首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
E B Olson 《Life sciences》1988,42(15):1469-1476
Awake, adult male rats (some with chronically indwelling femoral artery catheters) were exposed for up to 7 days to one of three environments: a) normoxia (PIO2 = 155 Torr), b) hypoxic hypocapnia (PIO2 = 90 Torr), and c) hypoxic normocapnia (PIO2 = 73 Torr, PICO2 = 32 Torr), and arterial blood gas and acid-base status were documented. After 1 hour to 7 days, rats were sacrificed, and the time courses of the brain levels and turnovers of norepinephrine (NE), dopamine (DA) and serotonin (5-hydroxytryptamine or 5HT) were determined in each condition. The transient decrease in monoamine levels seen on exposure to acute hypoxia was absent if normocapnia was maintained; 7 days hypoxia with or without hypocapnia resulted in increased monoamine levels. Normocapnia also prevented an immediate, sustained decrease in 5HT turnover and a delayed decrease in DA turnover which were observed in hypoxic hypocapnia. A delayed increase in 5HT turnover appeared to be due to hypoxia independent of PaCO2. Therefore, the initial, transient loss of mental acuity and some ventilatory adaptations observed during prolonged hypoxia may be a result of the decrease in PaCO2 rather than the decreased oxygen concentration.  相似文献   

2.
Hypoxia potentiates the ventilatory response to exercise, eliciting a greater decrease in arterial PCO2 (PaCO2) from rest to exercise than in normoxia. The mechanism of this hypoxia-exercise interaction requires intact carotid chemoreceptors. To determine whether carotid chemoreceptor stimulation alone is sufficient to elicit the mechanism without whole body hypoxia, ventilatory responses to treadmill exercise were compared in goats during hyperoxic control conditions, moderate hypoxia (PaO2 = 38-44 Torr), and peripheral chemoreceptor stimulation with the peripheral dopamine D2-receptor antagonist, domperidone (Dom; 0.5 mg/kg iv). Measurements with Dom were made in both hyperoxia (Dom) and hypoxia (Dom/hypoxia). Finally, ventilatory responses to inspired CO2 at rest were compared in each experimental condition because enhanced CO2 chemoreception might be expected to blunt the PaCO2 decrease during exercise. At rest, PaCO2 decreased from control with Dom (-5.0 +/- 0.9 Torr), hypoxia (-4.1 +/- 0.5 Torr), and Dom/hypoxia (-11.1 +/- 1.2 Torr). The PaCO2 decrease from rest to exercise was not significantly different between control (-1.7 +/- 0.6 Torr) and Dom (-1.4 +/- 0.8 Torr) but was significantly greater in hypoxia (-4.3 +/- 0.7 Torr) and Dom/hypoxia (-3.5 +/- 0.9 Torr). The slope of the ventilation vs. CO2 production relationship in exercise increased with Dom (16%), hypoxia (18%), and Dom/hypoxia (68%). Ventilatory responses to inspired CO2 at rest increased from control to Dom (236%) and Dom/hypoxia (295%) and increased in four of five goats in hypoxia (mean 317%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We studied ventilatory responsiveness to hypoxia and hypercapnia in anesthetized cats before and after exposure to 5 atmospheres absolute O2 for 90-135 min. The acute hyperbaric oxygenation (HBO) was terminated at the onset of slow labored breathing. Tracheal airflow, inspiratory (TI) and expiratory (TE) times, inspiratory tidal volume (VT), end-tidal PO2 and PCO2, and arterial blood pressure were recorded simultaneously before and after HBO. Steady-state ventilation (VI at three arterial PO2 (PaO2) levels of approximately 99, 67, and 47 Torr at a maintained arterial PCO2 (PaCO2, 28 Torr) was measured for the hypoxic response. Ventilation at three steady-state PaCO2 levels of approximately 27, 36, and 46 Torr during hyperoxia (PaO2 450 Torr) gave a hypercapnic response. Both chemical stimuli significantly stimulated VT, breathing frequency, and VI before and after HBO. VT, TI, and TE at a given stimulus were significantly greater after HBO without a significant change in VT/TI. The breathing pattern, however, was abnormal after HBO, often showing inspiratory apneusis. Bilateral vagotomy diminished apneusis and further prolonged TI and TE and increased VT. Thus a part of the respiratory effects of HBO is due to pulmonary mechanoreflex changes.  相似文献   

4.
Carotid chemoreceptor activity during acute and sustained hypoxia in goats   总被引:6,自引:0,他引:6  
The role of carotid body chemoreceptors in ventilatory acclimatization to hypoxia, i.e., the progressive, time-dependent increase in ventilation during the first several hours or days of hypoxic exposure, is not well understood. The purpose of this investigation was to characterize the effects of acute and prolonged (up to 4 h) hypoxia on carotid body chemoreceptor discharge frequency in anesthetized goats. The goat was chosen for study because of its well-documented and rapid acclimatization to hypoxia. The response of the goat carotid body to acute progressive isocapnic hypoxia was similar to other species, i.e., a hyperbolic increase in discharge as arterial PO2 (PaO2) decreased. The response of 35 single chemoreceptor fibers to an isocapnic [arterial PCO2 (PaCO2) 38-40 Torr)] decrease in PaO2 of from 100 +/- 1.7 to 40.7 +/- 0.5 (SE) Torr was an increase in mean discharge frequency from 1.7 +/- 0.2 to 5.8 +/- 0.4 impulses. During sustained isocapnic steady-state hypoxia (PaO2 39.8 +/- 0.5 Torr, PaCO2, 38.4 +/- 0.4 Torr) chemoreceptor afferent discharge frequency remained constant for the first hour of hypoxic exposure. Thereafter, single-fiber chemoreceptor afferents exhibited a progressive, time-related increase in discharge (1.3 +/- 0.2 impulses.s-1.h-1, P less than 0.01) during sustained hypoxia of up to 4-h duration. These data suggest that increased carotid chemoreceptor activity contributes to ventilatory acclimatization to hypoxia.  相似文献   

5.
Prolonged exposure to hypoxia is accompanied by decreased hypoxic ventilatory response (HVR), but the relative importance of peripheral and central mechanisms of this hypoxic desensitization remain unclear. To determine whether the hypoxic sensitivity of peripheral chemoreceptors decreases during chronic hypoxia, we measured ventilatory and carotid sinus nerve (CSN) responses to isocapnic hypoxia in five cats exposed to simulated altitude of 5,500 m (barometric pressure 375 Torr) for 3-4 wk. Exposure to 3-4 wk of hypobaric hypoxia produced a decrease in HVR, measured as the shape parameter A in cats both awake (from 53.9 +/- 10.1 to 14.8 +/- 1.8; P less than 0.05) and anesthetized (from 50.2 +/- 8.2 to 8.5 +/- 1.8; P less than 0.05). Sustained hypoxic exposure decreased end-tidal CO2 tension (PETCO2, 33.3 +/- 1.2 to 28.1 +/- 1.3 Torr) during room-air breathing in awake cats. To determine whether hypocapnia contributed to the observed depression in HVR, we also measured eucapnic HVR (PETCO2 33.3 +/- 0.9 Torr) and found that HVR after hypoxic exposure remained lower than preexposed value (A = 17.4 +/- 4.2 vs. 53.9 +/- 10.1 in awake cats; P less than 0.05). A control group (n = 5) was selected for hypoxic ventilatory response matched to the baseline measurements of the experimental group. The decreased HVR after hypoxic exposure was associated with a parallel decrease in the carotid body response to hypoxia (A = 20.6 +/- 4.8) compared with that of control cats (A = 46.9 +/- 6.3; P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Goats were prepared so that one carotid body (CB) could be perfused with blood in which the gas tensions could be controlled independently from the blood perfusing the systemic arterial system, including the brain. Since one CB is functionally adequate, the nonperfused CB was excised. To determine whether systemic arterial hypoxemia is necessary for ventilatory acclimatization to hypoxia (VAH), the CB was perfused with hypoxic normocapnic blood for 6 h [means +/- SE: partial pressure of carotid body O2 (PcbO2), 40.6 +/- 0.3 Torr; partial pressure of carotid body CO2 (PcbCO2), 38.8 +/- 0.2 Torr] while the awake goat breathed room air to maintain systemic arterial normoxia. In control periods before and after CB hypoxia the CB was perfused with hyperoxic normocapnic blood. Changes in arterial PCO2 (PaCO2) were used as an index of changes in ventilation. Acute hypoxia (0.5 h of hypoxic perfusion) resulted in hyperventilation sufficient to reduce average PaCO2 by 6.7 Torr from control (P less than 0.05). Over the subsequent 5.5 h of hypoxic perfusion, average PaCO2 decreased further, reaching 4.8 Torr below that observed acutely (P less than 0.05). Acute CB hyperoxic perfusion (20 min) following 6 h of hypoxia resulted in only partial restoration of PaCO2 toward control values; PaCO2 remained 7.9 Torr below control (P less than 0.05). The progressive hyperventilation that occurred during and after 6 h of CB hypoxia with concomitant systemic normoxia is similar to that occurring with total body hypoxia. We conclude that systemic (and probably brain) hypoxia is not a necessary requisite for VAH.  相似文献   

7.
Our objective was to test the hypothesis that exposure to prolonged hypoxia results in altered responsiveness to chemoreceptor stimulation. Acclimatization to hypoxia occurs rapidly in the awake goat relative to other species. We tested the sensitivity of the central and peripheral chemoreceptors to chemical stimuli before and after 4 h of either isocapnic or poikilocapnic hypoxia (arterial PO2 40 Torr). We confirmed that arterial PCO2 decreased progressively, reaching a stable value after 4 h of hypoxic exposure (poikilocapnic group). In the isocapnic group, inspired minute ventilation increased over the same time course. Thus, acclimatization occurred in both groups. In goats, isocapnic hypoxia did not result in hyperventilation on return to normoxia, whereas poikilocapnic hypoxia did cause hyperventilation, indicating a different mechanism for acclimatization and the persistent hyperventilation on return to normoxia. Goats exposed to isocapnic hypoxia exhibited an increased slope of the CO2 response curve. Goats exposed to poikilocapnic hypoxia had no increase in slope but did exhibit a parallel leftward shift of the CO2 response curve. Neither group exhibited a significant change in response to bolus NaCN injections or dopamine infusions after prolonged hypoxia. However, both groups demonstrated a similar significant increase in the ventilatory response to subsequent acute exposure to isocapnic hypoxia. The increase in hypoxic ventilatory sensitivity, which was not dependent on the modality of hypoxic exposure (isocapnic vs. poikilocapnic), reinforces the key role of the carotid chemoreceptors in ventilatory acclimatization to hypoxia.  相似文献   

8.
We have compared the ventilatory responses of intact and carotid body-denervated (CBD) goats to moderate [partial pressure of O2 in arterial blood; (Pao2) approximately 44 Torr] and severe (Pao2 approximately 33 Torr) many time points for up to 7 days of hypobaria. In the intact group there were significant time-dependent decreases in partial pressure of CO2 in arterial blood (PaCO2) in both moderate and severe hypoxemia (approximately-7 and -11 Torr) that were largely complete by 8 h of hypoxemia and maintained throughout. Acute restoration of normoxia in chronically hypoxic intact animals produced time-dependent increases in Paco2 over 2 h, but hypocapnia persisted relative to sea-level control. Arterial plasma [HCO3-] and [H+] decreased, and [Cl-] increased with a time course and magnitude consistent with developing hypocapnia. Chronic CBD, per se, resulted in a sustained, partially compensated respiratory acidosis, as PaCO2 rose 6 Torr and base excess rose 3 mEq/1, [Cl-] fell 1 mEq/1, and pHa fell 0.01 units. During exposure to identical levels of arterial hypoxemia as in the intact group. CBD animals showed no significant changes in PaCO2, [H+]a, or [HCO3-]a at any time during moderate or severe hypoxemia. Plasma [C1-] remained within the normal range throughout exposure to moderate hypoxia and increased in severe hypoxia. In a few instances some hypocapnia was observed, but this was highly inconsistent and was always less than one-third of that observed in intact goats. In contrast to intact goats, acute restorations of normoxia in the chronically hypoxic CBD goats always caused hyperventilation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
To study the changes in ventilation induced by inspiratory flow-resistive (IFR) loads, we applied moderate and severe IFR loads in chronically instrumented and awake sheep. We measured inspired minute ventilation (VI), ventilatory pattern [inspiratory time (TI), expiratory time (TE), respiratory cycle time (TT), tidal volume (VT), mean inspiratory flow (VT/TI), and respiratory duty cycle (TI/TT)], transdiaphragmatic pressure (Pdi), functional residual capacity (FRC), blood gas tensions, and recorded diaphragmatic electromyogram. With both moderate and severe loads, Pdi, TI, and TI/TT increased, TE, TT, VT, VT/TI, and VI decreased, and hypercapnia ensued. FRC did not change significantly with moderate loads but decreased by 30-40% with severe loads. With severe loads, arterial PCO2 (PaCO2) stabilized at approximately 60 Torr within 10-15 min and rose further to levels exceeding 80 Torr when Pdi dropped. This was associated with a lengthening in TE and a decrease in breathing frequency, VI, and TI/TT. We conclude that 1) timing and volume responses to IFR loads are not sufficient to prevent alveolar hypoventilation, 2) with severe loads the considerable increase in Pdi, TI/TT, and PaCO2 may reduce respiratory muscle endurance, and 3) the changes in ventilation associated with neuromuscular fatigue occur after the drop in Pdi. We believe that these ventilatory changes are dictated by the mechanical capability of the respiratory muscles or induced by a decrease in central neural output to these muscles or both.  相似文献   

10.
Arterial CO2 partial pressure affects diaphragmatic function   总被引:3,自引:0,他引:3  
The purpose of this study was to examine in an in vivo preparation acute variations of PCO2 on diaphragmatic contractility. Plaster casts were snugly fit around the abdomen of six open-chested dogs, moving the abdominal contents rostrally. Diaphragmatic contractions against this very fixed load in response to phrenic nerve stimulation (supramaximal voltage at 1, 20, 50, and 80 Hz) or during spontaneous inspiratory efforts were virtually isometric (quasi-isometric). Transdiaphragmatic pressure (Pdi) measured by an abdominal balloon was used as an index of diaphragmatic contractility. Arterial PCO2 (PaCO2) was reduced by hyperventilation and raised by increasing PICO2. Pdi values in response to stimulation at 1, 20, 50, and 80 Hz in ranges I (PaCO2 = 0-19 Torr) and II (PaCO2 = 20-34 Torr) did not differ statistically from the control Pdi values (range III; PaCO2 = 35-45 Torr). In range IV (PaCO2 = 46-70 Torr) Pdi values for stimulations of 20, 50, and 80 Hz were significantly lower than control. In range V (PaCO2 = 71-90 Torr), VI (PaCO2 = 91-101 Torr), and VII (PaCO2 greater than or equal to 102 Torr) Pdi values were significantly less than those in range IV at all frequencies of stimulation. In the four dogs measured during spontaneous inspiratory efforts the integrated diaphragmatic electromyogram (Edi) was correlated with the Pdi. As PaCO2 rose (range III to VII), the Pdi values observed at 25, 50, 75, 100% of the maximum Edi (of range III) were significantly lower than the Pdi value of range III.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We designed experiments to evaluate changes in ventral medullary (VM) extracellular fluid (ECF) PCO2 and pH during hypoxemia-induced ventilatory depression (VD). Our aim was to investigate effects of aminophylline on VD and VM ECF acid-base variables. We used aminophylline because it inhibits adenosine, which is released within the brain during hypoxemia and could mediate VD. Experiments were performed in seven cats with acute bilateral denervation of carotid sinus nerves and vagi. Cats were anesthetized with chloralose-urethan and breathed spontaneously at a regulated and elevated arterial PCO2 (PaCO2). Measurements were made during normoxemia, hypoxemia, and recovery before (phase I) and after (phase II) aminophylline. By use of strict criteria for definition of VD, during phase II two kinds of responses were observed. Aminophylline prevented VD in five cats. In these cats in phase I, with mean arterial PO2 (PaO2) = 105 and PaCO2 = 42.2 Torr, VM ECF PCO2, [H+], and [HCO3-] were 59.5 +/- 8.6 Torr (mean +/- SD), 60.2 +/- 9.4 neq/l, and 23.1 +/- 3.7 meq/l, respectively. When mean PaO2 dropped to 49 Torr, ventilation decreased 21%, with only small changes in VM ECF acid-base variables. Studies were repeated 30 min after aminophylline (17 mg/kg iv). In phase II, during normoxemia (PaO2 = 110 Torr) VM ECF Pco2, [H+], and [HCO3-] were 55.4 +/- 8.1 Torr, 62.0 +/- 8.0 neq/l and 20.7 +/- 2.5 meq/l, respectively. During hypoxemia (PaO2 = 48 +/- 4 Torr) mean ventilation, VM ECF PCO2, [H+], and [HCO3-] did not change significantly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Mechanisms of ventilatory acclimatization to chronic hypoxia remain unclear. To determine whether the sensitivity of peripheral chemoreceptors to hypoxia increases during acclimatization, we measured ventilatory and carotid sinus nerve responses to isocapnic hypoxia in seven cats exposed to simulated altitude of 15,000 ft (barometric pressure = 440 Torr) for 48 h. A control group (n = 7) was selected for hypoxic ventilatory responses matched to the preacclimatized measurements of the experimental group. Exposure to 48 h of hypobaric hypoxia produced acclimatization manifested as decrease in end-tidal PCO2 (PETCO2) in normoxia (34.5 +/- 0.9 Torr before, 28.9 +/- 1.2 after the exposure) as well as in hypoxia (28.1 +/- 1.9 Torr before, 21.8 +/- 1.9 after). Acclimatization produced an increase in hypoxic ventilatory response, measured as the shape parameter A (24.9 +/- 2.6 before, 35.2 +/- 5.6 after; P less than 0.05), whereas values in controls remained unchanged (25.7 +/- 3.2 and 23.1 +/- 2.7; NS). Hypoxic exposure was associated with an increase in the carotid body response to hypoxia, similarly measured as the shape parameter A (24.2 +/- 4.7 in control, 44.5 +/- 8.2 in acclimatized cats). We also found an increased dependency of ventilation on carotid body function (PETCO2 increased after unilateral section of carotid sinus nerve in acclimatized but not in control animals). These results suggest that acclimatization is associated with increased hypoxic ventilatory response accompanied by enhanced peripheral chemoreceptor responsiveness, which may contribute to the attendant rise in ventilation.  相似文献   

13.
In five normal male subjects, ventilation, PaO2, and PaCO2 were measured during the rapid progressive isocapnic production of hypoxia (5 min) and during the equally rapid isocapnic reversal of hypoxia. At similar PaO2, PaCO2, and pH, ventilation was less at a time when alveolar PO2 was increasing than when alveolar PO2 was decreasing. We interpret these results as showing that human ventilation is depressed by mild-to-moderate hypoxia (40-60 Torr), that such depression is probably central, and that it is ordinarily masked by peripheral chemoreceptor stimulation. We are not able to distinguish whether the ventilatory depression is caused by decreased central chemoreceptor PCO2 due to an increase in cerebral flow, direct hypoxic depressing of the central respiratory mechanism, or both.  相似文献   

14.
It has often been assumed that under normoxia, closed-loop ventilatory responses to transient CO2 stimulation (i.e., lasting for 1-3 breaths) are less likely to be mediated by the slow-responding central (medullary) chemoreflex. This assumption, however, has not been quantitatively examined in humans. We hypothesized that in the closed-loop respiratory chemical feedback system [in which the centrally mediated ventilatory response to transient changes in the arterial PCO2 levels (PaCO2) will in turn affect the pulmonary CO2 and hence PaCO2], the contribution of the central chemoreflex pathways to brief disturbances in blood gases may be more important than considered previously. Using the technique of pseudorandom binary CO2 stimulation, we quantified the ventilatory response of normal humans to brief disturbances in arterial CO2 during hyperoxia. Tidal volume (VI), inspiratory ventilation (VI), inspiratory time (TI), expiratory time (TE), and end-tidal CO2 fraction (FETCO2) were measured in subjects who inhaled a mixture that was pseudorandomly switched between 95% O2-5% CO2 and 100% O2 (63 breath sequences). From these data, we calculated the responses of VI, VI, TI, TE, and FETCO2 to a single-breath inhalation of 1% CO2 in O2. Our results showed that in response to a brief increase of 0.75 Torr in alveolar CO2, VI showed a transient increase (average peak response of 0.12 1/min) that persisted for greater than or equal to 80 s in every subject. The response of VI was similar to that of VI, whereas TI and TE showed no consistent changes. Using these results we calculated that central chemoreflex pathways may contribute significantly to typical transient CO2 stimulation tests in hyperoxic and normoxic humans.  相似文献   

15.
We investigated the effects of selective large changes in the acid-base environment of medullary chemoreceptors on the control of exercise hyperpnea in unanesthetized goats. Four intact and two carotid body-denervated goats underwent cisternal perfusion with mock cerebrospinal fluid (CSF) of markedly varying [HCO-3] (CSF [H+] = 21-95 neq/l; pH 7.68-7.02) until a new steady state of alveolar hypo- or hyperventilation was reached [arterial PCO2 (PaCO2) = 31-54 Torr]. Perfusion continued as the goats completed two levels of steady-state treadmill walking [2 to 4-fold increase in CO2 production (VCO2)]. With normal acid-base status in CSF, goats usually hyperventilated slightly from rest through exercise (-3 Torr PaCO2, rest to VCO2 = 1.1 l/min). Changing CSF perfusate [H+] changed the level of resting PaCO2 (+6 and -4 Torr), but with few exceptions, the regulation of PaCO2 during exercise (delta PaCO2/delta VCO2) remained similar regardless of the new ventilatory steady state imposed by changing CSF [H+]. Thus the gain (slope) of the ventilatory response to exercise (ratio of change in alveolar ventilation to change in VCO2) must have increased approximately 15% with decreased resting PaCO2 (acidic CSF) and decreased approximately 9% with increased resting PaCO2 (alkaline CSF). A similar effect of CSF [H+] on resting PaCO2 and on delta PaCO2/VCO2 during exercise also occurred in two carotid body-denervated goats. Our results show that alteration of the gain of the ventilatory response to exercise occurs on acute alterations in resting PaCO2 set point (via changing CSF [H+]) and that the primary stimuli to exercise hyperpnea can operate independently of central or peripheral chemoreception.  相似文献   

16.
Recovery of the ventilatory response to hypoxia in normal adults   总被引:10,自引:0,他引:10  
Recovery of the initial ventilatory response to hypoxia was examined after the ventilatory response had declined during sustained hypoxia. Normal young adults were exposed to two consecutive 25-min periods of sustained isocapnic hypoxia (80% O2 saturation in arterial blood), separated by varying interludes of room air breathing or an increased inspired O2 fraction (FIO2). The decline in the hypoxic ventilatory response during the 1st 25 min of hypoxia was not restored after a 7-min interlude of room air breathing; inspired ventilation (VI) at the end of the first hypoxic period was not different from VI at the beginning and end of the second hypoxic period. After a 15-min interlude of room air breathing, the hypoxic ventilatory response had begun to recover. With a 60-min interlude of room air breathing, recovery was complete; VI during the second hypoxic exposure matched VI during the first hypoxic period. Ventilatory recovery was accelerated by breathing supplemental O2. With a 15-min interlude of 0.3 FIO2 or 7 min of 1.0 FIO2, VI of the first and second hypoxic periods were equivalent. Both the decline and recovery of the hypoxic ventilatory response were related to alterations in tidal volume and mean inspiratory flow (VT/TI), with little alteration in respiratory timing. We conclude that the mechanism of the decline in the ventilatory response with sustained hypoxia may require up to 1 h for complete reversal and that the restoration is O2 sensitive.  相似文献   

17.
After voluntary hyperventilation, normal humans do not develop a significant ventilatory depression despite low arterial CO2 tension, a phenomenon attributed to activation of a brain stem mechanism referred to as the "afterdischarge." Afterdischarge is one of the factors that promote ventilatory stability. It is not known whether physiological stimuli, such as hypoxia, are able to activate the afterdischarge in humans. To test this, breath-by-breath ventilation (VI) was measured in nine young adults during and immediately after a brief period (35-51 s) of acute hypoxia (end-tidal O2 tension 55 Torr). Hypoxia was terminated by switching to 100% O2 (end-tidal O2 tension of first posthypoxic breath greater than 100 Torr). Brief hypoxia increased VI and decreased end-tidal CO2 tension. In all subjects, termination of hypoxia was followed by a gradual ventilatory decay; hyperoxic VI remained higher than the normoxic baseline for several breaths and, despite the negative chemical stimulus of hyperoxia and hypocapnia, reached a new steady state without an apparent undershoot. We conclude that brief hypoxia is able to activate the afterdischarge mechanism in conscious humans. This contrasts sharply with the ventilatory undershoot that follows relief of sustained hypoxia, thereby suggesting that sustained hypoxia inactivates the afterdischarge mechanism. The present findings are of relevance to the pathogenesis of periodic breathing in a hypoxic environment. Furthermore, brief exposure to hypoxia might be useful for evaluation of the role of afterdischarge in other disorders associated with unstable breathing.  相似文献   

18.
Diaphragmatic electromyogram (EMG) was obtained in eight 48-h-old unanesthetized monkeys while breathing air and then either of two different hypoxic gas mixtures (12 or 8% O2 in N2) for 5 min. Minute ventilation (VI) rose significantly above control levels by 1 min of hypoxemia while animals were breathing either of the hypoxic gas mixtures as tidal volume (VT) and slope and rate moving average EMG increased. The relative gains in VI were associated with comparable increases in diaphragmatic neural activity per minute (EMG/min = peak EMG X frequency) during this early phase of hypoxemia. VI subsequently fell to control levels (inspired O2 fraction = 12%, arterial PO2 = 23 +/- 3 Torr) or significantly below (inspired O2 fraction = 8%, arterial PO2 = 18 +/- 0.4 Torr) by 5 min of hypoxemia, secondary to changes in VT. Despite the decline in VI, slope and rate moving average EMG, and EMG/min remained statistically above control values by 5 min of hypoxemia, although there was a trend for EMG/min to decrease slightly from the 1-min peak response. These findings demonstrate that hypoxic-induced depression of neural input to the diaphragm is not independently responsible for the biphasic nature of the newborn ventilatory response, although it cannot be ruled out as a contributor. The fall in inspiratory volumes despite constant elevated EMG activity suggests the presence of a change in respiratory mechanics and/or an impairment in diaphragmatic contractile function without offsetting neural compensatory activity.  相似文献   

19.
Cyclooxygenase inhibitors have been reported to accentuate pulmonary hypertension and to improve gas exchange in oleic acid (OA) lung injury (Leeman et al. J. Appl. Physiol. 65: 662-668, 1988), suggesting inhibition of hypoxic pulmonary vasoconstriction by a vasodilating prostaglandin. To test this hypothesis, the hypoxic pulmonary vasoreactivity was examined at constant flow (Q; with an arteriovenous femoral bypass or a balloon catheter placed in the inferior vena cava) before and after OA in three groups of anesthetized and ventilated [inspired O2 fraction (FIO2) 0.4] dogs. Intrapulmonary shunt was measured using a SF6 infusion. A time control group (n = 7) had two consecutive hypoxic challenges after OA and received no drug. A treatment group (n = 6) received indomethacin (2 mg/kg iv) before the second hypoxic challenge after OA. A pretreatment group received indomethacin (2 mg/kg iv, n = 7) or aspirin (30 mg/kg iv, n = 6) before OA. In control and treated dogs, the hypoxic pulmonary vasopressor response was attenuated after OA. It was restored after indomethacin but also during the second hypoxic stimulus in the control dogs. After OA, gas exchange at FIO2 0.4 improved with indomethacin but not in controls. In pretreated dogs the hypoxic vasopressor response to hypoxia was preserved after OA, and gas exchange at FIO2 0.4 was less deteriorated compared with nonpretreated dogs (arterial O2 pressure 139 +/- 7 vs. 76 +/- 6 Torr, P less than 0.01, and intrapulmonary shunt 14 +/- 2 vs. 41 +/- 5%, P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We utilized selective carotid body (CB) perfusion while changing inspired O2 fraction in arterial isocapnia to characterize the non-CB chemoreceptor ventilatory response to changes in arterial PO2 (PaO2) in awake goats and to define the effect of varying levels of CB PO2 on this response. Systemic hyperoxia (PaO2 greater than 400 Torr) significantly increased inspired ventilation (VI) and tidal volume (VT) in goats during CB normoxia, and systemic hypoxia (PaO2 = 29 Torr) significantly increased VI and respiratory frequency in these goats. CB hypoxia (CB PO2 = 34 Torr) in systemic normoxia significantly increased VI, VT, and VT/TI; the ventilatory effects of CB hypoxia were not significantly altered by varying systemic PaO2. We conclude that ventilation is stimulated by systemic hypoxia and hyperoxia in CB normoxia and that this ventilatory response to changes in systemic O2 affects the CB O2 response in an additive manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号