首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Encapsulated cocoa (Theobroma cacao L.) somatic embryos subjected to 0.08–1.25 M sucrose treatments were analyzed for embryo soluble sugar content, non-freezable water content, moisture level after desiccation and viability after desiccation and freezing. Results indicated that the higher the sucrose concentration in the treatment medium, the greater was the extent of sucrose accumulation in the embryos. Sucrose treatment greatly assisted embryo post-desiccation recovery since only 40% of the control embryos survived desiccation, whereas a survival rate of 60–95% was recorded for embryos exposed to 0.5–1.25 M sucrose. The non-freezable water content of the embryos was estimated at between 0.26 and 0.61 g H2O g−1dw depending on the sucrose treatment, and no obvious relationship could be found between the endogenous sucrose level and the amount of non-freezable water in the embryos. Cocoa somatic embryos could withstand the loss of a fraction of their non-freezable water without losing viability following desiccation. Nevertheless, the complete removal of potentially freezable water was not sufficient for most embryos to survive freezing.  相似文献   

2.
Summary Cryopreservation in liquid nitrogen was attempted with both somatic embryos and zygotic embryonic axes of the ornamental Camellia japonica L. Several protective measures were applied to somatic embryos (desiccation, chemical protectors, hardening by culture at low temperatures, encapsulation in alginate beads), but none allowed somatic embryos cultures to survive after 24 h in liquid nitrogen. Embryonic axes, however, were easily cryopreserved by means of the simplest technique: desiccation in a laminar flow hood and direct immersion in liquid nitrogen. Although the causes of the difference in cryopreservability between the two types of material are not known, one might be the difference between their degrees of differentiation and water content.Abbreviations ANOVA analysis of variance - BA N6-benzyladenine - DMSO dimethyl sulfoxide - IBA indole-3-butyric acid - LN liquid nitrogen - MS Murashige and Skoog mineral solution - fwt fresh weight - LSD Least Significant Difference  相似文献   

3.
Infective juveniles (IJs) of entomopathogenic nematodes (EPNs) are susceptible to a wide variety of environmental factors, including desiccation, which limit their usefulness as biocontrol agents. Although EPNs can be subjected to a gradual loss of water in their natural environment they are not full anhydrobiotes, being able to survive only moderate levels of desiccation at high relative humidities (rh). We investigated the desiccation tolerance of IJs of several Heterorhabditisspecies and strains when exposed to fast and slow desiccation regimes. We also investigated the behavioural and biochemical responses of Heterorhabditis IJs when exposed to 98% rh for 4 days. IJs of H. megidis UK211 (but not IJs of H. indica) aggregate into large clumps when desiccated at high rh, but unlike Steinernema spp., neither H. megidis nor H. indica IJs showed any tendency to coil. Preincubation of H. megidis UK211 IJs at high (98%) rh enhances their ability to survive for 150 min at 57% rh. We show that preincubation of H. megidis and H. indica at 98% rh induces the synthesis of glycerol but not of trehalose, whereas identical preincubation conditions do induce trehalose synthesis in Steinernema carpocapsae and Aphelenchus avenae. The biosynthesis of glycerol rather than trehalose by IJs of two species of Heterorhabditis in response to moderate levels of desiccation indicates that Heterorhabditis is unlikely to have the necessary metabolic responses to desiccation required to enable it to enter into a fully anhydrobiotic state.  相似文献   

4.
Summary The influence of the zygotic seed coat on precocious germination and desiccation tolerance of somatic embryos has been studied using alfalfa (Medicago sativa L.). When cultured in contact with somatic embryos, seed coats at certain developmental stages inhibited precocious germination and induced desiccation tolerance in the somatic embryos. Germination of somatic embryos was inhibited by seed coats at the age of 16–26 days after pollination (DAP) and desiccation tolerance was induced after 20–26 DAP. Both phenomena were related to the synthesis of abscisic acid in the seed coat. The absence of a quiescent phase and desiccation tolerance in alfalfa somatic embryos may be related to the lack of developmental control by the seed coat.Abbreviations ABA Abscisic acid - DAP Days after pollination  相似文献   

5.
Summary The effects of sucrose concentration in the maturation medium in combination with a heat shock treatment at 36°C were investigated in an attempt to improve the vigor of seedlings grown from dry somatic embryos of alfalfa (Medicago sativa L.). Callus was formed from petiole expiants and dispersed in liquid suspension medium in the presence of 5 M 2,4-D. The cell suspension was sieved to synchronize embryo development. The 200 – 500 m fraction was plated on embryo development medium without 2,4-D, grown for 14 days, and transferred to maturation medium. With 3% sucrose in the maturation medium, the somatic embryos germinated precociously and were unable to survive desiccation. At higher sucrose concentrations, germination was delayed and the embryos continued to accumulate dry matter. After 13 days on 6% sucrose medium (27 days after sieving), the somatic embryos were tolerant of drying to 12% moisture without exposure to exogenous ABA. Heat shock, which presumably stimulates endogenous ABA synthesis, improved the desiccation tolerance of somatic embryos if applied prior to day 27 after sieving, but its effects were minimal after day 27. High sucrose concentrations up to 9% in the maturation medium were optimal during the first 8 days on maturation medium (days 14 to 22 after sieving), but a lower concentration (6%) was optimal during the later stages of embryo maturation (days 22 to 30 after sieving). The inclusion of 10–5 M ABA in the maturation medium with 6% sucrose further improved embryo quality if applied approximately 20 days after sieving.  相似文献   

6.
Summary Exposure of mature cotyledonary somatic embryos of Picea abies to low temperature (4°C) resulted in the accumulation of raffinose family oligosaccharides (RFOs)—raffinose and stachyose. The RFO content represented approximately 20% of the total soluble saccharides with the RFO: sucrose ratio being almost 1∶3 (molar basis) after 3 wk of cold exposure. This treatment, like desiccation, brings the endogenous saccharide spectrum nearer to that of mature zygotic embryos of the same species (zygotic embryos, RFO: sucrose ratio 1∶1.5 on a molar basis). Based on indications that RFOs are at least partly responsible for the positive effects of desiccation, we propose cold treatment as an alternative to slow desiccation for conifer somatic embryogenesis protocols.  相似文献   

7.
D. H. Brown  C. Ascaso  S. Rapsch 《Protoplasma》1987,136(2-3):136-144
Summary Observations have been made on ultrastructural changes in pyrenoids of the algal cells in the lichenParmelia sulcata subjected to a range of controlled desiccation and rehydration regimes. Weaker staining of parts of the proteinaceous pyrenoid matrix, interpreted as damage, occurred within 48 hours of transfering moist thalli to 53% r.h. in a 12 hours light 12 hours dark (20°C 14°C) regime. No specific damage resulted from direct dehydration at 0% r.h. or on transfer after 48 hours from 53% r.h. to 0% r.h. Material stored dry under different conditions,e.g., 0%, 53% or 53% to 0% r.h., for 72 hours showed recovery of the pyrenoid matrix when rehydrated in water (30 minutes) or by storage at 100% r.h. for 24 hours. After storage at 53% r.h. or 0% r.h. for 3 months, damage was more extreme, being greater in material originally dried at 53% r.h. Recovery in water, to the original appearance, only occurred after rehydration for 24 hours at 100% r.h. After 3 months desiccation, damage, due to the initial 48 hours at 53% r.h. was still apparent. Severe damage involved expansion of the pyrenoid. As rehydration restored pyrenoids to their original dimensions, pyrenoid proteins probably became dispersed rather than degraded during desiccation.  相似文献   

8.
Desiccation tolerance of protoplasts isolated from pea embryos   总被引:2,自引:0,他引:2  
To facilitate studies of desiccation tolerance at the cellular level, a technique to isolate protoplasts from desiccation-tolerant pea (Pisum sativum L. cv. Alaska) embryos has been developed. Using FDA (fluorescein diacetate) as a probe, viability of the protoplasts was investigated before and after drying to determine whether the protoplasts could survive desiccation in a manner similar to the tissue from which they were isolated. Protoplasts were isolated from 12 h imbibed pea axes, suspended in several different sugar solutions, then dried to water contents less than 0.2 g H(2)O g(-1) DW. Protoplasts only survived drying if the rate was rapid (<2 h), while slow drying (24 h) was lethal. Maximal survival (75%) was obtained after drying protoplasts with a mixture of sucrose and raffinose, while pure sucrose and trehalose were somewhat less effective protectants. Low survival was obtained after drying protoplasts with monosaccharides and pure raffinose. Protoplasts isolated from germinated seedlings did not survive dehydration below 0.2 g H(2)O g(-1) DW. Transmission electron microscopy revealed that dried desiccation-tolerant protoplasts appeared shrunken, with folded membranes, while dried protoplasts from sensitive tissue had disrupted membranes. While isolated protoplasts maintained some of the desiccation tolerance of orthodox seeds, their inability to survive complete drying and their sensitivity to drying rate is similar to the behaviour of recalcitrant embryos.  相似文献   

9.
Summary A method was developed to induce desiccation tolerance in microspore-derived embryos ofBrassica napus. Treatment of 14- to 20-day-old embryos with 1&#x00D7;10&#x2212;4 M abscisic acid, in the light, induced tolerance to slow desiccation over a 6-day period. Under these conditions 88 to 100% of embryos of the five cultivars tested survived (as measured by moisture uptake, greening, and growth of the shoot and root meristem) after storage for 1 wk at tissue water content levels of less than 20%. The response was found to be dependent on the abscisic acid concentration in the culture medium and time of exposure of the embryos to the abscisic acid-containing medium, with exposure times of as little as 1 day having a beneficial effect. Exposure times to abscisic acid (ABA) of 5&#x2013;7 days resulted in the highest survival rates. Embryo age and size at the time of ABA exposure also affected the subsequent survival and development of embryos, with older and larger embryos exhibiting the best responses.  相似文献   

10.
The moss Physcomitrella patens , a model system for basal land plants, tolerates several abiotic stresses, including dehydration. We previously reported that Physcomitrella patens survives equilibrium dehydration to ?13 MPa in a closed system at 91% RH. Tolerance of desiccation to water potentials below ?100 MPa was only achieved by pretreatment with exogenous abscisic acid (ABA). We report here that gametophores, but not protonemata, can survive desiccation below ?100 MPa after a gradual drying regime in an open system, without exogenous ABA. In contrast, faster equilibrium drying at 90% RH for 3–5 days did not induce desiccation tolerance in either tissue. Endogenous ABA accumulated in protonemata and gametophores under both drying regimes, so did not correlate directly with desiccation tolerance. Gametophores of a Ppabi3a/b/c triple knock out transgenic line also survived the gradual dehydration regime, despite impaired ABA signaling. Our results suggest that the initial drying rate, and not the amount of endogenous ABA, may be critical in the acquisition of desiccation tolerance. Results from this work will provide insight into ongoing studies to uncover the role of ABA in the dehydration response and the underlying mechanisms of desiccation tolerance in this bryophyte.  相似文献   

11.
Onset of desiccation tolerance during development of the barley embryo   总被引:13,自引:0,他引:13  
D. Bartels  M. Singh  F. Salamini 《Planta》1988,175(4):485-492
We have investigated events which take place in the developing barley (Hordeum vulgare L.) embryo during its acquisition of desiccation tolerance. Excised embryos are capable of precocious germination as early as 8 d after pollination (DAP). At this age, however, they are not capable of resisting a desiccation treatment which induces a loss of 96–98% of their initial water content. At 16 DAP the embryos germinate despite the drastic drying treatment. The pattern of in-vivo and in-vitro proteins synthesized by the developing embryos from 12 DAP (desiccation-intolerant) and 16 DAP (desiccation-tolerant) were compared. A set of 25–30 proteins was identified which is denovo synthesized or enhanced during the developmental period leading to desiccation tolerance. Abscisic acid (ABA; 100 M) applied in vitro for 5 d to 12-DAP embryos induces desiccation tolerance and represses a subset of polypeptides preferentially associated with 16-DAP embryos. During in vitro culture of barley embryos ABA stimulates the appearance of a set of proteins and prevents the precocious germination allowing embryogenesis to continue in vitro. It also suppresses a set of germination-related proteins which appear 4 h after the incubation of the dissected embryo on a germination medium without ABA. Almost all mRNAs remain functional for translation when isolated embryos are dried at the desiccation-intolerant and tolerant stages of embryo development.Abbreviations ABA abscisic acid - DAP days after pollination - GM germination medium - poly(A)RNA polyadenylated RNA - SDS sodium dodecyl sulfate  相似文献   

12.
The ability of seeds to withstand desiccation develops during embryogenesis and differs considerably among species. Paddy rice (Oryza sativa L.) grains readily survive dehydration to as low as 2% water content, whereas North American wild rice (Zizania palustris var interior [Fasset] Dore) grains are not tolerant of water contents below 6% and are sensitive to drying and imbibition conditions. During embryogenesis, dehydrin proteins, abscisic acid (ABA), and saccharides are synthesized, and all have been implicated in the development of desiccation tolerance. We examined the accumulation patterns of dehydrin protein, ABA, and soluble saccharides (sucrose and oligosaccharides) of rice embryos and wild rice axes in relation to the development of desiccation tolerance during embryogenesis. Dehydrin protein was detected immunologically with an antibody raised against a conserved dehydrin amino acid sequence. Both rice and wild rice embryos accumulated a 21-kD dehydrin protein during development, and an immunologically related 38-kD protein accumulated similarly in rice. Dehydrin protein synthesis was detected before desiccation tolerance had developed in both rice embryos and wild rice axes. However, the major accumulation of dehydrin occurred after most seeds of both species had become desiccation tolerant. ABA accumulated in wild rice axes to about twice the amount present in rice embryos. There were no obvious relationships between ABA and the temporal expression patterns of dehydrin protein in either rice or wild rice. Wild rice axes accumulated about twice as much sucrose as rice embryos. Oligosaccharides were present at only about one-tenth of the maximum sucrose concentrations in both rice and wild rice. We conclude that the desiccation sensitivity displayed by wild rice grains is not due to an inability to synthesize dehydrin proteins, ABA, or soluble carbohydrates.  相似文献   

13.
Summary Cotyledonary somatic embryos ofLarix &#x00D7; leptoeuropaea that developed after various maturation times on media containing abscisic acid showed different frequencies of conversion into plants. Drying of these somatic embryos under high relative humidity (RH) before germination improved plantlet recovery and eliminated differences in the performance of somatic embryos matured for different times. However, dehydration of somatic embryos under 98% RH to a water content below that of zygotic embryos excised from mature seeds (0.97 and 1.36 g H2O/g dry weight, respectively) showed a strong positive correlation between longer maturation time and desiccation tolerance. Drying somatic embryos at 4&#x00B0; C under 59% RH for 1 wk resulted in desiccation to a water content of 0.30 g H2O/g dry weight, which was the closest to the hydration state of zygotic embryos in dried, stored seeds (0.20 g H2O/g dry weight). Under this condition, only somatic embryos matured for 5 wk germinated and produced plantlets at a relatively high frequency (73 and 41%, respectively).  相似文献   

14.
A desiccation protocol was developed to evaluate the effect of different levels of desiccation on germination and plantlet regeneration of black spruce somatic embryos. Large desiccation chambers (80 l) with four liters of saturated salt solutions provided constant relative humidities (RH) of 63, 79, 88, and 97% (± 2%). Under these conditions, an embryo mass of 10 mg always dried fast even at 97% RH. In contrast, an embryo mass of 80 mg generated different kinetics of water loss, from fast drying at 63% RH to slow drying at 97% RH. Drying rates similar to those obtained with 80 mg embryos were also generated by combining 40 mg embryos with 40 mg water. The effects of drying rate and embryo MC on germination rate, root elongation, and plantlet regeneration were examined. A fast drying rate to 4–5% embryo MC, obtained under 63% RH, was detrimental to germination and plantlet development. However slower drying rates, obtained under 79–97% RH and generating 7–19% MC in the embryos, gave developmental responses similar to the control. Synchronization of root emergence was improved only for embryos desiccated to approx. 16% MC under 97% RH. The optimal desiccation protocol using large desiccation chamber at 97% RH and a constant embryo mass of 40 mg embryos plus 40 mg water was applied to five genotypes of black spruce. For all genotypes, desiccated embryos gave plantlet regeneration rates similar to the control undesiccated embryos. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
《Journal of bryology》2013,35(1):97-99
Abstract

(1) Net assimilation and respiration rates were measured at intervals after re-moistening, following various periods of desiccation, in Hookeria lucens, Hylocomium splendens, Neckera crispa, Plagiochila spinulosa, Plagiothecium undulatum, Rhacomitrium lanuginosum, Rhytidiadelphus loreus, Saccogyna viticulosa, Scorpiurium circinatum and Tortula ruraliformis.

(2) Rhacomitrium lanuginosum was extremely resistant, recovering apparently normally after 239 days' desiccation at 32% R.H.; Plagiochila spinulosa and Hookeria lucens were the most sensitive.

(3) Rhacomitrium lanuginosum and Tortula ruraliformis were most quickly damaged at the highest humidity (76%) and Plagiothecium undulatum at the lowest humidity tested (32%).

(4) Saccogyna viticulosa and Scorpiurium circinatum combined relatively rapid impairment and slow recovery of assimilation with the capacity to survive long dry periods.

(5) Dark respiration was relatively slow (commonly c. 5–20% of net assimilation). It usually showed a slight initial stimulation and a longer-term build-up following moderate or prolonged desiccation.

(6) Desiccation responses of bryophytes can be characterized in terms of parameters defining rate of loss of photosynthetic capacity with desiccationtime, rate of recovery after short periods of desiccation, and survival.  相似文献   

16.
Trotman  A.P.  Weaver  R.W. 《Plant and Soil》2000,218(1-2):43-47
Eighteen strains of Rhizobium leguminosarum bv. trifolii that had been found to be heat- and desiccation-stress tolerant in soil were tested for their resistance to Trifolium vesiculosum, Savi (arrowleaf clover) coat toxins using an agar plate technique and for survival on seed. They were further tested for their tolerance to seed coat toxins in combination with heat and desiccation stresses. The zone of inhibition in agar ranged from no inhibition to 21 mm diameter of growth inhibition around seed. Inoculation on seed under conditions of 28 °C and 100% relative humidity for 7 days resulted in a range of survival from nearly 100% to less than 1%. The correlation between zone of growth inhibition and survival on seed was not statistically significant. Strains that were desiccation or heat tolerant in soil were not necessarily desiccation or heat tolerant on seed but strains that were heat tolerant in soil were better able to survive on glass beads at 37 °C than strains that were not heat tolerant in soil. The zone of rhizobial inhibition on an agar medium was not a valid method to screen for isolates better able to survive on seed and the ability of rhizobia to withstand heat or drought stress on seed was not related to their ability to survive in soil. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Germination was readily induced in recalcitrant microspore-derived embryos of Brassica napus Topas when they were exposed to a period of chilling (9–12 days at 4°C) or partial desiccation (rapid or slow air drying) prior to germination. In general, embryos thirty-five days old had the highest germination rates as compared to younger or older ones. Populations of embryos were induced to germinate at a rate of over 90% under specific temperature, desiccation and age conditions. Comparisons to an embryogenic B. napus winter line, F346, are made.  相似文献   

18.
Embryos excised from fresh seed had a moisture content of about37% (fr. wt.), 7% above that of the whole seed: mainly as aresult of the dryness of the seed coat. When cultured for 14d at 26°C embryo growth ranged from unorganized to fullyorganized. Embryos which had been directly surface-sterilizedexhibited lower fully organized growth than aseptically excisedembryos. During desiccation of the whole seed at 15°C and 15% r.h.moisture loss from the embryo was slow until the embryo reacheda mean critical moisture content for fully organized growthin vitro of about 30%. After this point the rate of moistureloss increased, quickly diminishing the moisture content differentialbetween the embryo and the whole seed. No such shoulder in theembryo desiccation curve was observed when using a low viability(7%) seed batch. When dried below 30% moisture content, suchaseptically excised embryos increasingly exhibited unorganizedgrowth in vitro, with only root meristem survival (46%) at 13%moisture content. In contrast, a much higher level of root meristem survival (84%of control) was observed when aseptically excised embryos wererapidly desiccated to 13% moisture content, using a flow ofsterile air. However, the benefits of rapid drying were lostif the embryos were directly surface-sterilized prior to desiccation.Furthermore, 80% of aseptically excised embryos which survivedrapid desiccation to 20% moisture content exhibited root meristemsurvival following subsequent cryopreservation. These findingshave implications for the in vitro conservation of recalcitrantseed tissue. Key words: Araucaria hunsteinii K. Schum., recalcitrant seed embryo, desiccation, cryopreservation  相似文献   

19.
Egg size and offspring fitness in a bdelloid rotifer   总被引:5,自引:1,他引:4  
To test if the quality of offspring is affected by egg size and whether it increases with the amount of resources allocated to an individual egg, we compared the offspring hatched from small and large eggs of Macrotrachela quadricornifera(Rotifera, Bdelloidea). Differently sized eggs were obtained by feeding mothers with different food concentrations. Large eggs were expected to provide better offspring in terms of (1) development time of the embryos, (2) age at first reproduction of the juveniles and (3) recovery after desiccation of the newborns. The comparison between offspring hatched from large vs. small eggs of the same bdelloid species revealed that animals hatched from large eggs had shorter embryonic development and earlier age at first reproduction than animals hatched from small eggs. In contrast, the capacity to survive stress, like desiccation, was not affected by egg size. Thus, offspring hatched from larger eggs had shorter generation times, but were not favoured under harsh circumstances.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号