首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anabaena cylindrica sparged with argon gas produced H2 continuously for 30 days under limited light conditions (6.0 W/m2) and for 18 days under elevated light conditions (32 W/m2) in the absence of exogenous nitrogen. The efficiency of converting visible light energy (32 W/m2) into chemical energy that is trapped as H2 ranged between 0.35 and 0.85% (approximately 13 microliter of H2 per mg [drywt] per h). Ammonium additions (0.2 mM NH4+) at various times destabilized the system and eventually suppressed H2 production completely, as compared with the control. Cultures grown with 5.0 mg of Fe3+ per liter produced H2 at a rate about twice that of cultures with 0.5 mg of Fe3+ per liter. Cultures grown at pH 7.4 produced H2 at the same initial rates as cultures that were grown at pH 9.4; however, the latter cultures continued to produce H2 after CO2 deprivation.  相似文献   

2.
Nitrogen-starved cultures of the alga Anabaena cylindrica 629 produced hydrogen and oxygen continuously for 7 to 19 days. Hydrogen production attained a maximum level after 1 to 2 days of starvation and was followed by a slow decline. The maximum rates were 30 ml of H2 evolved per liter of culture per h or 32 mul of H2 per mg of dry weight per h. In 5 to 7 days the rate of H2 evolution by the more productive cultures fell to one-half its maximum value. The addition of 10(-4) to 5 X 10(-4) M ammonium increased the rate of oxygen evolution and the total hydrogen production of the cultures. H2-O2 ratios were 4:1 under conditions of complete nitrogen starvation and about 1.7:1 after the addition of ammonium. Thus, oxygen evolution was affected by the extent of the nitrogen starvation. Thermodynamic efficiencies of converting incident light energy to free energy of hydrogen via algal photosynthesis were 0.4%. Possible factors limiting hydrogen production were decline of reductant supply and filament breakage. Hydrogen production by filamentous, heterocystous blue-green algae could be used for development of a biophotolysis system.  相似文献   

3.
Nitrogen-starved cultures of the alga Anabaena cylindrica 629 produced hydrogen and oxygen continuously for 7 to 19 days. Hydrogen production attained a maximum level after 1 to 2 days of starvation and was followed by a slow decline. The maximum rates were 30 ml of H2 evolved per liter of culture per h or 32 mul of H2 per mg of dry weight per h. In 5 to 7 days the rate of H2 evolution by the more productive cultures fell to one-half its maximum value. The addition of 10(-4) to 5 X 10(-4) M ammonium increased the rate of oxygen evolution and the total hydrogen production of the cultures. H2-O2 ratios were 4:1 under conditions of complete nitrogen starvation and about 1.7:1 after the addition of ammonium. Thus, oxygen evolution was affected by the extent of the nitrogen starvation. Thermodynamic efficiencies of converting incident light energy to free energy of hydrogen via algal photosynthesis were 0.4%. Possible factors limiting hydrogen production were decline of reductant supply and filament breakage. Hydrogen production by filamentous, heterocystous blue-green algae could be used for development of a biophotolysis system.  相似文献   

4.
The effects of bacteria, temperature, light, nitrate, and orthophosphate on growth of and hepatotoxin (desmethyl-3-microcystin-RR) production by Oscillatoria agardhii strains were studied under laboratory conditions. Strains were cultivated in Z8 medium under continuous illumination. Growth was determined by measuring dry weight and chlorophyll a, while toxin was analyzed by high-performance liquid chromatography. Two of the three toxic cultures studied produced more toxins in axenic than in nonaxenic cultures. High toxin production correlated with high nitrogen concentrations (test range, 0.42 to 84 mg of N per liter) and low light intensity (test range, 12 to 95 microeinsteins/m2 per s). Toxin production depended on phosphorus concentration at low levels of phosphorus (0.1 to 0.4 mg of P per liter) and higher concentrations had no additional effect. The optimum temperature for toxin production and growth of green O. agardhii was 25 degrees C. Red O. agardhii produced almost similar amounts of toxin at temperatures of 15 to 25 degrees C. The lowest toxin production by both strains was at 30 degrees C.  相似文献   

5.
The effects of bacteria, temperature, light, nitrate, and orthophosphate on growth of and hepatotoxin (desmethyl-3-microcystin-RR) production by Oscillatoria agardhii strains were studied under laboratory conditions. Strains were cultivated in Z8 medium under continuous illumination. Growth was determined by measuring dry weight and chlorophyll a, while toxin was analyzed by high-performance liquid chromatography. Two of the three toxic cultures studied produced more toxins in axenic than in nonaxenic cultures. High toxin production correlated with high nitrogen concentrations (test range, 0.42 to 84 mg of N per liter) and low light intensity (test range, 12 to 95 microeinsteins/m2 per s). Toxin production depended on phosphorus concentration at low levels of phosphorus (0.1 to 0.4 mg of P per liter) and higher concentrations had no additional effect. The optimum temperature for toxin production and growth of green O. agardhii was 25 degrees C. Red O. agardhii produced almost similar amounts of toxin at temperatures of 15 to 25 degrees C. The lowest toxin production by both strains was at 30 degrees C.  相似文献   

6.
7.
Cyanobacteria synthesize several types of bioactive secondary metabolites. Anabaena strain 90 produces three types of bioactive peptides, microcystins (inhibitors of protein phosphatases 1 and 2A), anabaenopeptilides, and anabaenopeptins (serine protease inhibitors). To investigate the role of the anabaenopeptilides in Anabaena, wild-type strain 90 (WT) and its anabaenopeptilide deficient mutant (MU) were cultured with various light and phosphate levels to evaluate the effects and coeffects of these growth factors on the concentrations of the three classes of peptides and the growth characteristics. WT and MU grew in comparable ways under the different growth conditions. The total peptide concentration in WT was significantly higher than that in MU (2.5 and 1.4 microg/mg [dry weight], respectively). Interestingly, the average concentration of anabaenopeptins was significantly higher in MU than in WT (0.59 and 0.24 microg/mg [dry weight], respectively). The concentration of microcystins was slightly but not statistically significantly higher in MU than in WT (1.0 and 0.86 microg/mg [dry weight], respectively). In WT, the highest peptide concentrations were usually found after 13 days in cultures grown at medium light intensities (23 micromol m(-2) s(-1)) and with the highest phosphate concentrations (2,600 microg liter(-1)). In MU, the highest peptide concentrations were found in 13-day-old cultures grown at medium light intensities (23 micromol m(-2) s(-1)) and with phosphate concentrations greater than 100 microg liter(-1). The higher concentrations of anabaenopeptins in MU may compensate for the absence of anabaenopeptilides. These findings clearly indicate that these compounds may have some linked function in the producer organism, the nature of which remains to be discovered.  相似文献   

8.
Simultaneous measurements of electrical activity and light absorbance have been made on nerve cell bodies from Archidoris monteryensis injected with indicator dyes. pH indicators, phenol red and bromocresol purple, and arsenazo III, which under normal conditions is primarily a calcium indicator have been employed. Voltage clamp pulses which induced calcium influx caused an absorbance decrease of the pH dyes indicating an internal acidification. The onset of the pH drop lagged the onset of Ca2+ influx by 200-400 ms, and pH continued to decrease for several seconds after pulse termination which shut off Ca2+ influx. Trains of action potentials also produced an internal pH decrease. Recovery of the pH change required periods greater than 10 min. The magnitude of the pH change was largely unaffected by external pH in the range 6.8-8.4. The voltage dependence of the internal p/ change was similar to the voltage dependence of calcium influx determined by arsenazo III, and removal of calcium from the bathing saline eliminated the pH signal. In neurons injected with EGTA (1-5 mM), the activity- induced internal Ca2+ changes were reduced or eliminated, but the internal pH drop was increased severalfold in magnitude. After the injection of EGTA, voltage clamp pulses produced a decrease in arsenazo III absorbance instead of the normal increase. Under these conditions the dye was responding primarily to changes in internal pH. Injection of H+ caused a rise in internal free calcium. The pH buffering capacity of the neurons was measured using three different techniques: H+ injection, depressing intrinsic pH changes with a pH buffer, and a method employing the EGTA-calcium reaction. The first two methods gave similar measurements: 4-9 meq/unit pH per liter for pleural ganglion cells and 13-26 meq/unit pH per liter for pedal ganglion cells. The EGTA method gave significantly higher values (20-60 meq/unit pH per liter) and showed no difference between pleural and pedal neurons.  相似文献   

9.
Fumonisin B1, a recently discovered mycotoxin, was synthesized by submerged cultures of Fusarium moniliforme NRRL 13616 grown for 29 days at 28 degrees C and 220 rpm in a basal salts medium (pH 5.0) supplemented with 90 g of glucose per liter and 3.5 g of ammonium sulfate per liter. Under these culture conditions, 74 +/- 23 micrograms of fumonisin B1 per ml was produced by 29-day-old F. moniliforme NRRL 13616 cultures. Fumonisin B1 was detected in liquid culture extracts by high-performance thin-layer chromatography. Fumonisin B1 was confirmed and quantitated by gas chromatography and gas chromatography-mass spectral analysis of the trimethylsilyl derivative. The use of a defined medium for producing fumonisin B1 in a submerged culture facilitates its isolation and provides an excellent method for conducting biosynthetic studies.  相似文献   

10.
Fumonisin B1, a recently discovered mycotoxin, was synthesized by submerged cultures of Fusarium moniliforme NRRL 13616 grown for 29 days at 28 degrees C and 220 rpm in a basal salts medium (pH 5.0) supplemented with 90 g of glucose per liter and 3.5 g of ammonium sulfate per liter. Under these culture conditions, 74 +/- 23 micrograms of fumonisin B1 per ml was produced by 29-day-old F. moniliforme NRRL 13616 cultures. Fumonisin B1 was detected in liquid culture extracts by high-performance thin-layer chromatography. Fumonisin B1 was confirmed and quantitated by gas chromatography and gas chromatography-mass spectral analysis of the trimethylsilyl derivative. The use of a defined medium for producing fumonisin B1 in a submerged culture facilitates its isolation and provides an excellent method for conducting biosynthetic studies.  相似文献   

11.
Nostoc punctiforme ATCC 29133 is a nitrogen-fixing, heterocystous cyanobacterium of symbiotic origin. During nitrogen fixation, it produces molecular hydrogen (H(2)), which is recaptured by an uptake hydrogenase. Gas exchange in cultures of N. punctiforme ATCC 29133 and its hydrogenase-free mutant strain NHM5 was studied. Exchange of O(2), CO(2), N(2), and H(2) was followed simultaneously with a mass spectrometer in cultures grown under nitrogen-fixing conditions. Isotopic tracing was used to separate evolution and uptake of CO(2) and O(2). The amount of H(2) produced per molecule of N(2) fixed was found to vary with light conditions, high light giving a greater increase in H(2) production than N(2) fixation. The ratio under low light and high light was approximately 1.4 and 6.1 molecules of H(2) produced per molecule of N(2) fixed, respectively. Incubation under high light for a longer time, until the culture was depleted of CO(2), caused a decrease in the nitrogen fixation rate. At the same time, hydrogen production in the hydrogenase-deficient strain was increased from an initial rate of approximately 6 micro mol (mg of chlorophyll a)(-1) h(-1) to 9 micro mol (mg of chlorophyll a)(-1) h(-1) after about 50 min. A light-stimulated hydrogen-deuterium exchange activity stemming from the nitrogenase was observed in the two strains. The present findings are important for understanding this nitrogenase-based system, aiming at photobiological hydrogen production, as we have identified the conditions under which the energy flow through the nitrogenase can be directed towards hydrogen production rather than nitrogen fixation.  相似文献   

12.
Three strains of Caldariomyces fumago were immobilized in 4% k-carrageenan and tested for semicontinuous production of chloroperoxidase (CPO). Over an 80-day period, growing in defined medium, C. fumago strains CMI 89362 and ATCC 11925 produced enzyme concentrations of 99 and 71 mg/liter, respectively, during six production periods of 12 to 14 days, while C. fumago DAOM 137632 produced only 24 mg of CPO per liter during six growth periods of 10 days. CPO production was unaffected by various regimens of washing between transfers. Mycelial growth was primarily restricted to the head surface, and bead size increased linearly with time. Attempts to restrict growth but maintain CPO production were unsuccessful. Pigment production, fructose utilization, and pH change in the immobilized cell cultures compared closely with the growth characteristics of free cell cultures. By using an airlift tower fermentor with an external loop run with continuous medium replacement of 20 ml/h (D = 0.016), strain CMI 89362 in bead form produced CPO at 40 mg/liter for 11 days.  相似文献   

13.
Batch cultures of Pseudomonas mendocina, grown in rich medium with glucose excess, showed metabolic differences dependent upon whether the growth conditions were aerobic or anaerobic, with or without added electron acceptor. Under anaerobic conditions in the absence of nitrate, P. mendocina reached the stationary phase of growth after 2 or 3 days, followed by a stationary phase of 4 to 5 days. Under these conditions, a mixed-type fermentative metabolism (formic, lactic, and acetic acids) appeared. A fivefold-higher specific rate of glucose consumption and eightfold-higher production of organic acids, compared with aerobic cultures, were shown by this microorganism growing anaerobically in the absence of exogenous electron acceptors. The gradients of organic acid produced by P. mendocina under these conditions reached a maximum (lactate, 180 mV; formate, 150 mV; acetate, 215 mV) between days 2 and 3 of culture. The proton motive force (delta p) decreased during growth from -254 to -71 mV. The intracellular pH remained alkaline during the culture, reaching a steady-state value of 7.9. The gradients of organic acids apparently contributed to the generation of a delta p, which, according to the Energy Recycling Model (P. A. M. Michels, J. P. J. Michels, J. Boonstra, and W. N. Konings, FEMS Microbiol. Lett. 5:357-364, 1979), would produce an average energy gain of 1 or 1.5 mol of ATP equivalents per mol of glucose consumed with H+/ATP stoichiometry of 3 or 2, respectively. Low YATP and Yglucose values were observed, suggesting that an uncoupled metabolism exists; i.e., ATP produced by catabolic processes is not directly used for biomass synthesis. This metabolic uncoupling could be induced at least in part by organic acids and the ATP wastage could be induced by a membrane-bound ATPase involved in intracellular pH regulation.  相似文献   

14.
Nitrogenase-mediated H(2) accumulation of Rhodobacter sphaeroides under photoheterotrophic conditions is reduced directly by the hydrogenase activity catalyzing H(2) uptake and indirectly by energy-demanding metabolic processes such as poly-beta-hydroxybutyrate (PHB) formation. H(2) accumulation of R. sphaeroides was examined during cell growth under illumination of 15, 7, and 3 W/m(2). Mutations in either hupSL (H(2)-uptake hydrogenase) or phbC (PHB synthase) had no effect on nitrogenase activity. The nitrogenase activity of R. sphaeroides grown at 15 W/m(2), however, was 70% higher than that of cells grown at 3 W/m(2), while the H(2)-uptake hydrogenase activity was approximately 3-fold higher in the same comparison. Accordingly, H(2) uptake by hydrogenase, monitored by measuring the difference in H(2) accumulation between a hupSL-deletion mutant and the corresponding parental strain, appeared to reach a maximum level as illumination was increased to 15 W/m(2). On the other hand, the surplus energy due to lack of PHB formation led to a fixed increase in H(2) accumulation independent of light intensity, reflecting the fact that the cellular PHB content was not changed significantly depending on light intensity. Therefore, H(2) uptake by hydrogenase should be suppressed to achieve higher H(2) accumulation of R. sphaeroides, especially at 15 W/m(2).  相似文献   

15.
The possibility of hydrogen production by a hydrogenase impaired mutant strain of Anabaena variabilis in outdoor culture was studied. A computer-controlled rooftop (outdoor) tubular photobioreactor (4.35 L) was assembled. H(2) production rates by A. variabilis PK84 grown in CO(2) + air in the photobioreactor were measured together with other parameters such as temperature, irradiance, pH, dry biomass weight, and pO(2), and Chl a concentrations during summer months of 1998 and 1999. Efficiencies of light energy bioconversion to H(2) energy and energy accumulated in biomass were calculated. The influence of irradiance, temperature, and mode of cultivation on H(2) production and efficiency of light energy bioconversion were evaluated. The culture produced up to 1.1 L H(2) day(-1) PhBR(-1). The efficiency of light energy to H(2) energy bioconversion on some days was 0.094%. However, the conditions for maximum H(2) photoproduction and for maximum efficiency of light energy to H(2) energy bioconversion were not the same. A. variabilis PK84 could produce hydrogen for prolonged periods (up to 40 days) without injection of fresh inoculum. During this period photobioreactor produced 24.5 L of H(2). Possibilities for increasing the efficiency of light energy conversion are discussed.  相似文献   

16.
From comparisons of 4% N-Z Amine NAK made with distilled water, naturally hard water, and synthetic salt solutions, it appeared that magnesium and, to a lesser extent, iron were limiting factors in the production of staphylococcal enterotoxins B and C but not A. Maximum enterotoxin production with NAK medium was achieved by the addition of 5 mg of Mg2/ per liter (for a total of 9 mg of Mg2+ per liter) and 0.5 mg of Fe2+ per liter. Higher levels of magnesium were not inhibitory. Supplementing NAK with commonly used complex components, which added Mg2+ above the 9-mg/liter level, did not result in maximum yields of enterotoxin. Variability in the ability of different lots of NAK to support enterotoxin production may be minimized by supplementing NAK medium with magnesium and iron.  相似文献   

17.
We compared the metabolism of methanol and acetate when Methanosarcina barkeri was grown in the presence and absence of Desulfovibrio vulgaris. The sulfate reducer was not able to utilize methanol or acetate as the electron donor for energy metabolism in pure culture, but was able to grow in coculture. Pure cultures of M. barkeri produced up to 10 mumol of H(2) per liter in the culture headspace during growth on acetate or methanol. In coculture with D. vulgaris, the gaseous H(2) concentration was 相似文献   

18.
From comparisons of 4% N-Z Amine NAK made with distilled water, naturally hard water, and synthetic salt solutions, it appeared that magnesium and, to a lesser extent, iron were limiting factors in the production of staphylococcal enterotoxins B and C but not A. Maximum enterotoxin production with NAK medium was achieved by the addition of 5 mg of Mg2/ per liter (for a total of 9 mg of Mg2+ per liter) and 0.5 mg of Fe2+ per liter. Higher levels of magnesium were not inhibitory. Supplementing NAK with commonly used complex components, which added Mg2+ above the 9-mg/liter level, did not result in maximum yields of enterotoxin. Variability in the ability of different lots of NAK to support enterotoxin production may be minimized by supplementing NAK medium with magnesium and iron.  相似文献   

19.
Little is known about the cellular physiology of Escherichia coli at high cell densities (e.g., greater than 50 g [dry cell weight] per liter), particularly in relation to the cellular response to different growth conditions. E. coli W3100 cultures were grown under identical physical and nutritional conditions, by using a computer-controlled fermentation system which maintains the glucose concentration at 0.5 g/liter, to high cell densities at pH values of 6.0, 6.5, 7.0, and 7.5. The data suggest a relationship between the pH of the environment and the amount of acetate excreted by the organism during growth. At pH values of 6.0 and 6.5, the acetate reached a concentration of 6 g/liter, whereas at pH 7.5, the acetate reached a concentration of 12 g/liter. Furthermore, at pH values of 6.0 to 7.0, the E. coli culture undergoes a dramatic metabolic switch in which oxygen and glucose consumption and CO2 evolution all temporarily decreased by 50 to 80%, with a concomitant initiation of acetate utilization. After a 30-min pause in which approximately 50% of the available acetate is consumed, the culture recovers and resumes consuming glucose and oxygen and producing acetate and CO2 at preswitch levels. During the switch period, the specific activity of isocitrate lyase typically increases approximately fourfold.  相似文献   

20.
A marine microalga Gyrodinium impudicum strain KG03 produced sulfated exopolysaccharide designated as p-KG03, which showed a strong antiviral activity against encephalomyocarditis virus (EMCV). To optimize culture conditions for the production of p-KG03, mineral salts, vitamins, plant growth hormones, temperature, pH and light conditions were examined. From this study, M-KG03 medium for the maximum production of p-KG03 was suggested as follows; NH(4)Cl 75 microM, NaH(3)PO(4) 200 microM, NaHCO(3) 50 microM, Na(2)SO(4) 10 microM, FeCl(2) x 6H(2)O 10 microM, MnCl(2) x 4H(2)O 0.1 microM, vitamin B(12) 0.75 microg, naphthalene acetic acid (NAA) 7.5 microg and myo-inositol 200 mg per liter of aged sea water. The optimal temperature and pH were 22.5 degrees C and 8.0, respectively. The optimal light conditions of intensity and period were 150 microE m(-2) s(-1) and 16:8 h light:dark cycle. Finally, the cell growth and p-KG03 production were measured in one liter of M-KG03 medium with 1% CO(2) and 50 ml min(-1) of airflow using two liters airlift balloon type photobioreactor (ABTPR). At these optimal conditions, p-KG03 production and cell growth were 134.6+/-5.9 mg l(-1) and 123,076+/-1,597 cells ml(-1), respectively, representing a 7.7 and 5.1 times compared with f/2 medium with Erlenmeyer flask culture (p-KG03 production 17.5+/-1.3 mg l(-1) and cell growth 24,311+/-1,291 cells ml(-1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号