首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calmodulin-dependent protein phosphatase purified from bovine cardiac muscle catalyzed the rapid dephosphorylation of Ser-95 of bovine cardiac cAMP-dependent protein kinase regulatory subunit (RII). The kinetic constants determined for the reaction (Km = 20 microM; Vmax = 2 mumol min-1 mg-1) are comparable to those determined for other good substrates of this phosphatase. Because little is known about the determinants of substrate specificity for the calmodulin-dependent phosphatase, various phosphopeptides were used to investigate the structural features important for substrate recognition. Limited proteolysis of phospho-RII with trypsin and chymotrypsin yielded fragments (residues 93-400 and 91-400, respectively) that were poor substrates, whereas digestion with Staphylococcal aureus V8 protease produced three phosphopeptides that were all dephosphorylated as rapidly as intact RII. The sequence of the shortest phosphopeptide produced by S. aureus V8 protease was determined by sequence analysis to be Asp-Leu-Asp-Val-Pro-Ile-Pro-Gly-Arg-Phe-Asp-Arg-Arg-Val-Ser-Val-Cys-Ala-Glu, corresponding to residues 81-99 of RII. Synthetic phosphopeptides corresponding to residues 81-99, 85-99, 90-99, and 91-99 were prepared to determine the minimum sequence necessary for substrate recognition. Only the 19-residue peptide (81-99) was dephosphorylated with kinetics comparable to RII (Km = 26 microM, Vmax = 1.7 mumol min-1 mg-1). Structural analysis of this peptide indicates that an amphipathic beta-sheet structure may be an important structural determinant for some substrates of the calmodulin-dependent phosphatase.  相似文献   

2.
The substrate specificity of protein kinase C has been examined using a series of synthetic peptide analogs of glycogen synthase, ribosomal protein S6, and the epidermal growth factor receptor. The glycogen synthase analog peptide Pro1-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala10 was phosphorylated at Ser7 with a Km of 40.3 microM. Peptide phosphorylation was strongly dependent on Arg4. When lysine was substituted for Arg4 the Km was increased approximately 20-fold. Addition of basic residues on either the NH2-terminal or COOH-terminal side of the phosphorylation site of the glycogen synthase peptide improved the kinetics of peptide phosphorylation. The analog Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala-Lys-Lys was phosphorylated with a Km of 4.1 microM. Substitution of Ser7 with threonine increased the apparent Km to 151 microM. The truncated peptide Pro1-Leu-Ser-Arg-Thr-Leu-Ser-Val8 was phosphorylated with similar kinetic constants to the parent peptide, however, deletion of Val8 increased the apparent Km to 761 microM. The ribosomal peptide S6-(229-239) was phosphorylated with a Km of approximately 0.5 microM predominantly on Ser236 and is one of the most potent synthetic peptide substrates reported for a protein kinase. The apparent Km for S6 peptide phosphorylation was increased by either deletion of the NH2-terminal 3 residues Ala229-Arg-231 or by substitution of Arg238 on the COOH-terminal side of the phosphorylation site with alanine. This analog peptide, [Ala238]S6-(229-239) was phosphorylated with an approximate 6-fold reduction in Vmax and a switch in the preferred site of phosphorylation from Ser236 to Ser235. These results support the concept that basic residues on both sides of the phosphorylation site can have an important influence on the kinetics of phosphorylation and site specificity of protein kinase C.  相似文献   

3.
The COOH-terminal residue in peptide analogs of the phosphorylation site sequence in smooth muscle myosin light chains, Lys11-Lys12-Arg13-Ala-Ala-Arg16-Ala-Thr-Ser19 -(P)Asn20-Val21-Phe22-Ala23, were shown to have a strong influence on the kinetics of peptide phosphorylation. The peptides 11-19, 11-20, 11-21, 11-22, and 11-23 were all phosphorylated by the myosin light chain kinase with similar apparent Km values in the range 11-17 microM. The Vmax varied 40-fold, with the peptides 11-19, 11-20, 11-21, 11-22, and 11-23 having Vmax values of 0.035, 0.045, 0.32, 1.74, and 1.43 mumol X min-1 X mg-1 respectively. These results indicated that Ala23 was not essential whereas Phe22 and Val21 had a strong influence on the Vmax of peptide phosphorylation. This series of peptides competitively inhibited myosin light chain phosphorylation with Ki values similar to their respective Km values. Peptide 11-19 had a Ki value of approximately 10 microM and a Vmax less than 0.1% of the value with myosin light chains and is therefore an effective inhibitor of the smooth muscle myosin kinase.  相似文献   

4.
The substrate specificity of the epidermal-growth-factor-stimulated tyrosine protein kinase of A431 cell membranes has been studied using a series of synthetic peptide analogs of the sequence around the phosphorylated tyrosine-419 of pp60src. The nine-residue peptide Leu-Ile-Glu-Asp-Ala-Glu-Tyr-Thr-Ala was phosphorylated on tyrosine with an apparent Km of 0.4 mM and a V of 5.7 nmol X min-1 X mg-1. Synthetic peptide tyrosine phosphorylation was stimulated by epidermal growth factor but not by insulin or relaxin. Extension of the nine-residue peptide to include the basic residues, arginine-412, arginine-422 and lysine-423 led to an increased apparent Km. Substitution of glutamic-418 by leucine also increased the apparent Km. In the model peptide Ile-Xaa-Xaa-Ala-Ala-Tyr-Thr-Ala a lower apparent Km was obtained when Xaa was glutamic rather than aspartic acid. Poly(aspartic acid) and poly(glutamic acid) had only weak effects on peptide tyrosine phosphorylation. The results support the concept that acidic residues and not basic residues are important specificity determinants for the epidermal-growth-factor-stimulated tyrosine protein kinase.  相似文献   

5.
6.
Substrate determinants for rabbit and chicken skeletal muscle myosin light chain kinases were examined with synthetic peptides. Both skeletal muscle myosin light chain kinases had similar phosphorylation kinetics with synthetic peptide substrates. Average kinetic constants for skeletal muscle myosin light chain heptadecapeptide, (formula; see text) where S(P) is phosphoserine, were Km, 2.3 microM and Vmax, 0.9 mumol/min/mg of enzyme. Km values were 122 and 162 microM for skeletal muscle peptides containing A-A for basic residues at positions 2-3 and 6-7, respectively. Average kinetic constants for smooth muscle myosin light chain peptide, (formula; see text), were Km, 1.4 microM and Vmax 27 mumol/min/mg of enzyme. Average Km values for the smooth muscle peptide, residues 11-23, were 10 microM which increased 6- and 11-fold with substitutions of alanine at residues 12 and 13, respectively. Vmax values decreased and Km values increased markedly by substitution of residue 16 with glutamate in the 11-23 smooth muscle tridecapeptide. Basic residues located 3 and 6-7 residues toward the NH2 terminus from phosphoserine in smooth muscle myosin light chain and 6-8 and 10-11 residues toward the NH2 terminus from phosphoserine in skeletal muscle myosin light chain appear to be important substrate determinants for skeletal muscle myosin light chain kinases. These properties are different from myosin light chain kinase from smooth muscle.  相似文献   

7.
Rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase was shown to serve as a substrate for Ca2+/calmodulin-dependent protein kinase II with a Km of 0.33 microM and a Vmax of 2.63 mumol.min-1.mg-1 at pH 7.5 and 30 degrees C. In the absence of calmodulin, the Vmax was halved and Km unchanged. 0.99 mol of phosphate was incorporated per tetrameric molecule of D-glyceraldehyde-3-phosphate dehydrogenase under the experimental conditions employed.  相似文献   

8.
alpha-(N-Acetylaminomethylene)succinic acid hydrolase (Compound A hydrolase, EC 3.5.1-) and alpha-hydroxymethyl-alpha'-(N-acetylaminomethylene)succinic acid hydrolase (Compound B hydrolase, EC 3.5.1-) were purified to homogeneity from Pseudomonas MA-1 and Arthrobacter Cr-7, respectively. The two inducible enzymes catalyze Reactions 1 and 2, respectively, which release the first generally useful anabolic intermediates during growth of these organisms with (formula; see text) pyridoxine as a sole source of carbon and nitrogen. Compound A hydrolase is a monomeric protein of Mr 32,500 with aspartic acid as its NH2-terminal residue. Compound B hydrolase (Mr congruent to 205,000) is a multimer containing probably six identical subunits with glycine as the NH2 terminus. The two enzymes have quite different amino acid analyses, although both are high in Asx and Glx, lack tryptophan, and show similar stabilities to pH and temperature. Compound A hydrolase has a pI of 4.4, a Km of 3.3 microM, and a Vmax of 3.1 mumol X min-1 X mg-1 at pH 6.5 and 25 degrees C; no analogue substrates were found. Compound B hydrolase has a pI of 4.2, a Km of 25 microM, and a Vmax of 3.8 mumol X min-1 X mg-1 at 25 degrees C and pH 7.0; it also hydrolyzes Compound A slowly. Both enzymes are inhibited competitively by di- and tricarboxylic acids, itaconic acid being among the most effective. Sulfite inhibits both enzymes by a time-dependent mechanism not yet understood. The two amidases appear to differ greatly in architecture despite the similarity in properties and in the overall reactions they catalyze.  相似文献   

9.
Phosphorylation of a single threonine (myosin IA) or serine (myosins IB and IC) in the heavy chains of the Acanthamoeba myosin I isozymes is required for expression of their actin-activated Mg2(+)-ATPase activities. We now report that the synthetic peptide Gly-Arg-Gly-Arg-Ser-Ser-Val-Tyr-Ser, which corresponds to the phosphorylated region of Acanthamoeba myosin IC, is a good substrate for myosin I heavy chain kinase: Km = 54 microM, and Vmax = 15 mumols/min.mg. The same serine is phosphorylated as in the native substrate (residue 6 in the above sequence), and kinase activity with the synthetic peptide as substrate is also stimulated by phosphatidylserine-enhanced autophosphorylation of the kinase. These results indicate that all of the essential sequence determinants of kinase specificity are contained within this 9-residue peptide. With the peptide as substrate, we found that another acidic phospholipid, phosphatidylinositol, also enhances autophosphorylation of the kinase whereas the neutral phospholipids phosphatidylcholine and phosphatidylethanolamine do not. By comparing the Km and Vmax values for a series of synthetic peptide substrates, we established that 1 basic amino acid is essential on the NH2-terminal side of the phosphorylation site, and two are preferable, and that a tyrosine is essential 2 residues away on the COOH-terminal side. There is a slight preference for arginines over lysines. All of these local sequence specificity determinants are present in the three native substrates, Acanthamoeba myosins IA, IB, and IC, and in two Dictyostelium myosin I isozymes that are putative substrates for the kinase. Similar sequences do not occur in the myosins I from intestinal brush border, which is not a substrate for the Acanthamoeba kinase.  相似文献   

10.
S-Adenosylhomocysteine hydrolase [EC 3.3.1.1] was purified to electrophoretic homogeneity from mastocytoma P-815 cells. The purified enzyme had a molecular weight of 190,000, as estimated by Sephadex G-200 chromatography, and a monomer molecular weight of 45,000, as determined by polyacrylamide gel electrophoresis in the presence of SDS. The Km value for adenosine was 0.29 microM and the Vmax value 4.5 mumol S-adenosylhomocysteine X min-1 X mg-1 in the synthetic reaction, while the Km value for S-adenosylhomocysteine was 0.77 microM and the Vmax 0.48 mumol adenosine X min-1 X mg-1 in the hydrolytic reaction. The purified enzyme also had one binding site for adenosine (KD = 2.61 X 10(-7) M) and one for cAMP (KD = 1.6 X 10(-7) M). Using rabbit antiserum raised against the purified enzyme, it was shown that the enzyme activity and enzyme synthesis fluctuated during the cell cycle of mastocytoma cells, reaching the maximum levels as the cells changed from the G1/S phase to the G2 phase.  相似文献   

11.
A calmodulin-dependent glycogen synthase kinase distinct from phosphorylase kinase has been purified approximately equal to 5000-fold from rabbit skeletal muscle by a procedure involving fractionation with ammonium sulphate (0-33%), and chromatographies on phosphocellulose, calmodulin-Sepharose and DEAE-Sepharose. 0.75 mg of protein was obtained from 5000 g of muscle within 4 days, corresponding to a yield of approximately equal to 3%. The Km for glycogen synthase was 3.0 microM and the V 1.6-2.0 mumol min-1 mg-1. The purified enzyme showed a major protein staining band (Mr 58 000) and a minor component (Mr 54 000) when examined by dodecyl sulphate polyacrylamide gel electrophoresis. The molecular weight of the native enzyme was determined to be 696 000 by sedimentation equilibrium centrifugation, indicating a dodecameric structure. Electron microscopy suggested that the 12 subunits were arranged as two hexameric rings stacked one upon the other. Following incubation with Mg-ATP and Ca2+-calmodulin, the purified protein kinase underwent an 'autophosphorylation reaction'. The reaction reached a plateau when approximately equal to 5 mol of phosphate had been incorporated per 58 000-Mr subunit. Both the 58 000-Mr and 54 000-Mr species were phosphorylated to a similar extent. Autophosphorylation did not affect the catalytic activity. The calmodulin-dependent protein kinase initially phosphorylated glycogen synthase at site-2, followed by a slower phosphorylation of site-1 b. The protein kinase also phosphorylated smooth muscle myosin light chains, histone H1, acetyl-CoA carboxylase and ATP-citrate lyase. These findings suggest that the calmodulin-dependent glycogen synthase kinase may be a enzyme of broad specificity in vivo. Glycogen synthase kinase-4 is an enzyme that resembles the calmodulin-dependent glycogen synthase kinase in phosphorylating glycogen synthase (at site-2), but not glycogen phosphorylase. Glycogen synthase kinase-4 was unable to phosphorylate any of the other proteins phosphorylated by the calmodulin-dependent glycogen synthase kinase, nor could it phosphorylate site 1 b of glycogen synthase. The results demonstrate that glycogen synthase kinase-4 is not a proteolytic fragment of the calmodulin-dependent glycogen synthase kinase, that has lost its ability to be regulated by Ca2+-calmodulin.  相似文献   

12.
Q G Medley  J Gariépy  G P C?té 《Biochemistry》1990,29(38):8992-8997
One of the major sites phosphorylated on the Dictyostelium myosin II heavy chain by the Dictyostelium myosin II heavy-chain kinase A (MHCK A) is Thr-2029. Two synthetic peptides based on the sequence of the Dictyostelium myosin II heavy chain around Thr-2029 have been synthesized: MH-1 (residues 2020-2035; RKKFGESEKTKTKEFL-amide) and MH-2 (residues 2024-2035). Both peptides are substrates for MHCK A and are phosphorylated to a level of 1 mol of phosphate/mol. Tryptic digests indicate that the peptides are phosphorylated on the threonine corresponding to Thr-2029. When assays are initiated by the addition of MHCK A, the rate of phosphate incorporation into the peptides increases progressively for 4-6 min. The increasing activity of MHCK A over this time period is a result of autophosphorylation. Although each 130-kDa subunit of MHCK A can incorporate up to 10 phosphate molecules, 3 molecules of phosphate per subunit are sufficient to completely activate the kinase. Autophosphorylated MHCK A displays Vmax values of 2.2 and 0.6 mumol.min-1.mg-1 and Km values of 100 and 1200 microM with peptides MH-1 and MH-2, respectively. Unphosphorylated MHCK A displays a 50-fold lower Vmax with MH-1 but only a 2-fold greater Km. In the presence of Dictyostelium myosin II, the rate of autophosphorylation of MHCK A is increased 4-fold. If assays are performed at 4 degrees C (to slow the rate of MHCK A autophosphorylation), autophosphorylation can be shown to increase the activity of MHCK A with myosin II.  相似文献   

13.
Amino acid sequences of peptides containing the phosphorylation site of bovine cardiac myosin light chain (L2) were determined. The site was localized to a serine residue in the tentative amino terminus of the light chain and is homologous to phosphorylation sites in other myosin light chains. Phosphorylation of bovine cardiac light chain by chicken gizzard myosin light chain kinase was Ca2+-calmodulin dependent. Kinetic data gave a Km of 107; microM and a Vmax of 23.6 mumol min-1 mg-1. In contrast to what has been observed with smooth muscle light chains, neither the phosphorylation site fragment of the cardiac light chain nor a synthetic tetradecapeptide containing the phosphorylation site were effectively phosphorylated by the chicken gizzard kinase. Phosphorylation of cardiac myosin light chains by chicken gizzard myosin light chain kinase, therefore, requires other regions of the light chain in addition to a phosphate acceptor site.  相似文献   

14.
Acetyl phosphate produced an increase in the maximum velocity (Vmax. for the carboxylation of phosphoenolpyruvate catalysed by phosphoenolpyruvate carboxylase. The limiting Vmax. was 22.2 mumol X min-1 X mg-1 (185% of the value without acetyl phosphate). This compound also decreased the Km for phosphoenolpyruvate to 0.18 mM. The apparent activation constants for acetyl phosphate were 1.6 mM and 0.62 mM in the presence of 0.5 and 4 mM-phosphoenolpyruvate respectively. Carbamyl phosphate produced an increase in Vmax. and Km for phosphoenolpyruvate. The variation of Vmax./Km with carbamyl phosphate concentration could be described by a model in which this compound interacts with the carboxylase at two different types of sites: an allosteric activator site(s) and the substrate-binding site(s). Carbamyl phosphate was hydrolysed by the action of phosphoenolpyruvate carboxylase. The hydrolysis produced Pi and NH4+ in a 1:1 relationship. Values of Vmax. and Km were 0.11 +/- 0.01 mumol of Pi X min-1 X mg-1 and 1.4 +/- 0.1 mM, respectively, in the presence of 10 mM-NaHCO3. If HCO3- was not added, these values were 0.075 +/- 0.014 mumol of Pi X min-1 X mg-1 and 0.76 +/- 0.06 mM. Vmax./Km showed no variation between pH 6.5 and 8.5. The reaction required Mg2+; the activation constants were 0.77 and 0.31 mM at pH 6.5 and 8.5 respectively. Presumably, carbamyl phosphate is hydrolysed by phosphoenolpyruvate carboxylase by a reaction the mechanism of which is related to that of the carboxylation of phosphoenolpyruvate.  相似文献   

15.
NH4(+)-transport in Anabaena 7120 was studied using the NH4+ analogue, 14CH3NH3+. At pH 7, two energy-dependent NH4(+)-transport systems were detected in both N2- and NO3(-)-grown cells, but none in NH4(+)-grown cells. Both transport systems showed a low and a high affinity mode of operation depending on the substrate concentration. One of the transport systems showed Km values of 8 microM (Vmax = 1 nmole min-1mg-1protein) and 80 microM (Vmax = 7 nmole min-1mg-1protein), and was insensitive to L-methionine-DL-sulphoximine, a glutamate analogue and irreversible inhibitor of glutamine synthetase. The other transport system showed Km values of 2.5 microM (Vmax = 0.1 nmole min-1mg-1protein) and 70 microM (Vmax = 0.7 nmole min-1mg-1protein), and was sensitive to L-methionine-DL-sulphoximine. Intracellular accumulation of free 14CH3NH3+ showed a biphasic pattern in response to variation in external 14CH3NH3+ concentrations. A maximum intracellular concentration of 2.5 mM and 7.5 mM was reached in the external 14CH3NH3+ concentration range of 1-50 microM and 1-500 microM, respectively. At pH 9, an energy-independent diffusion of 14CH3NH2 leading to a higher intracellular accumulation and assimilation rate, than that at pH 7, was observed.  相似文献   

16.
Bovine lung cGMP-binding cGMP-specific phosphodiesterase (cG-BPDE) is a potent and relatively specific substrate for cGMP-dependent protein kinase (cGK) as compared to cAMP-dependent protein kinase (cAK) (Thomas, M. K., Francis, S. H., and Corbin, J. D. (1990) J. Biol. Chem. 265, 14971-14978). A synthetic peptide, RKISASEFDRPLR (BPDEtide), was synthesized corresponding to the sequence surrounding the phosphorylation site in cG-BPDE. BPDEtide retained the cGK/cAK kinase specificity demonstrated by native cG-BPDE: the apparent Km of BPDEtide for cGK was 5-fold lower than that for cAK (Km = 68 and 320 microM, respectively). Vmax values were 11 mumol/min/mg for cGK and 3.2 mumol/min/mg for cAK. The peptide was not phosphorylated to a measurable extent by protein kinase C or by calcium/calmodulin-dependent protein kinase II. Thus, the primary amino acid sequence of the peptide substrate was sufficient to confer kinase specificity. Studies in crude tissue extracts indicated that BPDEtide was the most selective peptide substrate documented for measuring cGK activity. Peptide analogs of BPDEtide were synthesized to determine the contribution of specific residues to cGK or cAK substrate specificity. Substitution of a Lys for the amino-terminal Arg did not reduce cGK/cAK specificity; neither did the exchange of an Ala for the non-phosphorylated Ser nor the removal of the 3 carboxyl-terminal residues. A truncated BPDEtide (RKISASE) served equally well as substrate (Km approximately 90 microM) for both kinases. However, restoration of the Phe, to yield RKISASEF, reproduced the original cGK/cAK specificity for BPDEtide (Km = 120 and 480 microM, respectively), primarily by decreasing the affinity of cAK. Addition of a carboxyl-terminal Phe to the peptide RKRSRAE (derived from the sequence of the cGK phosphorylation site in histone H2B) or to the peptide LRRASLG (derived from the sequence of the cAK phosphorylation site in pyruvate kinase) also improved the cGK/cAK specificity by decreasing the affinity of cAK. These data suggested that the Phe in each substrate tested is a negative determinant for cAK.  相似文献   

17.
The ability of three distinct types of human cytosolic glutathione transferase to catalyze the formation of leukotriene C4 from glutathione and leukotriene A4 has been demonstrated. The near-neutral transferase (mu) was the most efficient enzyme with Vmax= 180 nmol X min-1 X mg-1 and Km= 160 microM. The Vmax and Km values for the basic (alpha-epsilon) and the acidic (pi) transferases were 66 and 24 nmol X min-1 X mg-1 and 130 and 190 microM, respectively. The synthetic methyl ester derivative of leukotriene A4 was somewhat more active as a substrate for all the three forms of the enzyme.  相似文献   

18.
The substrate specificity of cGMP-dependent protein kinase has been investigated by examining the ability of the enzyme to phosphorylate a series of synthetic peptides that correspond to the amino acid sequence at its site of autophosphorylation. The undecapeptide Ile53-Gly-Pro-Arg-Thr-Thr58-Arg-Ala-Gln-Gly-Ile63 which corresponds to the sequence around threonine-58 in cGMP-dependent protein kinase (Takio, K., Smith, S.B., Walsh, K.A., Krebs, E.G., and Titani, K. (1983) J. Biol. Chem. 258, 5531-5536) was synthesized and tested as a substrate for that enzyme. It was phosphorylated to the extent of 1.0 mol of phosphate/mol of peptide. Analysis of the products of Edman degradation of the phosphopeptide indicated that only threonine-58 was phosphorylated, as is the case for the autophosphorylation reaction in the native enzyme. The peptide was phosphorylated by cGMP-dependent protein kinase with a Km value of 578 +/- 25 microM and a Vmax of 0.069 +/- 0.003 mumol/min/mg of enzyme. This low Vmax value is consistent with the relatively slow rate of the autophosphorylation reaction. An analog peptide that contained serine in place of threonine-58 was also phosphorylated to 1.0 mol of phosphate/mol of peptide. That phosphopeptide contained only phosphoserine. The serine-containing analog peptide had a Km value similar to that of the parent peptide but was phosphorylated with a 70-fold higher Vmax value. Substitution of arginine-56 in the parent peptide by an alanine residue resulted in a peptide that was essentially not a substrate. Substitution of arginine-59, COOH-terminal to the phosphorylatable threonine, yielded a peptide with a Vmax similar to that of the parent peptide but a Km value of almost 22,000 microM. These results indicate that serine is a better phosphate-accepting residue than is threonine and that both arginine residues around the site of autophosphorylation are important specificity determinants for the cGMP-dependent protein kinase.  相似文献   

19.
Calmodulin-dependent protein phosphatase from bovine brain and heart was assayed for phosphotyrosine and phosphoserine phosphatase activity using several substrates: 1) smooth muscle myosin light chain (LC20) phosphorylated on tyrosine or serine residues, 2) angiotensin I phosphorylated on tyrosine, and 3) synthetic phosphotyrosine- or phosphoserine-containing peptides with amino acid sequences patterned after the autophosphorylation site in Type II regulatory subunit of the cAMP-dependent protein kinase. The phosphatase was activated by Ni2+ and Mn2+, and stimulated further by calmodulin. In the presence of Ni2+ and calmodulin, it exhibited similar kinetic constants for the dephosphorylation of phosphotyrosyl LC20 (Km = 0.9 microM, and Vmax = 350 nmol/min/mg) and phosphoseryl LC20 (Km = 2.6 microM, Vmax = 690 nmol/min/mg). Dephosphorylation of phosphotyrosyl LC20 was inhibited by phosphoseryl LC20 with an apparent Ki of 2 microM. Compared to the reactions with phosphotyrosyl LC20 as the substrate, reactions with phosphotyrosine-containing oligopeptides exhibited slightly higher Km and lower Vmax values. The reaction with the phosphoseryl peptide based on the Type II regulatory subunit sequence exhibited a slightly higher Km (23 microM), but a much higher Vmax (4400 nmol/min/mg) than that with its phosphotyrosine-containing counterpart. Micromolar concentrations of Zn2+ inhibited the phosphatase activity; vanadate was less potent, and 25 mM NaF was ineffective. The study provides quantitative data to serve as a basis for comparing the ability of the calmodulin-dependent protein phosphatase to act on phosphotyrosine- and phosphoserine-containing substrates.  相似文献   

20.
4-Pyridoxolactone and 5-pyridoxolactone, formed by dehydrogenation of pyridoxal or isopyridoxal during the bacterial degradation of vitamin B6 by Pseudomonas MA-1 and Arthrobacter Cr-7, respectively, are hydrolyzed to the corresponding acids by distinct inducible lactonases which were purified to homogeneity. 4-Pyridoxolactonase from Pseudomonas MA-1 has an Mr of 54,000 and contains two probably identical subunits of Mr = 28,600. It has a pH optimum of 7.0, a Km of 5.9 microM, and a Vmax at 25 degrees C of 35.2 mumol X min-1 X mg-1. 5-Pyridoxolactonase from Arthrobacter Cr-7 has an Mr of 65,200 and also contains two probably identical subunits of Mr = 32,800. It has a pH optimum of 7.1-7.7, a Km of 300 microM, and a Vmax at 25 degrees C of 21.5 mumol-1 X min-1 X mg-1. The two lactonases require no added cofactors or metal ions; their activities are inhibited by sulfhydryl reagents but are not affected by metal-chelating reagents. Although the two lactonases are entirely specific for their respective substrates, 4-pyridoxolactone is a competitive inhibitor (KI = 52 microM) for 5-pyridoxolactonase, and 5-pyridoxolactone is a competitive inhibitor (KI = 48 microM) for 4-pyridoxolactonase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号