNA. A two-step procedure is described which allows, in some cases, the isolation of small quantities of specific tRNA isoacceptors.  相似文献   

8.
Identity determinants are essential for the accurate recognition of transfer RNAs by aminoacyl-tRNA synthetases. To date, arginine determinants in the yeast Saccharomyces cerevisiae have been identified exclusively in vitro and only on a limited number of tRNA Arginine isoacceptors. In the current study, we favor a full cellular approach and expand the investigation of arginine determinants to all four tRNA Arg isoacceptors. More precisely, this work scrutinizes the relevance of the tRNA nucleotides at position 20, 35 and 36 in the yeast arginylation reaction. We built 21 mutants by site-directed mutagenesis and tested their functionality in YAL5, a previously engineered yeast knockout deficient for the expression of tRNA Arg CCG. Arginylation levels were also monitored using Northern blot. Our data collected in vivo correlate with previous observations. C35 is the prominent arginine determinant followed by G36 or U36 (G/U36). In addition, although there is no major arginine determinant in the D loop, the recognition of tRNA Arg ICG relies to some extent on the nucleotide at position 20. This work refines the existing model for tRNA Arg recognition. Our observations indicate that yeast Arginyl-tRNA synthetase (yArgRS) relies on distinct mechanisms to aminoacylate the four isoacceptors. Finally, according to our refined model, yArgRS is able to accommodate tRNA Arg scaffolds presenting N34, C/G35 and G/A/U36 anticodons while maintaining specificity. We discuss the mechanistic and potential physiological implications of these findings.  相似文献   

9.
Apparent differences in tRNA and aminoacyl-tRNA synthetase complements in tissues undergoing differentiation have frequently been used to support theories of translational control. The validity of at least some of these studies must now be questioned because of anomalies in the tRNA aminoacylation reaction which can lead to incomplete aminoacylation of tRNA. Incomplete acylation of a tRNA mixture could result in different relative amounts of acylated isoaccepting species if acylation rates were not identical for all species. Using common methods of analysis, this situation could lead to misestimation of relative levels of isoacceptors or an inability to detect the presence of minor species. Bonnet and Ebel [Bonnet, J., and Ebel, J. (1972) Eur. J. Biochem.31, 335] used a highly purified valyl-tRNA and valyl-tRNA synthetase from yeast to demonstrate the presence of four reactions that occur simultaneously in that system. Herein, I apply the findings of Bonnet and Ebel to a mammalian system in a manner which is representative of attempts to study relative tissue proportions of tRNA isoacceptors. Total complements of tRNAs and the aminoacyl-tRNA synthetases have been partially purified from rabbit liver according to the methods of Yang and Novelli [Yang, W. K., and Novelli, G. D. (1971) in Methods in Enzymology (Moldave, K., and Grossman, L., eds.), Vol. 20, p. 44, Academic Press, New York], probably the most commonly used procedures in the literature. Reaction conditions for tRNA acylation are shown to be modifiable so as to influence the extent of tRNA acylation. Procedures for optimizing the extent of tRNA acylation in such systems are demonstrated, and the unfavorable influence of Tris buffer, a factor not discussed by Bonnet and Ebel, is shown. Finally, examples of altered ratios of isoaccepting species in samples incompletely acylated due to suboptimal reaction conditions are provided.  相似文献   

10.
It has often been suggested that precursors to mitochondrial aminoacyl-tRNA synthetases are likely carriers for mitochondrial import of tRNAs in those organisms where this process occurs. In plants, it has been shown that mutation of U(70) to C(70) in Arabidopsis thaliana tRNA(Ala)(UGC) blocks aminoacylation and also prevents import of the tRNA into mitochondria. This suggests that interaction of tRNA(Ala) with alanyl-tRNA synthetase (AlaRS) is necessary for import to occur. To test whether this interaction is sufficient to drive import, we co-expressed A. thaliana tRNA(Ala)(UGC) and the precursor to the A. thaliana mitochondrial AlaRS in Saccharomyces cerevisiae. The A. thaliana enzyme and its cognate tRNA were correctly expressed in yeast in vivo. However, although the plant AlaRS was efficiently imported into mitochondria in the transformed strains, we found no evidence for import of the A. thaliana tRNA(Ala) nor of the endogenous cytosolic tRNA(Ala) isoacceptors. We conclude that at least one other factor besides the mitochondrial AlaRS precursor must be involved in mitochondrial import of tRNA(Ala) in plants.  相似文献   

11.
Changes in specific tRNA isoacceptors during Friend leukemia cell (F.L.C.) erythroid differentiation have been found to be concomitant with differences in the extent of the Q-base modification in certain species of tRNA. Transfer RNA was isolated from F.L.C. cultures after 0, 36, 48, 72, and 96 hr of DMSO induced differentiation. Changes in 17 isoacceptors of tRNAasn, tRNAasp, tRNAhis and tRNAtyr were compared by RPC-5 chromatography. Isoacceptors of these tRNA changed in relative amounts, following consistent trends throughout cell differentiation. The amount and distribution of Q-base containing tRNA isoacceptors was assayed by measuring the quanine-tRNA transferase catalyzed incorporation of [3H]-labeled guanine into tRNA species undermodified in Q-base followed by RPC-5 chormatography of the tRNA. The amount of Q-base containing tRNA species decreased in the first 48 hr after the induction, then increased again, indicating the level of Q-modification is correlated to the process of differentiation. Isoacceptors that lacked the Q-base were eluted late from RPC-5.  相似文献   

12.
A method for the isolation and labeling to high specific radioactivity of individual isoaccepting tRNAs is described. After blocking reactive minor bases by acetylation and iodination of the crude tRNA, a single family of isoacceptors was aminoacylated. Individual isoacceptors were separated by chromatography on RPC-5 and then acylated with the 3-(4-hydroxyphenyl)propionyl ester of N-hydroxysuccinimide. The product was purified by chromatography on BD-cellulose and RPC-5. This derivatized tRNA was then iodinated with 125I- and Chloramine-T to give a product containing between 5 X 10(7) and 3 X 10(8) dpm/microgram. The suitability of such labeled tRNAs for hybridization to homologous DNA in solution and cytological preparations of chromosomes is discussed with particular reference to Drosophila melanogaster.  相似文献   

13.
Preparative amounts of formyl-methionyl-tRNAfmet, methionyl-tRNAfmet, and tRNAfmet were separated from each other with baseline resolution in 30 min using mixed-mode HPLC on hexanoic anhydride-modified aminopropylsilyl-Hypersil 2. Pure tRNAfmet was aminoacylated with [35S]methionine in the presence or absence of a formyl donor and was immediately fractionated on the column. Two isoacceptors, tRNA1fmet and tRNA2fmet, as well as aminoacyl-tRNA synthetases were clearly separated from each other. The purified f[35S]-methionyl-tRNA was biologically active in that as much as 98% could be bound to ribosomes in response to AUGUAA in vitro. Formyl-methionine was released from this complex by the action of termination factor and greater than 92% of bound formyl-methionine was released by puromycin.  相似文献   

14.
A procedure for separating Escherichia coli aminoacyl-tRNA from unacylated tRNA or components of the aminoacylation reaction, thereby achieving an aminoacyl-tRNA product with a very high specific activity, is described. The method utilizes the specific recognition of aminoacyl-tRNA for E. coli protein synthesis elongation factor Tu which has been immobilized on an affinity matrix. The application of the affinity procedure as a means of purifying a single aminoacyl-tRNA from an unfractionated mixture of tRNAs is also discussed.  相似文献   

15.
Elongation in protein translation is strongly dependent on the availability of mature transfer RNAs (tRNAs). The relative concentrations of the tRNA isoacceptors determine the translation efficiency in unicellular organisms. However, the degree of correspondence of codons and the relevant tRNA isoacceptors serves as an estimator for translation efficiency in all organisms. In this study, we focus on the translational capacity of the human proteome. We show that the correspondence between the codon usage and tRNAs can be improved by combining experimental measurements with the genomic copy number of isoacceptor groups. We show that there are technologies of tRNA measurements that are useful for our analysis. However, fragments of tRNAs do not agree with translational capacity. It was shown that there is a significant increase in the absolute levels of tRNA genes in cancerous cells in comparison to healthy cells. However, we find that the relative composition of tRNA isoacceptors in healthy, cancerous, or transformed cells remains almost identical. This result may indicate that maintaining the relative tRNA composition in cancerous cells is advantageous via its stabilizing of the effectiveness of translation.  相似文献   

16.
In plant mitochondria, some of the tRNAs are encoded by the mitochondrial genome and resemble their prokaryotic counterparts, whereas the remaining tRNAs are encoded by the nuclear genome and imported from the cytosol. Generally, mitochondrial isoacceptor tRNAs all have the same genetic origin. One known exception to this rule is the group of tRNA(Gly) isoacceptors in dicotyledonous plants. A mitochondrion-encoded tRNA(Gly) and at least one nucleus-encoded tRNA(Gly) coexist in the mitochondria of these plants, and both are required to allow translation of all four GGN glycine codons. We have taken advantage of this atypical situation to address the problem of tRNA/aminoacyl-tRNA synthetase coevolution in plants. In this work, we show that two different nucleus-encoded glycyl-tRNA synthetases (GlyRSs) are imported into Arabidopsis thaliana and Phaseolus vulgaris mitochondria. The first one, GlyRS-1, is similar to human or yeast glycyl-tRNA synthetase, whereas the second, GlyRS-2, is similar to Escherichia coli glycyl-tRNA synthetase. Both enzymes are dual targeted, GlyRS-1 to mitochondria and to the cytosol and GlyRS-2 to mitochondria and chloroplasts. Unexpectedly, GlyRS-1 seems to be active in the cytosol but inactive in mitochondrial fractions, whereas GlyRS-2 is likely to glycylate both the organelle-encoded tRNA(Gly) and the imported tRNA(Gly) present in mitochondria.  相似文献   

17.
The tRNA and aminoacyl-tRNA synthetases of the blue-green alga, Anacystis nidulans have been isolated and studied. The distribution of some algal tRNA species on BD-cellulose chromatography has been determined. One tRNAMet species has been isolated in 80% purity by a single chromatography on a BD-cellulose column developed with a modified salt gradient. The number of different tRNA isoacceptors for Met, Ser, and Leu has been ascertained by RPC-5 chromatography. The recognition of algal tRNAs by the homologous algal synthetase preparation as well as the heterologous Escherichia coli preparation was studied by the aminoacylation tests. Since all of the isoaccepting species of the tRNAs tested behaved almost identically in presence of the two enzyme preparations, a conservation of the recognition site during the evolutionary divergence of bacteria and algae is strongly suggested.  相似文献   

18.
Animal mitochondrial translation systems contain two serine tRNAs, corresponding to the codons AGY (Y = U and C) and UCN (N = U, C, A, and G), each possessing an unusual secondary structure; tRNA(GCU)(Ser) (for AGY) lacks the entire D arm, whereas tRNA(UGA)(Ser) (for UCN) has an unusual cloverleaf configuration. We previously demonstrated that a single bovine mitochondrial seryl-tRNA synthetase (mt SerRS) recognizes these topologically distinct isoacceptors having no common sequence or structure. Recombinant mt SerRS clearly footprinted at the TPsiC loop of each isoacceptor, and kinetic studies revealed that mt SerRS specifically recognized the TPsiC loop sequence in each isoacceptor. However, in the case of tRNA(UGA)(Ser), TPsiC loop-D loop interaction was further required for recognition, suggesting that mt SerRS recognizes the two substrates by distinct mechanisms. mt SerRS could slightly but significantly misacylate mitochondrial tRNA(Gln), which has the same TPsiC loop sequence as tRNA(UGA)(Ser), implying that the fidelity of mitochondrial translation is maintained by kinetic discrimination of tRNAs in the network of aminoacyl-tRNA synthetases.  相似文献   

19.
Escherichia coli threonyl-tRNA synthetase binds to the leader region of its own mRNA at two major sites: the first shares some analogy with the anticodon arm of several tRNA(Thr) isoacceptors and the second corresponds to a stable stem-loop structure upstream from the first one. The binding of the enzyme to its mRNA target site represses its translation by preventing the ribosome from binding to its attachment site. The enzyme is still able to bind to derepressed mRNA mutants resulting from single substitutions in the anticodon-like arm. This binding is restricted to the stem-loop structure of the second site. However, the interaction of the enzyme with this site fails to occlude ribosome binding. tRNA(Thr) is able to displace the wild-type mRNA from the enzyme at both sites and suppresses the inhibitory effect of the synthetase on the formation of the translational initiation complex. Our results show that tRNA(Thr) acts as an antirepressor on the synthesis of its cognate aminoacyl-tRNA synthetase. This repression/derepression double control allows precise adjustment of the rate of synthesis of threonyl-tRNA synthetase to the tRNA level in the cell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号