首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effects of intracerebroventricular (icv) injections of 10 ng angiotensin II (ANG II) on mean arteriolar diameter and spontaneous arteriolar vasomotion were studied in subcutaneous tissue of conscious, restrained hamsters, using the skin fold window chamber preparation. Angiotensin II caused a significant decrease in mean arteriolar diameter which was associated with a significant elevation in the amplitude of vasomotion. The frequency of vasomotion did not change significantly. The central ANG II-induced effects on arteriolar vasomotion were not significantly altered by continuous intravenous (iv) infusion of hexamethonium (1 mg · kg–1 · min–1). In contrast, iv bolus injection of the vascular vasopressin receptor antagonist d(CH2)5Tyr(Me)AVP (10 g · kg–1) 5 min prior to icv injection of ANG II significantly attenuated the effects of the neuropeptide on mean arteriolar diameter and the amplitude of vasomotion. These data indicate that central ANG II stimulation enhances arteriolar vasomotion in peripheral subcutaneous tissue of conscious hamsters and that this effect may be mediated by release of vasopressin.  相似文献   

2.
Prior studies utilizing neurons cultured from the hypothalamus and brain stem of newborn rats have demonstrated that ANG II-induced modulation of neuronal firing involves activation of both protein kinase C (PKC) and Ca2+/calmodulin-dependent protein kinase II (CaMKII). The present studies were performed to determine whether these signaling molecules are also involved in physiological responses elicited by ANG II in the brain in vivo. Central injection of ANG II (10 ng/2 microl) into the lateral cerebroventricle (icv) of Sprague-Dawley rats increased water intake in a time-dependent manner. This ANG II-mediated dipsogenic response was attenuated by central injection of the PKC inhibitors chelerythrine chloride (0.5-50 microM, 2 microl) and Go-6976 (2.3 nM, 2 microl) and by the CaMKII inhibitor KN-93 (10 microM, 2 microl). Conversely, icv injection of chelerythrine chloride (50 microM, 2 microl) and KN-93 (10 microM, 2 microl) had no effect on the dipsogenic response elicited by central injection of carbachol (200 ng/2 microl). Furthermore, injection of ANG II (10 ng/2 microl) icv increases the activity of both PKC-alpha and CaMKII in rat septum and hypothalamus. These data suggest that signaling molecules involved in ANG II-induced responses in vitro are also relevant in physiological responses elicited by ANG II in the whole animal model.  相似文献   

3.
In the present study, we established dose-response relationships between central administration of 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (Tempol, a superoxide dismutase mimetic) and the level of renal sympathetic nerve discharge (SND) and tested the hypothesis that intracerebroventricular (icv) Tempol pretreatment would attenuate centrally mediated changes in SND produced by icv ANG II administration. Urethane-chloralose-anesthetized, baroreceptor-denervated, normotensive rats were used. We found that icv Tempol administration produced dose-dependent sympathoinhibitory, hypotensive, and bradycardic responses. Mean arterial pressure and SND values were significantly increased after icv ANG II (150 ng/kg) administration, and these responses were abrogated after icv pretreatment with Tempol (75 micromol/kg) or losartan. Brain superoxide levels tended to be higher in ANG II-treated rats compared with rats treated with Tempol and ANG II. Tempol pretreatment did not prevent increases in SND level that were produced by acute heat stress, which indicates specificity in the effect of Tempol in reducing sympathoexcitation. These results demonstrate that icv Tempol administration influences central sympathetic neural circuits in a dose-dependent manner and attenuates SND responses to central ANG II infusion.  相似文献   

4.
Central oxytocin (OT) neurons limit intracerebroventricular (icv) ANG II-induced NaCl intake. Because mineralocorticoids synergistically increase ANG II-induced NaCl intake, we hypothesized that mineralocorticoids may attenuate ANG II-induced activation of inhibitory OT neurons. To test this hypothesis, we determined the effect of deoxycorticosterone (DOCA; 2 mg/day) on icv ANG II-induced c-Fos immunoreactivity in OT and vasopressin (VP) neurons in the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus and also on pituitary OT and VP secretion in male rats. DOCA significantly decreased the percentage of c-Fos-positive (%c-Fos+) OT neurons in the SON and PVN, both in the magnocellular and parvocellular subdivisions, and the %c-Fos+ VP neurons in the SON after a 5-ng icv injection of ANG II. DOCA also significantly reduced the %c-Fos+ OT neurons in the SON after 10 ng ANG II and tended to attenuate 10 ng ANG II-induced OT secretion. However, the %c-Fos+ OT neurons in DOCA-treated rats was greater after 10 ng ANG II, and DOCA did not affect the %c-Fos+ OT neurons in the PVN nor VP secretion or c-Fos immunoreactivity in either the SON or PVN after 10 ng ANG II. DOCA also did not significantly alter the effect of intraperitoneal (ip) cholecystokinin (62 microg) on %c-Fos+ OT neurons or of ip NaCl (2 ml of 2 M NaCl) on the %c-Fos+ OT and VP neurons. These findings indicate that DOCA attenuates the responsiveness of OT and VP neurons to ANG II without completely suppressing the activity of these neurons and, therefore, support the hypothesis that attenuation of OT neuronal activity is one mechanism by which mineralocorticoids enhance NaCl intake.  相似文献   

5.
It has been shown that reactive oxygen species (ROS) contribute to the central effect of ANG II on blood pressure (BP). Recent studies have implicated an antihypertensive action of estrogen in ANG II-infused female mice. The present study used in vivo telemetry recording and in vitro living mouse brain slices to test the hypothesis that the central activation of estrogen receptors in male mice inhibits ANG II-induced hypertension via the modulation of the central ROS production. In male wild-type mice, the systemic infusion of ANG II induced a significant increase in BP (Delta30.1 +/- 2.5 mmHg). Either central infusion of Tempol or 17beta-estradiol (E2) attenuated the pressor effect of ANG II (Delta10.9 +/- 2.3 and Delta4.5 +/- 1.4 mmHg), and the protective effect of E2 was prevented by the coadministration of an estrogen receptor, antagonist ICI-182780 (Delta23.6 +/- 3.1 mmHg). Moreover, the ganglionic blockade on day 7 after the start of ANG II infusions resulted in a smaller reduction of BP in central Tempol- and in central E2-treated males, suggesting that estrogen inhibits the central ANG II-induced increases in sympathetic outflow. In subfornical organ slices, the application of ANG II resulted in a 21.5 +/- 2.5% increase in ROS production. The coadministration of irbesartan, an ANG II type 1 receptor antagonist, or the preincubation of brain slices with Tempol blocked ANG II-induced increases in ROS production (-1.8 +/- 1.6% and -1.0 +/- 1.8%). The ROS response to ANG II was also blocked by E2 (-3.2 +/- 2.4%). The results suggest that the central actions of E2 are involved in the protection from ANG II-induced hypertension and that estrogen modulation of the ANG II-induced effects may involve interactions with ROS production.  相似文献   

6.
Angiotensin II (ANG II) is known to activate central sympathetic neurons. In this study we determined the effects of ANG II on the autonomic components of the cardiovascular responses to stimulation of nasopharyngeal receptors with cigarette smoke. Experiments were carried out in conscious New Zealand White rabbits instrumented to record arterial pressure and heart rate. Rabbits were exposed to 50 ml of cigarette smoke before and after subcutaneous osmotic minipump delivery of ANG II at a dose of 50 ng.kg(-1).min(-1) for 1 wk in one group and intracerebroventricular (icv) infusion at a dose of 100 pmol/min for 1 h in a second group. The responses were compared before and after heart rate was controlled by pacing. Autonomic components were evaluated by intravenous administration of atropine methyl bromide (0.2 mg/kg) and prazosin (0.5 mg/kg). ANG II given either systemically or icv significantly blunted the pressor response to smoke (P < 0.05) when the bradycardic response was prevented. This blunted response was not due to an absolute increase in baseline blood pressure after ANG II infusion (71.64 +/- 11.6 vs. 92.1 +/- 19.8 mmHg; P < 0.05) because normalization of blood pressure with sodium nitroprusside to pre-ANG II levels also resulted in a significantly blunted pressor response to smoke. The effect of smoke was alpha(1)-adrenergic receptor-mediated because it was essentially abolished by prazosin in both the pre- and the post-ANG II states (P < 0.05). These results suggest that elevations in central ANG II reduce the sympathetic response to smoke in conscious rabbits. This effect may be due to an augmentation of baseline sympathetic outflow and a reduction in reflex sensitivity similar to the effect of ANG II on baroreflex function.  相似文献   

7.
Central angiotensin II (ANG II) regulates thirst. Because thromboxane A2-prostaglandin H2 (TP) receptors are expressed in the brain and mediate some of the effects of ANG II in the vasculature, we investigated the hypothesis that TP receptors mediate the drinking response to intracerebroventricular (icv) injections of ANG II. Pretreatment with the specific TP-receptor antagonist ifetroban (Ifet) decreased water intake with 50 ng/kg icv ANG II (ANG II + Veh, 7.2 +/- 0.7 ml vs. ANG II + Ifet, 2.8 +/- 0.8 ml; n = 5 rats; P < 0.001) but had no effect on water intake induced by hypertonic saline (NaCl + Veh, 8.4 +/- 1.1 ml vs. NaCl + Ifet, 8.9 +/- 1.8 ml; n = 5 rats; P = not significant). Administration of 0.6 microg/kg icv of the TP-receptor agonist U-46,619 did not induce drinking when given alone but did increase the dipsogenic response to a near-threshold dose of 15 ng/kg icv ANG II (ANG II + Veh, 1.1 +/- 0.7 vs. ANG II + U-46,619, 4.5 +/- 0.9 ml; n = 5 rats; P < 0.01). We conclude that central TP receptors contribute to the dipsogenic response to ANG II.  相似文献   

8.
The objective was to determine the receptor subtype of angiotensin II (ANG II) that is responsible for vasoconstriction in the nonpregnant ovine uterine and systemic vasculatures. Seven nonpregnant estrogenized ewes with indwelling uterine artery catheters and flow probes received bolus injections (0.1, 0.3 and 1 microg) of ANG II locally into the uterine artery followed by a systemic infusion of ANG II at 100 ng x kg(-1) x min(-1) for 10 min to determine uterine vasoconstrictor responses. Uterine ANG II dose-response curves were repeated following administration of the ANG II type 2 receptor (AT(2)) antagonist PD-123319 and then repeated again in the presence of an ANG II type 1 receptor (AT(1)) antagonist L-158809. In a second experiment, designed to investigate the mechanism of ANG II potentiation that occurred in the presence of AT(2) blockade, nonestrogenized sheep received a uterine artery infusion of L-158809 (3 mg/min for 5 min) prior to the infusion of 0.03 microg/min of ANG II for 10 min. ANG II produced dose-dependent decreases in uterine blood flow (P < 0.03), which were potentiated in the presence of the AT(2) antagonist (P < 0.02). Addition of the AT(1) antagonist abolished the uterine vascular responses and blocked ANG II-induced increases in systemic arterial pressure (P < 0.01). Significant uterine vasodilation (P < 0.01) was noted with AT(1) blockade in the second experiment, which was reversed by administration of the AT(2) antagonist or by the nitric oxide synthetase inhibitor N(omega)-nitro-L-arginine methyl ester. We conclude that the AT(1)-receptors mediate the systemic and uterine vasoconstrictor responses to ANG II in the nonpregnant ewe. AT(2)-receptor blockade resulted in a potentiation of the uterine vasoconstrictor response to ANG II, suggesting that the AT(2)-receptor subtype may modulate uterine vascular responses to ANG II potentially by release of nitric oxide.  相似文献   

9.
These studies examined the receptors involved in angiotensin II (Ang II) stimulated secretion of systemic oxytocin (OT) and the role of this peptide in release of OT during suckling. Plasma OT concentrations were measured following intracerebroventricular (icv) injection of vehicle, Ang II, or Ang II following pretreatment with a selective AT1 (Losartan) or AT2 (PD 123319) receptor antagonist. Furthermore, we measured Ang II-induced OT release during central alpha-adrenergic receptor blockade (phentolamine). Finally, plasma OT concentrations before and during suckling were evaluated following central administration of Ang II receptor antagonists. The increase in systemic OT following central Ang II was abolished by AT1 receptor blockade and inhibited by the AT2 receptor antagonist. Furthermore, pretreatment with phentolamine significantly diminished systemic OT release in response to icv Ang II. Finally, central Ang II receptor blockade did not alter the increase in circulating OT during suckling. These data demonstrate that Ang II evoked OT release is mediated through activation of both AT1 and AT2 receptors and suggest that a component of Ang II-induced OT stimulation is due to norepinephrine release. Furthermore, central angiotensin systems do not have a direct role in stimulating OT release during suckling.  相似文献   

10.
We examined whether ANG II receptors in the central nervous system mediate hemodynamic responses to pharmacological (cocaine) and behavioral (cold water) stressors. After administration of cocaine (5 mg/kg iv), rats were classified as vascular responders (VR) if their pressor response was due entirely to an increase in systemic vascular resistance (SVR) despite a decrease in cardiac output (CO). Cocaine elicited a pressor response in mixed responders (MR) that was dependent on small increases in both SVR and CO. ANG II (30 ng/5 microl icv, 5 min before cocaine) augmented the decrease in CO in VR and prevented the increase in CO in MR. Administration of [Sar(1),Thr(8)]ANG II (20 microg/5 microl icv; sarthran) before cocaine attenuated the decrease in CO and the large increase in SVR in VR so that they were no longer different from MR. Losartan (20 microg icv) or captopril (50 microg icv) preceding cocaine administration also attenuated the decrease in CO and the large increase in SVR seen in VR only. The role of angiotensin was not specific for cocaine, because ANG II (icv) pretreatment before startle with cold water (1 cm deep) enhanced the decrease in CO and the increase in SVR in both MR and VR, whereas losartan (icv) pretreatment before startle attenuated the decrease in CO and the increase in SVR in VR so that they were no longer different from MR. These data suggest that central ANG II receptors mediate the greater vascular and cardiac responsiveness in vascular responders to acute pharmacological and behavioral stressors.  相似文献   

11.
It has been suggested that estrogen modulates baroreflex regulation of autonomic function. The present study evaluated the effects of estrogen on baroreflex regulation of heart rate in response to changes in blood pressure with phenylephrine (PE), ANG II, and sodium nitroprusside (SNP) in a conscious mouse model. Males and ovariectomized females with (OvxE+) and without (OvxE-) estradiol replacement chronically implanted with arterial and venous catheters were used in these studies. The slope of the baroreflex bradycardic responses to PE was significantly facilitated in OvxE+ females (-7.65 +/- 1.37) compared with OvxE- females (-4.5 +/- 0.4). Likewise, the slope of the baroreflex bradycardic responses to ANG II was significantly facilitated in OvxE+ females (-7.97 +/- 1.06) compared with OvxE- females (-4.8 +/- 1.6). Reflex tachycardic responses to SNP were comparable in all the groups. Finally, in male mice, the slope of ANG II-induced baroreflex bradycardia (-5.17 +/- 0.95) was significantly less than that induced by PE (-8.50 +/- 0.92), but this ANG II-mediated attenuation of reflex bradycardia was not observed in the female mice. These data support the hypothesis that estrogen facilitates baroreflex function in female mice and suggest that ANG II-mediated acute blunting of baroreflex regulation of heart rate may be sex dependent.  相似文献   

12.
Angiotensin II (ANG II) is a powerful activator of mitogen-activated protein (MAP) kinase cascades in cardiovascular tissues through a redox-sensitive mechanism. Nitric oxide (NO) is considered to antagonize the vasoconstrictive and proarteriosclerotic actions of ANG II. However, the role of endogenous NO in ANG II-induced redox-sensitive signal transduction is not yet clear. In this study using catheterized, conscious rats, we found that acute intravenous administration of N(G)-nitro-L-arginine methyl ester (L-NAME; 5 mg/kg) enhanced phosphorylation of aortic MAP kinases extracellular signal regulated kinase (ERK) 1/2 and p38, which were suppressed only partially by a superoxide dismutase mimetic (Tempol), whereas ANG II-induced MAP kinase phosphorylation was markedly suppressed by Tempol. FK409, a NO donor, had little effect on vascular MAP kinase phosphorylation. On the other hand, acute exposure to a vasoconstrictor dose of ANG II (200 ng x kg(-1) x min(-1) iv) failed to enhance phosphorylation of aortic MAP kinases in the chronically L-NAME-treated rats, whereas the vasoconstrictor effect of ANG II was not affected by L-NAME treatment. Furthermore, three different inhibitors of NO synthase suppressed, in a dose-dependent manner, ANG II-induced MAP kinase phosphorylation in rat vascular smooth muscle cells, which was closely linked to superoxide generation in cells. These results indicate the involvement of endogenous NO synthase in ANG II-induced signaling pathways, leading to activation of MAP kinase, and that NO may have dual effects on the vascular MAP kinase activation associated with redox sensitivity.  相似文献   

13.
Estrogen facilitates baroreflex heart rate responses evoked by intravenous infusion of ANG II and phenylephrine (PE) in ovariectomized female mice. The present study aims to identify the estrogen receptor subtype involved in mediating these effects of estrogen. Baroreflex responses to PE, ANG II, and sodium nitroprusside (SNP) were tested in intact and ovariectomized estrogen receptor-alpha knockout (ERalphaKO) with (OvxE+) or without (OvxE-) estrogen replacement. Wild-type (WT) females homozygous for the ERalpha(+/+) were used as controls. Basal mean arterial pressures (MAP) and heart rates were comparable in all the groups except the ERalphaKO-OvxE+ mice. This group had significantly smaller resting MAP, suggesting an effect of estrogen on resting vascular tone possibly mediated by the ERbeta subtype. Unlike the WT females, estrogen did not facilitate baroreflex heart rate responses to either PE or ANG II in the ERalphaKO-OvxE+ mice. The slope of the line relating baroreflex heart rate decreases with increases in MAP evoked by PE was comparable in ERalphaKO-OvxE- (-6.97 +/- 1.4 beats.min(-1).mmHg(-1)) and ERalphaKO-OvxE+ (-6.18 +/- 1.3) mice. Likewise, the slope of the baroreflex bradycardic responses to ANG II was similar in ERalphaKO-OvxE- (-3.87 +/- 0.5) and ERalphaKO-OvxE+(-2.60 +/- 0.5) females. Data suggest that estrogen facilitation of baroreflex responses to PE and ANG II is predominantly mediated by ERalpha subtype. A second important observation in the present study is that the slope of ANG II-induced baroreflex bradycardia is significantly blunted compared with PE in the intact as well as the ERalphaKO-OvxE+ females. We have previously reported that this ANG II-mediated blunting of cardiac baroreflexes is observed only in WT males and not in ovariectomized WT females independent of their estrogen replacement status. The present data suggest that in females lacking ERalpha, ANG II causes blunting of cardiac baroreflexes similar to males and may be indicative of a direct modulatory effect of the ERalpha on those central mechanisms involved in ANG II-induced resetting of cardiac baroreflexes. These observations suggest an important role for ERalpha subtype in the central modulation of baroreflex responses. Lastly, estrogen did not significantly affect reflex tachycardic responses to SNP in both WT and ERalphaKO mice.  相似文献   

14.
Previous studies clearly demonstrated acute actions of angiotensin II (ANG II) at one of the central circumventricular organs, the subfornical organ (SFO), but studies demonstrating a role for the SFO in the chronic actions of ANG II remain uncertain. The purpose of this study was to examine the role of the SFO in the chronic hypertensive phase of ANG II-induced hypertension. We hypothesized that the SFO is necessary for the full hypertensive response observed during the chronic phase of ANG II-induced hypertension. To test this hypothesis, male Sprague-Dawley rats were subjected to sham operation (sham rats) or electrolytic lesion of the SFO (SFOx rats). After 1 wk, the rats were instrumented with venous catheters and radiotelemetric transducers for intravenous administration of ANG II and measurement of blood pressure and heart rate, respectively. Rats were then allowed 1 wk for recovery. After 3 days of saline control infusion (7 ml of 0.9% NaCl/day), sham and SFOx rats were infused with ANG II at 10 ng.kg(-1).min(-1) i.v. for 10 consecutive days and then allowed to recover for 3 days. A 0.4% NaCl diet and distilled water were provided ad libitum. At day 5 of ANG II infusion, mean arterial pressure increased 11.7 +/- 3.0 mmHg in sham rats (n = 9) but increased only 3.7 +/- 1.4 mmHg in SFOx rats (n = 9). This trend continued through day 10 of ANG II treatment. These results support the hypothesis that the SFO is necessary for the full hypertensive response to chronic ANG II administration.  相似文献   

15.
Previous studies suggest that ANG II-induced hypertension in rats fed a high-salt (HS) diet (ANG II-salt hypertension) has a neurogenic component dependent on an enhanced sympathetic tone to the splanchnic veins and independent from changes in sympathetic nerve activity to the kidney or hind limb. The purpose of this study was to extend these findings and test whether altered autonomic control of splanchnic resistance arteries and the heart also contributes to the neurogenic component. Mean arterial pressure (MAP), heart rate (HR), superior mesenteric artery blood flow, and mesenteric vascular resistance (MVR) were measured during 4 control days, 14 days of ANG II delivered subcutaneously (150 ng·kg(-1)·min(-1)), and 4 days of recovery in conscious rats fed a HS (2% NaCl) or low-salt (LS; 0.1% NaCl) diet. Autonomic effects on MAP, HR, and MVR were assessed by acute ganglionic blockade with hexamethonium (20 mg/kg iv) on day 3 of control, days 1, 3, 5, 7, 10, and 13 of ANG II, and day 4 of recovery. MVR increased during ANG II infusion in HS and LS rats but remained elevated only in HS rats. Additionally, the MVR response to hexamethonium was enhanced on days 10 and 13 of ANG II selectively in HS rats. Compared with LS rats, HR in HS rats was higher during the 2nd wk of ANG II, and its response to hexamethonium was greater on days 7, 10, and 13 of ANG II. These results suggest that ANG II-salt hypertension is associated with delayed changes in autonomic control of splanchnic resistance arteries and the heart.  相似文献   

16.
Rats with chronic nucleus of the solitary tract lesions (NTS-X) drink water and release vasopressin (VP) in response to reduced blood volume despite an absence of neural signals from cardiac and arterial baroreceptors. The present study determined whether rats with NTS-X have a greater sensitivity to circulating ANG II, which may contribute to the drinking and VP responses to hypovolemia. In conscious control rats and rats with NTS-X, ANG II was infused intravenously for 1 h at 10, 100, or 250 ng. kg(-1). min(-1). At the two higher doses, ANG II stimulated more water intake with a shorter latency to drink in rats with NTS-X than in control rats. In contrast, infusion of ANG II produced comparable increases in plasma VP in the two groups. At the two higher doses, ANG II produced an enhanced increase in arterial pressure (AP) in rats with NTS-X, and the bradycardia seen in control rats was reversed to a tachycardia. Infusion of hypertonic saline, which did not alter AP or heart rate, produced comparable drinking and VP release in the two groups. These results demonstrate that chronic NTS-X increases the dipsogenic response of rats to systemic ANG II but has no effect on ANG II-induced VP release or the osmotic stimulation of these responses.  相似文献   

17.
We investigated the effect of the intravenous infusion of atrial natriuretic peptide (ANP) on the response of plasma arginine vasopressin (AVP) levels to intravenous infusion of angiotensin II (ANG II) in healthy individuals. Intravenous infusion of ANP (10 ng·kg(-1)·min(-1)) slightly but significantly decreased plasma AVP levels, while intravenous infusion of ANG II (10 ng·kg(-1)·min(-1)) resulted in slightly increased plasma AVP levels. ANG II infused significant elevations in arterial blood pressure and central venous pressure (CVP). Because the elevation in blood pressure could have potentially inhibited AVP secretion via baroreceptor reflexes, the effect of ANG II on blood pressure was attenuated by the simultaneous infusion of nitroprusside. ANG II alone produced a remarkable increase in plasma AVP levels when infused with nitroprusside, whereas the simultaneous ANP intravenous infusion (10 ng·kg(-1)·min(-1)) abolished the increase in plasma AVP levels induced by ANG II when blood pressure elevation was attenuated by nitroprusside. Thus, ANG II increased AVP secretion and ANP inhibited not only basal AVP secretion but also ANG II-stimulated AVP secretion in humans. These findings support the hypothesis that circulating ANP modulates AVP secretion, in part, by antagonizing the action of circulating ANG II.  相似文献   

18.
Vasopressinergic pathways within the spinal cord have been implicated in the control of cardiovascular function. This study was undertaken to determine the mechanisms whereby intrathecally administered arginine vasopressin (AVP) increases blood pressure and heart rate in anesthetized rats. The cardiovascular responses to intrathecal AVP administration were significantly attenuated after intravenous administration of the ganglionic blocking agent, chlorisondamine chloride, as were the pressor responses following alpha-adrenergic receptor blockade with phentolamine and the heart rate responses following beta-receptor blockade with propranolol. Intrathecal administration of the V1 vasopressin receptor antagonist d(CH2)5Tyr(Me)AVP completely blocked the cardiovascular responses to intrathecal AVP injections, but did not significantly alter the responses to intrathecal substance P injections. There was no evidence for the involvement of the renin-angiotensin system in the pressor responses to intrathecal AVP, as (i) an angiotensin II receptor blocking agent, [Sar1, Val5, Ala8]angiotensin, failed to significantly alter the responses to intrathecal AVP, and (ii) plasma renin levels did not change following administration of the peptide. Intrathecal injections of [3H]AVP suggest that only small amounts of the peptide may cross into the plasma during the time in which the cardiovascular variables are changing. These data provide evidence that intrathecally administered AVP discretely activates the sympathetic outflow to the heart and vasculature, and confirm the neurally mediated nature of the response.  相似文献   

19.
It has been shown that the female sex hormones have a protective role in the development of angiotensin II (ANG II)-induced hypertension. The present study tested the hypotheses that 1) the estrogen receptor-alpha (ERalpha) is involved in the protective effects of estrogen against ANG II-induced hypertension and 2) central ERs are involved. Blood pressure (BP) was measured in female mice with the use of telemetry implants. ANG II (800 ng.kg(-1).min(-1)) was administered subcutaneously via an osmotic pump. Baseline BP in the intact, ovariectomized (OVX) wild-type (WT) and ERalpha knockout (ERalphaKO) mice was similar; however, the increase in BP induced by ANG II was greater in OVX WT (23.0 +/- 1.0 mmHg) and ERalphaKO mice (23.8 +/- 2.5 mmHg) than in intact WT mice (10.1 +/- 4.5 mmHg). In OVX WT mice, central infusion of 17beta-estradiol (E(2); 30 microg.kg(-1).day(-1)) attenuated the pressor effect of ANG II (7.0 +/- 0.4 mmHg), and this protective effect of E(2) was prevented by coadministration of ICI-182,780 (ICI; 1.5 microg.kg(-1).day(-1), 18.8 +/- 1.5 mmHg), a nonselective ER antagonist. Furthermore, central, but not peripheral, infusions of ICI augmented the pressor effects of ANG II in intact WT mice (17.8 +/- 4.2 mmHg). In contrast, the pressor effect of ANG II was unchanged in either central E(2)-treated OVX ERalphaKO mice (19.0 +/- 1.1 mmHg) or central ICI-treated intact ERalphaKO mice (19.6 +/- 1.6 mmHg). Lastly, ganglionic blockade on day 7 after ANG II infusions resulted in a greater reduction in BP in OVX WT, central ER antagonist-treated intact WT, central E(2) + ICI-treated OVX WT, ERalphaKO, and central E(2)- or ICI-treated ERalphaKO mice compared with that in intact WT mice given just ANG II. Together, these data indicate that ERalpha, especially central expression of the ER, mediates the protective effects of estrogen against ANG II-induced hypertension.  相似文献   

20.
We examined whether ANG II and TNF-alpha cooperatively induce vascular inflammation using the expression of monocyte chemoattractant protein (MCP)-1 as a marker of vascular inflammation. ANG II and TNF-alpha stimulated MCP-1 expression in a synergistic manner in vascular smooth muscle cells. ANG II-induced MCP-1 expression was potently inhibited to a nonstimulated basal level by blockade of the p38-dependent pathway but only partially inhibited by blockade of the NF-kappaB-dependent pathway. In contrast, TNF-alpha-induced MCP-1 expression was potently suppressed by blockade of NF-kappaB activation but only modestly suppressed by blockade of p38 activation. ANG II- and TNF-alpha-induced activation of NF-kappaB- and p38-dependent pathways was partially inhibited by pharmacological inhibitors of ROS production. Furthermore, ANG II- and TNF-alpha-stimulated MCP-1 expression was partially suppressed by ROS inhibitors. We also examined whether endogenous ANG II and TNF-alpha cooperatively promote vascular inflammation in vivo using a wire injury model of the rat femoral artery. Blockade of both ANG II and TNF-alpha further suppressed neointimal formation, macrophage infiltration, and MCP-1 expression in an additive manner compared with blockade of ANG II or TNF-alpha alone. These results suggested that ANG II and TNF-alpha synergistically stimulate MCP-1 expression via the utilization of distinct intracellular signaling pathways (p38- and NFkappaB-dependent pathways) and that these pathways are activated in ROS-dependent and -independent manners. These results also suggest that ANG II and TNF-alpha cooperatively stimulate vascular inflammation in vivo as well as in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号