首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S-Adenosyl-L-methionine (AdoMet) which is biologically synthesized by AdoMet synthetase bears an S configuration at the sulfur atom. The chiral sulfonium spontaneously racemizes to form a mixture of S and R isomers of AdoMet under physiological conditions or normal storage conditions. The chirality of AdoMet greatly affects its activity; the R isomer is not accepted as a substrate for AdoMet-dependent methyltransferases. We report a stereospecific colorimetric assay for (S,S)-adenosylmethionine quantification based on an enzyme-coupled reaction in which (S,S)-AdoMet reacts with 2-nitro-5-thiobenzoic acid to form AdoHcy and 2-nitro-5-methylthiobenzoic acid. The transformation is catalyzed by recombinant human thiopurine S-methyltransferase (TPMT, EC 2.1.1.67) and is associated with a large spectral change at 410 nm. Accumulation of the S-adenosylhomocysteine (AdoHcy) product, a feedback inhibitor of TPMT, slows the assay. AdoHcy nucleosidase (EC 3.2.2.9) irreversibly cleaves AdoHcy to adenine and S-ribosylhomocysteine, significantly shortening the assay time to less than 10 min. The assay is linear from 5 to at least 60 microM (S,S)-AdoMet.  相似文献   

2.
Chiral instability at sulfur of S-adenosylmethionine   总被引:1,自引:0,他引:1  
S-Adenosylmethionine, generated enzymically in chirally pure form (S configuration at sulfur), undergoes simultaneous irreversible conversion to 5'-deoxy-5'-(methylthio)adenosine and homoserine with a rate constant of 6 X 10(-6) s-1 at pH 7.5 and 37 degrees C and reversible conversion to an enzymically inactive stereoisomer (R configuration at sulfur) with a forward rate constant of 8 X 10(-6) s-1 at pH 7.5 and 37 degrees C. These forms of instability require small turnover times and/or stabilization through macromolecular binding for S-adenosylmethionine, if organisms that utilize it are to avoid losses of metabolic energy.  相似文献   

3.
The Mr 38,050 monomeric EcoRI DNA methylase is part of a bacterial restriction-modification system. The methylase transfers the methyl group from S-adenosylmethionine (AdoMet) to the second adenine in the double-stranded DNA sequence 5'-GAATTC-3'. We have used the radiolabeled photoaffinity analog 8-azido-S-adenosylmethionine (8-N3-AdoMet) to identify peptides at the AdoMet binding site in the binary methylase-cofactor analog complex. The dissociation constants in the absence of DNA for the analog and AdoMet are 12.9 and 4.8 microM, respectively. The apparent kcat and Km values, obtained with the double-stranded DNA substrate 5'-CGCGAATTCGCG-3', are 5.0 s-1 and 0.710 microM (8-N3-AdoMet) and 4.3 s-1 and 0.335 microM (AdoMet). Photolabeling by 8-N3-AdoMet occurs upon irradiation with ultraviolet light and is inhibited by AdoMet. Digestion of the adducted methylase with subtilisin generated several radiolabeled peptides. Peptide sequencing from independent photolabeling experiments revealed two radiolabeled peptides containing amino acids 206-212 and 213-221. Instability of the adducted peptides precluded assignment of modified amino acids.  相似文献   

4.
The biological methyl donor S-adenosylmethionine (AdoMet) can exist in two diastereoisomeric states with respect to its sulfonium ion. The S configuration, (S,S)-AdoMet, is the only form that is produced enzymatically as well as the only form used in almost all biological methylation reactions. Under physiological conditions, however, the sulfonium ion can spontaneously racemize to the R form, producing (R,S)-AdoMet. As of yet, (R,S)-AdoMet has no known physiological function and may inhibit cellular reactions. In this study, we found two Saccharomyces cerevisiae enzymes that are capable of recognizing (R,S)-AdoMet and using it to methylate homocysteine to form methionine. These enzymes are the products of the SAM4 and MHT1 genes, identified previously as homocysteine methyltransferases dependent upon AdoMet and S-methylmethionine, respectively. We found here that Sam4 recognizes both (S,S)- and (R,S)-AdoMet, but that its activity is much higher with the R,S form. Mht1 reacts with only the R,S form of AdoMet, whereas no activity is seen with the S,S form. R,S-Specific homocysteine methyltransferase activity is also shown here to occur in extracts of Arabidopsis thaliana, Drosophila melanogaster, and Caenorhabditis elegans, but has not been detected in several tissue extracts of Mus musculus. Such activity may function to prevent the accumulation of (R,S)-AdoMet in these organisms.  相似文献   

5.
Lipoamide dehydrogenase (EC 1.6.4.3) from the ketoglutarate dehydrogenase complex of adrenals catalyzes the oxidation of NADH by lipoamide and quinone compounds according to the "ping-pong" scheme. The catalytic constants of these reactions are equal to 220 and 24 s-1, respectively (pH 7.0). The maximal quinone reductase activity is observed at pH 5.6, whereas the lipoamide reductase activity changes insignificantly at pH 7.5-5.5. The maximal dihydrolipoamide-NAD+ reductase activity is observed at pH 7.8. The oxidative constants of quinone electron acceptors vary from 6 X 10(6) to 4 X 10(2) M-1 s-1 and increase with their redox potential. The patterns of NAD+ inhibition in the quinone reductase reaction differ from that of lipoamide reductase reaction. The quinones are reduced by lipoamide dehydrogenase in the one-electron mechanism.  相似文献   

6.
1-Aminocyclopropane-1-carboxylate (ACC) synthase, which catalyzes the conversion of S-adenosyl-L-methionine (AdoMet) to ACC, is irreversibly inactivated by its substrate AdoMet. AdoMet has two diastereomers with respect to its sulfonium center, (-)-AdoMet and (+)-AdoMet. We prepared (+)- and (-)-AdoMet from a commercial source, and compared their activities as a substrate and as an inactivator of ACC synthase isolated from tomato (Lycopersicon esculentum Mill). fruits. Only (-)-AdoMet produced ACC, whereas both (-)- and (+)-AdoMet inactivated ACC synthase; (+)-AdoMet inactivated the enzyme three times faster than (-)-AdoMet. We have previously shown that ACC synthase was specifically radiolabeled when the enzyme was incubated with S-adenosyl-L-[3,4-14C]methionine. The present results further indicate that S-adenosyl-L-[carboxyl-14C]methionine, but not S-adenosyl-L-[methyl-14C]methionine, radiolabeled the enzyme. These data suggest that the 2-aminobutyric acid portion of AdoMet is linked to ACC synthase during the autoinactivation process. A possible mechanism for ACC synthase inactivation by AdoMet is discussed.  相似文献   

7.
Iwig DF  Booker SJ 《Biochemistry》2004,43(42):13496-13509
S-Adenosyl-L-methionine (AdoMet) is one of Nature's most diverse metabolites, used not only in a large number of biological reactions but amenable to several different modes of reactivity. The types of transformations in which it is involved include decarboxylation, electrophilic addition to any of the three carbons bonded to the central sulfur atom, proton removal at carbons adjacent to the sulfonium, and reductive cleavage to generate 5'-deoxyadenosyl 5'-radical intermediates. At physiological pH and temperature, AdoMet is subject to three spontaneous degradation pathways, the first of which is racemization of the chiral sulfonium group, which takes place in a pH-independent manner. The two remaining pathways are pH-dependent and include (1) intramolecular attack of the alpha-carboxylate group onto the gamma-carbon, affording L-homoserine lactone (HSL) and 5'-methylthioadenosine (MTA), and (2) deprotonation at C-5', initiating a cascade that results in formation of adenine and S-ribosylmethionine. Herein, we describe pH-dependent stability studies of AdoMet and its selenium and tellurium analogues, Se-adenosyl-L-selenomethionine and Te-adenosyl-L-telluromethionine (SeAdoMet and TeAdoMet, respectively), at 37 degrees C and constant ionic strength, which we use as a probe of their relative intrinsic reactivities. We find that with AdoMet intramolecular nucleophilic attack to afford HSL and MTA exhibits a pH-rate profile having two titratable groups with apparent pK(a) values of 1.2 +/- 0.4 and 8.2 +/- 0.05 and displaying first-order rate constants of <0.7 x 10(-6) s(-1) at pH values less than 0.5, approximately 3 x 10(-6) s(-1) at pH values between 2 and 7, and approximately 15 x 10(-6) s(-1) at pH values greater than 9. Degradation via deprotonation at C-5' follows a pH-rate profile having one titratable group with an apparent pK(a) value of approximately 11.5. The selenium analogue decays significantly faster via intramolecular nucleophilic attack, also exhibiting a pH-rate profile with two titratable groups with pK(a) values of approximately 0.86 and 8.0 +/- 0.1 with first-order rate constants of <7 x 10(-6) s(-1) at pH values less than 0.9, approximately 32 x 10(-6) s(-1) at pH values between 2 and 7, and approximately 170 x 10(-6) s(-1) at pH values greater than 9. Degradation via deprotonation at C-5' proceeds with one titratable group displaying an apparent pK(a) value of approximately 14.1. Unexpectedly, TeAdoMet did not decay at an observable rate via either of these two pathways. Last, enzymatically synthesized AdoMet was found to racemize at rates that were consistent with earlier studies (Hoffman, J. L. (1986) Biochemistry 25, 4444-4449); however, SeAdoMet and TeAdoMet did not racemize at detectable rates. In the accompanying paper, we use the information obtained in these model studies to probe the mechanism of cyclopropane fatty acid synthase via use of the onium chalcogens of AdoMet as methyl donors.  相似文献   

8.
S-adenosylmethionine: studies on chemical and enzymatic synthesis   总被引:8,自引:0,他引:8  
Several methods for the chemical and enzymatic synthesis of (-)-S-adenosylmethionine (AdoMet) are described and compared. Studies on the effects of solvents, pH, methylating reagents, and KI on the coupling of sodium homocysteine thiolate and 5'-chloro-5'-deoxyadenosine led to an improved procedure for the synthesis of (+/-)-AdoMet. The use of trimethylsulfonium iodide as a methylating agent under acidic conditions results in a higher content of the desired (-)-epimer than does the use of CH3I. The enzymatic synthesis of (-)-AdoMet using AdoMet synthetase from an over-producing strain of Escherichia coli is demonstrated and the effect of product inhibition on preparative-scale synthesis is illustrated. A new HPLC technique for separation of the epimeric mixture of AdoMet, which allows small-scale preparation of optically pure AdoMet from the enzyme product, has been developed. With this HPLC technique, evidence that (-)-AdoMet is the sole epimer formed by the enzyme has been shown.  相似文献   

9.
Two novel peptide analogs, N alpha-[(S)-1-carboxy-3-phenylpropyl]L-alanyl-L-proline and the corresponding L-lysyl-L-proline derivative, have been demonstrated to be potent competitive inhibitors of purified rabbit lung angiotensin-converting enzyme: Ki = 2 and 1 X 10(-10) M, respectively, at pH 7.5, 25 degrees C, and 0.3 M chloride ion. Second-order rate constants for addition of these inhibitors to enzyme under the same conditions are in the range 1-2 X 10(6) M-1 s-1; first-order rate constants for dissociation of the EI complexes are in the range 1-4 X 10(-4) s-1. The association rate constants are similar to those measured for D-3-mercapto-2-methylpropanoyl-L-proline, captopril, but the dissociation rate constants are severalfold slower and account for the higher affinity of these inhibitors for the enzyme. The dissociation constant for the EI complex containing N alpha-[(S)-1-carboxy-3-phenylpropyl]L-alanyl-L-proline is pH-dependent, and reaches a minimum at approximately pH 6: Ki = 4 +/- 1 X 10(-11) M. The pH dependence is consistent either with a model for which the protonation state of the secondary nitrogen atom in the inhibitor determines binding affinity, or one for which ionizations on the enzyme alone influence affinity for these inhibitors. The affinity of this inhibitor for the zinc-free apoenzyme is 2 X 10(4) times less than for the zinc-free apoenzyme is 2 X 10(4) times less than that for the holoenzyme. If considered as a "collected product" inhibitor, N alpha-[(S)-1-carboxy-3-phenylpropyl]L-alanyl-L-proline appears to derive an additional factor of 375 M in its affinity for the enzyme compared to that of the two products of its hypothetical hydrolysis, a consequence of favorable entropy effects.  相似文献   

10.
S-Adenosylmethionine (AdoMet) is metabolized through three main pathways, i.e. (a) transfer of its methyl group to a variety of methyl acceptors, (b) decarboxylation followed by aminopropylation leading to polyamine synthesis, and (c) cleavage of the bond between the sulfur atom and carbon 4 of the amino acid chain, resulting in formation of methylthioadenosine and homoserine thiolactone. In this study the metabolism of AdoMet through these pathways was studied after intravenous administration to rats of [1-14C]-, [3,4-14C]-, [methyl-14C]-, and [35S]AdoMet at various doses. The relative utilization of AdoMet and methionine was also investigated. The results show that intravenously administered AdoMet is efficiently metabolized in vivo up to the highest tested dose (250 mumol X kg-1 body weight), about two-thirds of the metabolized compound being utilized via transmethylation and cleavage to methylthioadenosine and one-third via decarboxylation. The efficient incorporation of the methyl group of AdoMet into muscle creatine indicates unambiguously that the compound is taken up and metabolized by the liver. Moreover, intravenously administered AdoMet is shown to be a better precursor than methionine both in creatine formation and in the utilization of the sulfur atom in transsulfuration reactions.  相似文献   

11.
Guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) is a good analog of GTP in the reactions leading to the formation of a peptide bond in protein biosynthesis. It forms binary and ternary complexes with elongation factor Tu (EF-Tu), and with EF-Tu and aminoacyl-tRNA (aa-tRNA). In addition, it stimulates aa-tRNA binding to ribosomes. Although GTP gamma S hydrolysis is more than three orders of magnitude slower than GTP hydrolysis, both reactions are dependent on the formation of a noncovalent complex (RS X TC) between mRNA-programmed ribosomes and ternary complex, and the complexes resulting from that hydrolysis are intermediates in peptide formation. The rate of dissociation of the ribosome X EF-Tu X GTP gamma S X aa-tRNA complex was determined from the rate of labeled peptide formation in the presence of an unlabeled ternary complex chase. This rate (2.2 X 10(-3) s-1) is similar to that determined previously (Thompson, R.C., and Karim, A.M. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 4922-4926) from the progress of GTP gamma S hydrolysis. The effects of temperature and polycation concentration on this rate constant and that for GTP gamma S hydrolysis are reported. The rate constants measured are consistent with a kinetic rather than thermodynamic limit on the accuracy of the aa-tRNA selection in vivo.  相似文献   

12.
LexA repressor of Escherichia coli and phage lambda repressor are inactivated in vivo and in vitro by specific cleavage of an Ala-Gly peptide bond in reactions requiring RecA protein. At mildly alkaline pH, the in vitro cleavage reaction also proceeds spontaneously, suggesting that peptide bond hydrolysis is an activity of the repressors rather than of RecA. The spontaneous cleavage reaction, termed "autodigestion", has been characterized for the LexA and lambda repressors. The results show that the reaction is intramolecular. The rate of LexA autodigestion was studied over the pH range 7.15-11.77 and over the temperature range 4-46 degrees C. The logarithm of the rate constant increased linearly with pH and reached a plateau value (2.5 X 10(-3) s-1 at 37 degrees C) at pH above 10. The data closely followed a model in which a single residue side chain (apparent pK = 9.8 at 37 degrees C) must be deprotonated for the protein to show activity. Analysis of the temperature dependence gave the heat of proton dissociation as 19.9 kcal/mol and the heat of activation for hydrolysis as 15.3 kcal/mol at 25 degrees C. Autodigestion of lambda repressor, studied over the pH range 8.65-10.70 at 37 degrees C, was similar to the LexA reaction in its pH dependence, yielding a pK of 9.8. The maximum rate at 37 degrees C for lambda repressor, 6.1 X 10(-5) s-1, was 40 times slower than for LexA, a difference similar to that previously observed in vivo and in vitro for RecA-dependent cleavage reactions. There was no significant solvent deuterium isotope effect on the autodigestion of LexA. Changes in buffer composition, including high concentrations of glycine for lambda repressor and of imidazole or hydroxylamine for LexA, indicated that solvent components other than water do not participate in the rate-determining step. Removal or addition of metal ions did not significantly affect LexA autodigestion. These and other observations suggest that the deprotonated form of an amino acid side chain plays a central role in the chemistry of the cleavage reaction. The above observations establish repressor autodigestion as a member of an emerging set of biologically important self-processing reactions.  相似文献   

13.
The biological methyl donor S-adenosyl-l-methionine (AdoMet) is spontaneously degraded by inversion of its sulfonium center to form the R,S diastereomer. Unlike its precursor, (S,S)-AdoMet, (R,S)-AdoMet has no known cellular function and may have some toxicity. Although the rate of (R,S)-AdoMet formation under physiological conditions is significant, it has not been detected at substantial levels in vivo in a wide range of organisms. These observations imply that there are mechanisms that either dispose of (R,S)-AdoMet or convert it back to (S,S)-AdoMet. Previously, we identified two homocysteine methyltransferases (Mht1 and Sam4) in yeast capable of recognizing and metabolizing (R,S)-AdoMet. We found similar activities in worms, plants, and flies. However, it was not established whether these activities could prevent R,S accumulation. In this work, we show that both the Mht1 and Sam4 enzymes are capable of preventing R,S accumulation in Saccharomyces cerevisiae grown to stationary phase; deletion of both genes results in significant (R,S)-AdoMet accumulation. To our knowledge, this is the first time that such an accumulation of (R,S)-AdoMet has been reported in any organism. We show that yeast cells can take up (R,S)-AdoMet from the medium using the same transporter (Sam3) used to import (S,S)-AdoMet. Our results suggest that yeast cells have evolved efficient mechanisms not only for dealing with the spontaneous intracellular generation of the (R,S)-AdoMet degradation product but for utilizing environmental sources as a nutrient.  相似文献   

14.
alpha 2-Macroglobulin and the complement components C3 and C4 each contain a metastable binding site that is essential for covalent attachment. Two cyclic peptides are useful models of these unusual protein sites. Five-membered lactam 1 (CH3CO-Gly-Cys-Gly-Glu-Glp-Asn-NH2) contains an internal residue of pyroglutamic acid (Glp). Fifteen-membered thiolactone 2 (CH3CO-Gly-Cys-Gly-Glu-Glu-Asn-NH2 15-thiolactone) contains a thiol ester bond between Cys-2 and Glu-5. These isomeric hexapeptides are spontaneously interconverted in water. Competing with the two isomerization reactions are three reactions involving hydrolysis of 1 and 2. These five processes were found to occur simultaneously under physiologic conditions (phosphate-buffered saline, pH 7.3, 37 degrees C). Best estimates of the five rate constants for these apparent first-order reactions were obtained by comparing the observed molar percentages of peptides 1-4 with those calculated from a set of exponential equations. Both isomerization reactions (ring expansion of 1 to 2, k1 = 6.4 X 10(-5) s-1; ring contraction of 2 to 1, k-1 = 69 X 10(-5) s-1) proceeded faster than any of the hydrolysis reactions: alpha-cleavage of 1 with fragmentation to form dipeptide 3 (k2 = 3.3 X 10(-5) s-1), gamma-cleavage of 1 with ring opening to yield mercapto acid 4 (k3 = 0.35 X 10(-5) s-1), and hydrolysis of 2 with ring opening to give 4 (k4 = 1.9 X 10(-5) s-1). The isomerization rate ratio (k1/k-1 = 10.9) agreed with the isomer ratio at equilibrium (1:2 = 11 starting from 1 and 10 starting from 2). The alpha/gamma regioselectivity ratio (k2/k3 = 9.7) for hydrolysis of the internal Glp residue of 1 was consistent with results for model tripeptides. Part of the chemistry of the protein metastable binding sites can be explained by similar isomerization and hydrolysis reactions.  相似文献   

15.
Stopped-flow radiationless energy-transfer kinetics have been used to examine the effects of chloride on the hydrolysis of Dns-Lys-Phe-Ala-Arg by angiotensin converting enzyme. The kinetic constants for hydrolysis at pH 7.5 and 22 degrees C in the presence of 300 mM sodium chloride were KM = 28 microM and kcat = 110 s-1, and in its absence, KM = 240 microM and kcat = 68 s-1. The apparent binding constant for chloride was 4 mM, and the extent of chloride activation in terms of kcat/KM was 14-fold. The effects of chloride on the pre-steady-state were examined at 2 degrees C. In the presence of chloride, two distinct enzyme-substrate complexes were observed, suggesting multiple steps in substrate binding. The initial complex was formed during the mixing period (kobsd greater than 200 s-1) while the second complex was formed much more slowly (kobsd = 40 s-1 when [S] = 5 microM and [NaCl] = 150 mM). Strikingly, in the absence of chloride, only a single, rapidly formed enzyme-substrate complex was observed. These results are consistent with a nonessential activator kinetic mechanism in which the slow step reflects conversion of an initially formed complex, (E X Cl- X S)1, to a more tightly bound complex, (E X Cl- X S)2.  相似文献   

16.
S W King  V R Lum  T H Fife 《Biochemistry》1987,26(8):2294-2300
The carbamate ester N-(phenoxycarbonyl)-L-phenylalanine binds well to carboxypeptidase A in the manner of peptide substrates. The ester exhibits linear competitive inhibition toward carboxypeptidase A catalyzed hydrolysis of the amide hippuryl-L-phenylalanine (Ki = 1.0 X 10(-3) M at pH 7.5) and linear noncompetitive inhibition toward hydrolysis of the specific ester substrate O-hippuryl-L-beta-phenyllactate (Ki = 1.4 X 10(-3) M at pH 7.5). Linear inhibition shows that only one molecule of inhibitor is bound per active site at pH 7.5. The hydrolysis of the carbamate ester is not affected by the presence of 10(-8)-10(-9) M enzyme (the concentrations employed in inhibition experiments), but at an enzyme concentration of 3 X 10(-6) M catalysis can be detected. The value of kcat at 30 degrees C, mu = 0.5 M, and pH 7.45 is 0.25 s-1, and Km is 1.5 X 10(-3) M. The near identity of Km and Ki shows that Km is a dissociation constant. Substrate inhibition can be detected at pH less than 7 but not at pH values above 7, which suggests that a conformational change is occurring near that pH. The analogous carbonate ester O-(phenoxycarbonyl)-L-beta-phenyllactic acid is also a substrate for the enzyme. The Km is pH independent from pH 6.5 to 9 and has the value of 7.6 X 10(-5) M in that pH region. The rate constant kcat is pH independent from pH 8 to 10 at 30 degrees C (mu = 0.5 M) with a limiting value of 1.60 s-1. Modification of the carboxyl group of glutamic acid-270 to the methoxyamide strongly inhibits the hydrolysis of O-(phenoxycarbonyl)-L-beta-phenyllactic acid. Binding of beta-phenyllactate esters and phenylalanine amides must occur in different subsites, but the ratios of kcat and kcat/Km for the structural change from hippuryl to phenoxy in each series are closely similar, which suggests that the rate-determining steps are mechanistically similar.  相似文献   

17.
D Y Cai  M Tien 《Biochemistry》1990,29(8):2085-2091
The oxycomplexes (compound III, oxyperoxidase) of two lignin peroxidase isozymes, H1 (pI = 4.7) and H8 (pI = 3.5), were characterized in the present study. After generation of the ferroperoxidase by photochemical reduction with deazoflavin in the presence of EDTA, the oxycomplex is formed by mixing ferroperoxidase with O2. The oxycomplex of isozyme H8 is very stable, with an autoxidation rate at 25 degrees C too slow to measure at pH 3.5 or 7.0. In contrast, the oxycomplex of isozyme H1 has a half-life of 52 min at pH 4.5 and 29 min at pH 7.5 at 25 degrees C. The decay of isozyme H1 oxycomplex follows a single exponential. The half-lives of lignin peroxidase oxycomplexes are much longer than those observed with other peroxidases. The binding of O2 to ferroperoxidase to form the oxycomplex was studied by stopped-flow methods. At 20 degrees C, the second-order rate constants for O2 binding are 2.3 X 10(5) and 8.9 X 10(5) M-1 s-1 for isozyme H1 and 6.2 X 10(4) and 3.5 X 10(5) M-1 s-1 for isozyme H8 at pH 3.6 and pH 6.8, respectively. The dissociation rate constants for the oxycomplex of isozyme H1 (3.8 Z 10(-3) s-1) and isozyme H8 (1.0 X 10(-3) s-1) were measured at pH 3.6 by CO trapping. Thus, the equilibrium constants (K, calculated from kon/koff) for both isozymes H1 (7.0 X 10(7) M-1) and H8 (6.2 X 10(7) M-1) are higher than that of myoglobin (1.9 Z 10(6) M-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
H Ruf 《Biophysical chemistry》1987,26(2-3):313-320
The kinetics of adsorption of the proton carrier o-methyl red to the surface of unilamellar spherical phospholipid vesicles have been investigated by means of the temperature-jump relaxation technique with absorbance detection. Single-exponential relaxation curves were observed with time constants in the range 30-130 microseconds. o-Methyl red binds in both its anionic form A- and protonated form AH. Adsorption-desorption of the two species is coupled by two fast protolytic reactions, occurring in the aqueous bulk phase and in the surface region of the membrane. The rate constants for adsorption and desorption of the two species were obtained from the dependences of the relaxation time on lipid concentration at different pH values. The analysis yielded apparent adsorption rate constants of kasAH = 9.8 X 10(6) M-1 s-1 and kasA = 1.3 X 10(6) M-1 s-1 (expressed in terms of monomeric lipid), and kasAH = 1.2 X 10(11) M-1 s-1 and kasA = 1.6 X 10(10) M-1 s-1 (expressed in terms of vesicle concentration). From the order of these rate constants it is concluded that adsorption of both species is actually diffusion-controlled. The peculiar pH dependence of the relaxation time is a consequence of the protolytic reaction in the surface region of the membrane. Its implication for the kinetics of adsorption-desorption processes are discussed.  相似文献   

19.
Pre-steady-state and steady-state kinetics of the papain (EC 3.4.22.2)-catalyzed hydrolysis of N-alpha-carbobenzoxyglycine p-nitrophenyl ester (ZGlyONp) have been determined between pH 3.0 and 9.5 (I = 0.1 M) at 21 +/- 0.5 degrees C. The results are consistent with the minimum three-step mechanism involving the acyl X enzyme intermediate E X P: (Formula: see text). The formation of the E X S complex may be regarded as a rapid pseudoequilibrium process; the minimum values for k+1 are 8.0 microM-1 s-1 (pH less than or equal to 3.5) and 0.40 microM-1 s-1 (pH greater than 6.0), and that for k-1 is 600 s-1 (pH independent). The pH profile of k+2/Ks (= kcat/Km; Ks = k-1/k+1) reflects the ionization of two groups with pK' values of 4.5 +/- 0.1 and 8.80 +/- 0.15 in the free enzyme. The pH dependence of k+2 and k+3 (measured only at pH values below neutrality) implicates one ionizing group in the acylation and deacylation step with pK' values of 5.80 +/- 0.15 and 3.10 +/- 0.15, respectively. As expected from the pH dependences of k+2/Ks (= kcat/Km) and k+2, the value of Ks changes with pH from 7.5 X 10(1) microM (pH less than or equal to 3.5) to 1.5 X 10(3) microM (pH greater than 6.0). Values of k-2 and k-3 are close to zero over the whole pH range explored (3.0 to 9.5). The pH dependence of kinetic parameters indicates that at acid pH values (less than or equal to 3.5), the k+2 step is rate limiting in catalysis, whereas for pH values higher than 3.5, k+3 becomes rate limiting. The observed ionizations probably reflect the acid-base equilibria of residues involved in the catalytic diad of papain, His159-Cys25. Comparison with catalytic properties of ficins and bromelains suggests that the results reported here may be of general significance for cysteine proteinase catalyzed reactions.  相似文献   

20.
We have investigated the inhibition of human leukocyte elastase and cathepsin G by recombinant Eglin c under near physiological conditions. The association rate constants k on of Eglin c for elastase and cathepsin G were 1.3 X 10(7) M-1 s-1 and 2 X 10(6) M-1 s-1, respectively. Under identical conditions, the k on for the association of human plasma alpha 1-proteinase inhibitor with the two leukocproteinases were 2.4 X 10(7) M-1 s-1 and 10(6) M-1 s-1, respectively. The consistency of these data could be verified using a set of competition experiments. The elastase-Eglin c interaction was studied in greater detail. The dissociation rate constant k off was determined by trapping of free elastase from an equilibrium mixture of elastase and Eglin c with alpha 1-proteinase inhibitor or alpha 2-macroglobulin. The rate of dissociation was very low (k off = 3.5 X 10(-5) s-1). The calculated equilibrium dissociation constant of the complex, Ki(calc) = k off/k on, was found to be 2.7 X 10(-12) M. Ki was also measured by adding elastase to mixtures of Eglin c and substrate and determining the steady-state rates of substrate hydrolysis. The Ki determined from these experiments (7.5 X 10(-11) M) was significantly higher than Ki(calc). This discrepancy might be explained by assuming that the interaction of Eglin c with elastase involves two steps: a fast binding reaction followed by a slow isomerization step. From the above kinetic constants it may be inferred that at a therapeutic concentration of 5 X 10(-7) M, Eglin c will inhibit leukocyte elastase in one second and will bind this enzyme in a "pseudo-irreversible" manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号