共查询到20条相似文献,搜索用时 0 毫秒
1.
Membranes from rat olfactory epithelial homogenates were incorporatedinto planar bilayers by a tip-dipping method. Analysis of single-channelcurrents indicate the existence of a cation channel activatedby the addition of adenosine 3',5'monophosphate (cAMP). Theactivity did not require exogenous ATP or GTP. The current-voltagerelationship for the single-channel fluctuations gave a slopeconductance of 32 ± 5 pS and a reversal potential of5 ±4 mV. Forskolin elicited an increase in patchconductance similar to that produced by cAMP. This responserequired the presence of ATP and could be enhanced by theophylline. 相似文献
2.
Summary The induction of channels across planar lipid bilayers by purified, recombinant pneumolysin (a hemolytic protein from Streptococcus pneumoniae) has been studied by measuring increases in electrical conductivity. Pneumolysin-induced channels exhibit a wide range of single channel conductances (<50 pS to >1 nS at 0.1 m KCl). Channels can be categorized on the basis of their K+:C– selectivity: the smallest channels are strongly cation selective, with t+ (the cation transference number) approaching 1.0; the largest channels are unselective (t+ 0.5). Channels tend to remain open at all voltages (–150 to 150 mV); only the smallest channels exhibit any rectification.In the presence of divalent cations (1–5 mm Zn2+; 10–20 mm Ca2+), small (<50 pS) and medium-sized (50 pS to 1 nS) channels are closed in a voltage-dependent manner (more closure at higher voltages); at 0 voltage channels reopen. Overall selectivity is reduced by divalent cations, compatible with small, selective channels being closed preferentially to large, nonselective ones.It is concluded that a single molecular species (pneumolysin) induces multiple-sized channels that can be categorized by cation: anion selectivity and by their sensitivity to closure by divalent cations.We are grateful to Dr. G. J. Boulnois and T. J. Mitchell forfruitful discussion and supplies of pneumolysin, and to G. M. Alder for technical assistance. YEK is grateful to Dr. A. A. Lev for leave of absence and to the USSR Academy of Sciences and the Global Network for Molecular and Cell Biology (UNESCO) for support of travel and accommodation, respectively. The work was supported by the Cell Surface Research Fund. 相似文献
3.
Rich TC Fagan KA Nakata H Schaack J Cooper DM Karpen JW 《The Journal of general physiology》2000,116(2):147-161
Cyclic AMP is a ubiquitous second messenger that coordinates diverse cellular functions. Current methods for measuring cAMP lack both temporal and spatial resolution, leading to the pervasive notion that, unlike Ca(2+), cAMP signals are simple and contain little information. Here we show the development of adenovirus-expressed cyclic nucleotide-gated channels as sensors for cAMP. Homomultimeric channels composed of the olfactory alpha subunit responded rapidly to jumps in cAMP concentration, and their cAMP sensitivity was measured to calibrate the sensor for intracellular measurements. We used these channels to detect cAMP, produced by either heterologously expressed or endogenous adenylyl cyclase, in both single cells and cell populations. After forskolin stimulation, the endogenous adenylyl cyclase in C6-2B glioma cells produced high concentrations of cAMP near the channels, yet the global cAMP concentration remained low. We found that rapid exchange of the bulk cytoplasm in whole-cell patch clamp experiments did not prevent the buildup of significant levels of cAMP near the channels in human embryonic kidney 293 (HEK-293) cells expressing an exogenous adenylyl cyclase. These results can be explained quantitatively by a cell compartment model in which cyclic nucleotide-gated channels colocalize with adenylyl cyclase in microdomains, and diffusion of cAMP between these domains and the bulk cytosol is significantly hindered. In agreement with the model, we measured a slow rate of cAMP diffusion from the whole-cell patch pipette to the channels (90% exchange in 194 s, compared with 22-56 s for substances that monitor exchange with the cytosol). Without a microdomain and restricted diffusional access to the cytosol, we are unable to account for all of the results. It is worth noting that in models of unrestricted diffusion, even in extreme proximity to adenylyl cyclase, cAMP does not reach high enough concentrations to substantially activate PKA or cyclic nucleotide-gated channels, unless the entire cell fills with cAMP. Thus, the microdomains should facilitate rapid and efficient activation of both PKA and cyclic nucleotide-gated channels, and allow for local feedback control of adenylyl cyclase. Localized cAMP signals should also facilitate the differential regulation of cellular targets. 相似文献
4.
Membrane potentials were recorded from rat parathyroid glands continuously perfused in vitro. At 1.5 mM external Ca++, the resting potential averages -73 +/- 5 mV (mean +/- SD, n = 66). On exposure to 2.5 mM Ca++, the cells depolarize reversibly to a potential of -34 +/- 8 mV (mean +/- SD). Depolarization to this value is complete in approximately 2-4 min, and repolarization on return to 1.5 mM Ca++ takes about the same time. The depolarizing action of high Ca++ is mimicked by all divalent cations tested, with the following order of effectiveness: Ca++ greater than Sr++ greater than Mg++ greater than Ba++ for alkali-earth metals, and Ca++ greater than Cd++ greater than Mn++ greater than Co++ greater than Zn++ for transition metals. Input resistance in 1.5 mM Ca++ was 24.35 +/- 14 M omega (mean +/- SD) and increased by an average factor of 2.43 +/- 0.8 after switching to 2.5 mM Ca++. The low value of input resistance suggests that cells are coupled by low-resistance junctions. The resting potential in low Ca++ is quite insensitive to removal of external Na+ or Cl-, but very sensitive to changes in external K+. Cells depolarize by 61 mV for a 10- fold increase in external K+. In high Ca++, membrane potential is less sensitive to an increase in external K+ and is unchanged by increasing K+ from 5 to 25 mM. Depolarization evoked by high Ca++ may be slowed, but is unchanged in amplitude by removal of external Na+ or Cl-. Organic (D600) and inorganic (Co++, Cd++, and Mn++) blockers of the Ca++ channels do not interfere with the electrical response to Ca++ changes. Our results show remarkable parallels to previous observations on the control of parathormone (PTH) release by Ca++. They suggest an association between membrane voltage and secretion that is very unusual: parathyroid cells secrete when fully polarized, and secrete less when depolarized. The extraordinary sensitivity of parathyroid cells to divalent cations leads us to hypothesize the existence in their membranes of a divalent cation receptor that controls membrane permeability (possibly to K+) and PTH secretion. 相似文献
5.
W Qu A J Moorhouse A M Cunningham P H Barry 《Proceedings. Biological sciences / The Royal Society》2001,268(1474):1395-1403
Anomalous mole-fraction effects (AMFE) were studied, using the inside-out configuration of the patchclamp technique, in both recombinant wild-type alpha-homomeric rat olfactory adenosine 3',5'-cyclic monophosphate (cAMP)-gated channels (rOCNC1) expressed in human embryonic kidney cells (HEK 293) and native cyclic nucleotide-gated (CNG) channels in acutely isolated rat olfactory receptor neurons. Single-channel and macroscopic currents were activated by 200 microM and 500 microM cAMP, respectively. Macroscopic currents, measured with mixtures of Na(+)-NH(4)(+) or Cs(+)-Li(+) in the cytoplasmic bathing solution, displayed AMFE in the rOCNC1 channels at both positive and negative membrane potentials. The rOCNC1 single-channel conductance showed a distinct minimum (or maximum) in an 80% Na(+)-20% NH(4)(+) mixture (or a 60% Cs(+)-40% Li(+) mixture), but only at positive membrane potentials. Macroscopic measurements in native olfactory CNG channels with mixtures of Na(+)-NH(4)(+) indicated similar AMFE. These results suggest that both native CNG channels and recombinant alpha-homomeric channels allow several ions to be present simultaneously within the channel pore. They also further validate the dominant role of the alpha-subunit in permeation through these channels, provide the first evidence to suggest that rOCNC1 channels have multi-ion properties and further justify the use of the rOCNC1 channel as an effective model for structure-function studies of ion permeation and selectivity in olfactory CNG channels. 相似文献
6.
C terminus-mediated control of voltage and cAMP gating of hyperpolarization-activated cyclic nucleotide-gated channels 总被引:6,自引:0,他引:6
Viscomi C Altomare C Bucchi A Camatini E Baruscotti M Moroni A DiFrancesco D 《The Journal of biological chemistry》2001,276(32):29930-29934
The hyperpolarization-activated cyclic nucleotide-gated (HCN) family of "pacemaker" channels includes 4 isoforms, the kinetics and cAMP-induced modulation of which differ quantitatively. Because HCN isoforms are highly homologous in the central region, but diverge more substantially in the N and C termini, we asked whether these latter regions could contribute to the determination of channel properties. To this aim, we analyzed activation/deactivation kinetics and the response to cAMP of heterologously expressed isoforms mHCN1 and rbHCN4 and verified that mHCN1 has much faster kinetics and lower cAMP sensitivity than rbHCN4. We then constructed rbHCN4 chimeras by replacing either the N or the C terminus, or both, with the analogous domains from mHCN1. We found that: 1) replacement of the N terminus (chimera N1-4) did not substantially modify either the kinetics or cAMP dependence of wild-type channels; 2) replacement of the C terminus, on the contrary, resulted in a chimeric channel (4-C1), the kinetics of which were strongly accelerated compared with rbHCN4, and that was fully insensitive to cAMP; 3) replacement of both N and C termini led to the same results as replacement of the C terminus alone. These results indicate that the C terminus of rbHCN4 contributes to the regulation of voltage- and cAMP-dependent channel gating, possibly through interaction with other intracellular regions not belonging to the N terminus. 相似文献
7.
Native ion channels are precisely tuned to their physiological role in neuronal signaling. This tuning frequently involves the controlled assembly of heteromeric channels comprising multiple types of subunits. Cyclic nucleotide-gated (CNG) channels of olfactory neurons are tetramers and require three types of subunits, CNGA2, CNGA4, and CNGB1b, to exhibit properties necessary for olfactory transduction. Using fluorescently tagged subunits and fluorescence resonance energy transfer (FRET), we find the subunit composition of heteromeric olfactory channels in the surface membrane is fixed, with 2:1:1 CNGA2:CNGA4:CNGB1b. Furthermore, when expressed individually with CNGA2, CNGA4 and CNGB1b subunits were still present in only a single copy and, when expressed alone, did not self-assemble. These results suggest that the precise assembly of heteromeric olfactory channels results from a mechanism where CNGA4 and CNGB1b subunits have a high affinity for CNGA2 but not for self-assembly, precluding more than one CNGA4 or CNGB1b subunit in the channel complex. 相似文献
8.
Patch clamp technique was used to record cyclic nucleotide-dependent current of the frog olfactory receptor cell plasma membrane. Data obtained indicate that the channels passing this current are permeable to Ca2+ or Mg2+ and moderately selective for monovalent cations according to the sequence Li+, Na+, K+ greater than Rb+ greater than Cs+ and are effectively blocked by 1-cis-diltiazem and 3',4'-dichlorobenzamil. The conductance of single cyclic nucleotide-gated channels in solutions with low Ca2+ and Mg2+ content is about 19 pS. The results demonstrate that cyclic nucleotide-activated channels of olfactory receptor cells are virtually identical to photoreceptor ones. 相似文献
9.
T. K. Rostovtseva C. L. Bashford A. A. Lev C. A. Pasternak 《The Journal of membrane biology》1994,141(1):83-90
Addition of Triton X-100 to planar bilayers composed of dioleoyl phosphatidyl choline, diphytanoyl phosphatidyl choline or mono-oleoyl glycerol induces single channel-like events when electrical conductivity across the bilayer is measured. Addition of divalent cations or protons causes channels to disappear; single channel conductance of remaining channels is not significantly altered; addition of EDTA or alkali (respectively) reverses the effect. It is concluded that sensitivity to divalent cations and protons need not be dependent on specific channel proteins or pore-forming toxins, but may be a feature of any aqueous pore across a lipid milieu.We are grateful to Dr. D.T. Edmonds and Prof. R.J.P. Williams for critical discussion, to Glenn Alder for technical assistance, to Ms. B. Bashford and Ms. S.G. Pelc for preparing the paper, and to the Cell Surface Research Fund, the Royal Society (A.A.L.), UNESCO (Molecular and Cell Biology Network) and The Wellcome Trust for financial support. 相似文献
10.
S. E. Dryer D. Henderson 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1993,172(3):271-279
Chick pineal cells maintained in dissociated cell culture express an intrinsic photosensitive circadian oscillator, but the mechanisms of phototransduction in avian pinealocytes are not fully understood. In this study, we have used inside-out patches to examine the characteristics of cyclic GMP-activated channels of chick pinealocytes in more detail, concentrating on the effects of factors known to modulate the secretion of melatonin and/or the function of circadian pacemakers. In most patches, the predominant conductance state was 19 pS in symmetrical 145 mM NaCl. But in some patches, a second cyclic GMP-activated channel with a unitary conductance of 29 pS was also present. The current flowing through cyclic GMP-activated channels was not affected by application of salines containing 1 M Ca2+ to the cytoplasmic face of the patch membrane. By contrast, application of 1 mM Ca2+ caused a partial reduction in cyclic GMP-activated current at all membrane potentials. Application of 1–5 mM Mg2+ ions caused a virtually complete blockade of current at positive membrane potentials, but caused only a small decrease in current at negative membrane potentials. No obvious differences in the gating of cyclic GMP-activated channels were observed in pH 8.2, 7.4 or 6.2 salines. Application of salines containing 100 M, 500 M, or 1 mM cyclic AMP did not cause activation of the channels, but 5 mM cyclic AMP evoked a low level of channel activity. Application of 5 mM but not 100 M cyclic AMP decreased the probability of channel activation caused by 20–100 M cyclic GMP and also increased the percentage of openings to an 11 pS subconductance state. Thus, cyclic AMP acts as a weak partial agonist. Nevertheless, the gating of these channels does not seem to be controlled directly by physiologically relevant changes in intracellular Ca2+, pH, or cyclic AMP. 相似文献
11.
The possible role of adenosine 3',5'-cyclic monophosphate (cAMP)in olfactory transduction in the spiny lobster was investigatedusing radioimmunoassay of cAMP and intracellular recording.Application of forskolin or 1-isobutyl-3-methylxanthine increasedcAMP levels in intact sensilla containing the chemoreceptiveouter dendritic segments of the lobster olfactory receptor cell,thereby demonstrating adenylate cyclase and phosphodiesteraseactivity in the sensilla. A complex odor mixture and identifiedexcitatory odor molecules failed to stimulate the productionof cAMP, however In intracellular recordings, superfusion ofthe outer dendritic segments with forskolin, 1-isobutyl-3-methylxanthineand cyclic nucleotide analogs had no direct effect on odor-responsivecells. These compounds did cause infrequent enhancements (sixof 42 cells) of odor-evoked receptor potentials, but processesother than transduction are the most likely causes of this effect.We conclude that cAMP-dependent transduction mechanisms areunlikely to mediate most odor responses in lobsters, in contrastto transduction mechanisms in amphibians and rats. 相似文献
12.
13.
Summary Miniature end-plate currents (MEPCs) and acetylcholine-induced current fluctuations were recorded in voltageclamped, glycerol-treated toad sartorius muscle fibers in control solution and in solutions with added divalent cations. In isosmotic solutions containing 20mm Ca or Mg, MEPCs had time constants of decay (
D
) which were about 30% slower than normal. In isotonic Ca solutions (Na-free), greater increases in both
D
and channel lifetime were seen; the null potential was –34 mV, and single-channel conductance decreased to approximately 5 pS. Zn or Ni, at concentrations of 0.1–5mm, were much more effective in increasing
D
than Ca or Mg, although they did not greatly affect channel conductance. The normal temperature and voltage sensitivity of was not significantly altered by any of the added divalent cations. Surface potential shifts arising from screening of membrane fixed charge by divalent cations cannot entirely explain the observed increases in , especially when taken together with changes in channel conductance. 相似文献
14.
15.
The permeation of monovalent organic cations through adenosine 3,5-cyclic monophosphate-(cAMP) activated channels was studied by recording macroscopic currents in excised inside-out membrane patches from the dendritic knobs of isolated mammalian olfactory receptor neurons (ORNs). Current-voltage relations were measured when bathing solution Na+ was replaced by monovalent organic cations. Permeability ratios relative to Na+ ions were calculated from changes in reversal potentials. Some of the small organic cations tested included ammonium (NH
4
+
), hydroxylammonium and formamidinium, with relative permeability ratios of 1.41, 2.3 and 1.01 respectively. The larger methylated and ethylated ammonium ions studied included: DMA (dimethylammonium), TMA (tetramethylammonium) and TEA (tetraethylammonium) and they all had permeability ratios larger than 0.09. Even large cations such as choline, arginine and tris(hydroxymethyl)aminomethane (Tris) were appreciably permeant through the cAMP-activated channel with permeability ratios ranging from 0.19 to 0.7. The size of the permeating cations, as assessed by molecular weight, was a good predictor of the permeability. The permeability sequence of the cAMP-activated channel in our study was PNH4 > PNa > pDMA > pTMA > PCholine > PTEA. Higher permeability ratios of hydroxylammonium, arginine and tris(hydroxymethyl)aminomethane cannot be explained by ionic size alone. Our results indicate that: (i) cAMP-activated channels poorly select between monovalent cations; (ii) the pore dimension must be at least 6.5 × 6.5 Å, in order to allow TEA and Tris to permeate and (iii) molecular sieving must be an important mechanism for the permeation of large organic ions through the channels with specific ion binding playing a smaller role than in other structurally similar channels. In addition, the results clearly indicate that cyclic nucleotide-gated (CNG) channels in different cells are not the same, the olfactory CNG channel being different from that of the photoreceptors, particularly with respect to the permeation of large organic cations, which the ORN channels allow to permeate readily.This work was supported by the Australian Research Council of Australia. 相似文献
16.
A single tryptophan on M2 of glutamate receptor channels confers high permeability to divalent cations. 总被引:1,自引:1,他引:1
下载免费PDF全文

Ionotropic glutamate receptors (iGluRs) of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate/kainate subtype display lower permeability to Ca2+ than the N-methyl-D-aspartate (NMDA) subtype. The well-documented N/Q/R site on the M2 transmembrane segment (M2) is an important determinant of the distinct Ca2+ permeability exhibited by members of the non-NMDA receptor subfamily. This site, however, does not completely account for the different permeation properties displayed by non-NMDA and NMDA receptors, suggesting the involvement of other molecular determinants. We have identified additional molecular elements on M2 of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate/kainate receptor GluR1 that specify its permeation properties. Higher permeability to divalent over monovalent cations is conferred on GluR1 by a tryptophan at position 577, whereas blockade by external divalent cations is imparted by an asparagine at position 582. Hence, the permeation properties of ionotropic glutamate receptors appear to be primarily specified by two distinct determinants on M2, the well-known N/Q/R site and the newly identified L/W site. These findings substantiate the notion that M2 is a structural component of the pore lining. 相似文献
17.
Ontogenetic changes in odor sensitivity, olfactory receptor area and olfactory receptor density in the rat 总被引:2,自引:0,他引:2
The changes in area and receptor cell density of olfactory epitheliumwere examined in 0.5- to >400-day-old rats. In a parallelstudy the absolute olfactory detection threshold for ethyl acetateof 50- to >400-day-old rats was determined. The area of theolfactory epithelium increased throughout the range of agesexamined. The density of olfactory receptor neurons (determinedfrom counts of olfactory knobs) showed a rapid increase in thefirst 20 days, a lesser increase until day 220, and decreasedin older (>4O0 days) animals. Changes in olfactory sensitivitywere related to changes in receptor density with maximal sensitivityoccurring at approximately 200 days. Because it is known thatthe number of mitral cells in the olfactory bulb remains thesame at these ages, these results suggest that sensitivity maybe closely related to the convergence ratio of primary to secondaryneurons in the olfactory system. 相似文献
18.
In the olfactory bulb, input from olfactory receptor neurons is processed by neuronal networks before it is relayed to higher
brain regions. In many neurons, hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels generate and control
oscillations of the membrane potential. Oscillations also appear crucial for information processing in the olfactory bulb.
Four channel isoforms exist (HCN1–HCN4) that can form homo- or heteromers. Here, we describe the expression pattern of HCN
isoforms in the olfactory bulb of mice by using a novel and comprehensive set of antibodies against all four isoforms. HCN
isoforms are abundantly expressed in the olfactory bulb. HCN channels can be detected in most cell populations identified
by commonly used marker antibodies. The combination of staining with marker and HCN antibodies has revealed at least 17 different
staining patterns in juxtaglomerular cells. Furthermore, HCN isoforms give rise to an unexpected wealth of co-expression patterns
but are rarely expressed in the same combination and at the same level in two given cell populations. Therefore, heteromeric
HCN channels may exist in several cell populations in vivo. Our results suggest that HCN channels play an important role in
olfactory information processing. The staining patterns are consistent with the possibility that both homomeric and heteromeric
HCN channels are involved in oscillations of the membrane potential of juxtaglomerular cells. 相似文献
19.
20.
Structural basis for ligand selectivity of heteromeric olfactory cyclic nucleotide-gated channels
下载免费PDF全文

In vertebrate olfactory receptors, cAMP produced by odorants opens cyclic nucleotide-gated (CNG) channels, which allow Ca(2+) entry and depolarization of the cell. These CNG channels are composed of alpha subunits and at least two types of beta subunits that are required for increased cAMP selectivity. We studied the molecular basis for the altered cAMP selectivity produced by one of the beta subunits (CNG5, CNCalpha4, OCNC2) using cloned rat olfactory CNG channels expressed in Xenopus oocytes. Compared with alpha subunit homomultimers (alpha channels), channels composed of alpha and beta subunits (alpha+beta channels) were half-activated (K(1/2)) by eightfold less cAMP and fivefold less cIMP, but similar concentrations of cGMP. The K(1/2) values for heteromultimers of the alpha subunit and a chimeric beta subunit with the alpha subunit cyclic nucleotide-binding region (CNBR) (alpha+beta-CNBRalpha channels) were restored to near the values for alpha channels. Furthermore, a single residue in the CNBR could account for the altered ligand selectivity. Mutation of the methionine residue at position 475 in the beta subunit to a glutamic acid as in the alpha subunit (beta-M475E) reverted the K(1/2,cAMP)/K(1/2,cGMP) and K(1/2, cIMP)/K(1/2,cGMP) ratios of alpha+beta-M475E channels to be very similar to those of alpha channels. In addition, comparison of alpha+beta-CNBRalpha channels with alpha+beta-M475E channels suggests that the CNBR of the beta subunit contains amino acid differences at positions other than 475 that produce an increase in the apparent affinity for each ligand. Like the wild-type beta subunit, the chimeric beta/alpha subunits conferred a shallow slope to the dose-response curves, increased voltage dependence, and caused desensitization. In addition, as for alpha+beta channels, block of alpha+betaCNBRalpha channels by internal Mg(2+) was not steeply voltage-dependent (zdelta approximately 1e(-)) as compared to block of alpha channels (zdelta 2.7e(-)). Thus, the ligand-independent effects localize outside of the CNBR. We propose a molecular model to explain how the beta subunit alters ligand selectivity of the heteromeric channels. 相似文献