首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have compared orthologous proteins from an aerobic organism, Cytophaga hutchinsonii, and from an obligate anaerobe, Bacteroides thetaiotaomicron. This comparison allows us to define the oxyphobic ranks of amino acids, i.e. a scale of the relative sensitivity to oxygen of the amino acid residues. The oxyphobic index (OI), which can be simply obtained from the amino acids' oxyphobic ranks, can be associated to any protein and therefore to the genetic code, if the number of synonymous codons attributed to the amino acids in the code is assumed to be the frequency with which the amino acids appeared in ancestral proteins. Sampling of the OI variable from the proteins of obligate anaerobes and aerobes has established that the OI value of the genetic code is not significantly different from the mean OI value of anaerobe proteins, while it is different from that of aerobe proteins. This observation would seem to suggest that the terminal phases of the evolution of genetic code organization took place in an anaerobic environment. This result is discussed in the framework of hypotheses suggested to explain the timing of the evolutionary appearance of the aerobic metabolism.  相似文献   

2.
I have observed that in multiple regression the number of codons specifying amino acids in the genetic code is positively correlated with the isoelectric point of amino acids and their molecular weight. Therefore basic amino acids are, on average, codified in the genetic code by a larger number of codons, which seems to imply that the genetic code originated in an acidic 'intracellular' environment. Moreover, I compare the proteins from Picrophilus torridus and Thermoplasma volcanium, which have different intracellular pH and I define the ranks of acidophily for the amino acids. A simple index of acidophily (AI), which can be easily obtained from acidophily ranks, can be associated to any protein and, therefore, can also be associated to the genetic code if the number of synonymous codons attributed to the amino acids in the code is assumed to be the frequency with which the amino acids appeared in ancestral proteins. Finally, the sampling of the variable AI among organisms having an intracellular pH less than or equal to 6.6 and those having a non-acidic intracellular pH leads to the conclusion that the value of the genetic code's AI is not typical of proteins of the latter organisms. As the genetic code's AI value is also statistically not different from that of proteins of the organisms having an acidic intracellular pH, this supports the hypothesis that the structuring of the genetic code took place in acidic pH conditions.  相似文献   

3.
A Boolean structure of the genetic code where Boolean deductions have biological and physicochemical meanings was discussed in a previous paper. Now, from these Boolean deductions we propose to define the value of amino acid information in order to consider the genetic information system as a communication system and to introduce the semantic content of information ignored by the conventional information theory. In this proposal, the value of amino acid information is proportional to the molecular weight of amino acids with a proportional constant of about 1.96×1025 bits per kg. In addition to this, for the experimental estimations of the minimum energy dissipation in genetic logic operations, we present two postulates: (1) the energy E i (i = 1, 2, ..., 20) of amino acids in the messages conveyed by proteins is proportional to the value of information, and (2) amino acids are distributed according to their energy E i so the amino acid population in proteins follows a Boltzmann distribution. Specifically, in the genetic message carried by the DNA from the genomes of living organisms, we found that the minimum energy dissipation in genetic logic operations was close to kTLn(2) joules per bit.  相似文献   

4.
A new approach to the origin of the genetic code is proposed based on some regularities in the nucleotide distribution pattern of the code. The relative amounts of various amino acids in primitive proteins were possibly different from those in organisms living today. The primordial ratio was supposed to shift to the modern one guided by the action of primitive nucleotides. Each primitive tRNA had a discriminator site and, distinguished from it, an anticodon site. It is also postulated that primordially each amino acid could correspond to a wide variety of codons. During the course of the evolutionary change, a selective mechanism worked among the protobionts so that less frequent nucleotides became associated with more abundant amino acids in the primordial conditions, thus finally leading to the present codon catalogue.Presented at The International Seminar: The Origin of Life held in Moscow, August 2–7, 1974.  相似文献   

5.
This study investigated the degradation of proteins and amino acids by Caloramator proteoclasticus, an anaerobic thermophilic (55 °C) fermentative bacterium isolated from an anaerobic bioreactor. Experiments were performed in the presence and absence of Methanobacterium thermoformicicum Z245, a methanogen that can use both hydrogen and formate for growth. Higher production rates and yields of the principal fermentation products from gelatin were observed in methanogenic coculture. The specific proteolytic activity in coculture tripled the value obtained in pure culture. C. proteoclasticus fermented glutamate to acetate, formate, hydrogen and alanine. In methanogenic coculture, a shift towards higher amounts of acetate and hydrogen with no alanine production was observed. Extracts of glutamate-grown cells possessed high activities of β-methylaspartase, a key enzyme of the mesaconate pathway leading to acetate. The presence of two enzymes (alanine-α-ketoglutarate aminotransferase and NADH-dependent alanine dehydrogenase) usually involved in the biosynthesis of alanine from pyruvate was also detected. The fermentation of amino acids known to be oxidatively deaminated (leucine and valine) was improved in the presence of both methanogenesis and glycine, a known electron acceptor in the Stickland reaction. Culture conditions seem to be very important in the way C. proteoclasticus disposes of reducing equivalents formed during the degradation of amino acids. Received: 29 March 1999 / Received revision: 2 July 1999 / Accepted: 1 August 1999  相似文献   

6.
Di Giulio M 《Gene》2000,261(1):189-195
The correlation between the optimal growth temperature of organisms and a thermophily index based on the propensity of amino acids to enter more frequently into (hyper)thermophile proteins is used to conduct an analysis aiming to establish whether genetic code structuring took place at a low or a high temperature. If the number of codons attributed to the various amino acids in the genetic code constitutes an estimate of the mean amino acid composition of proteins produced when the genetic code was definitively structured, then the thermophily index can also be associated to the genetic code. This value and the sampling of the variable thermophily index of different alignments of protein sequences from mesophile, thermophile and hyperthermophile species make it possible to establish, with an extremely high statistical confidence, that the late stage of genetic code structuring took place in a hyperthermophile (or thermophile) 'organism'. Moreover the 95% confidence interval of the temperature at which the genetic code was fixed turned out to be 91+/-24 degrees C. These observations seem to support the hypothesis that the origin of life might have taken place at a high temperature.  相似文献   

7.
Site-specific incorporation of distinct non-canonical amino acids into proteins via genetic code expansion requires mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs. Pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs are ideal for genetic code expansion and have been extensively engineered for developing mutually orthogonal pairs. Here, we identify two novel wild-type PylRS/tRNAPyl pairs simultaneously present in the deep-rooted extremely halophilic euryarchaeal methanogen Candidatus Methanohalarchaeum thermophilum HMET1, and show that both pairs are functional in the model halophilic archaeon Haloferax volcanii. These pairs consist of two different PylRS enzymes and two distinct tRNAs with dissimilar discriminator bases. Surprisingly, these two PylRS/tRNAPyl pairs display mutual orthogonality enabled by two unique features, the A73 discriminator base of tRNAPyl2 and a shorter motif 2 loop in PylRS2. In vivo translation experiments show that tRNAPyl2 charging by PylRS2 is defined by the enzyme''s shortened motif 2 loop. Finally, we demonstrate that the two HMET1 PylRS/tRNAPyl pairs can simultaneously decode UAG and UAA codons for incorporation of two distinct noncanonical amino acids into protein. This example of a single base change in a tRNA leading to additional coding capacity suggests that the growth of the genetic code is not yet limited by the number of identity elements fitting into the tRNA structure.  相似文献   

8.
Genetic code expansion in multicellular organisms is currently limited to the use of repurposed amber stop codons. Here, we introduce a system for the use of quadruplet codons to direct incorporation of non-canonical amino acids in vivo in an animal, the nematode worm Caenorhabditis elegans. We develop hybrid pyrrolysyl tRNA variants to incorporate non-canonical amino acids in response to the quadruplet codon UAGA. We demonstrate the efficiency of the quadruplet decoding system by incorporating photocaged amino acids into two proteins widely used as genetic tools. We use photocaged lysine to express photocaged Cre recombinase for the optical control of gene expression and photocaged cysteine to express photo-activatable caspase for light inducible cell ablation. Our approach will facilitate the routine adoption of quadruplet decoding for genetic code expansion in eukaryotic cells and multicellular organisms.  相似文献   

9.
With few exceptions, natural proteins are built from only 20 canonical (proteogenic) amino acids which limits the functionality and accordingly the properties they can possess. Genetic code expansion, i.e. the creation of codons and the machinery needed to assign them to non-canonical amino acids (ncAAs), promises to enable the discovery of proteins with novel properties that are otherwise difficult or impossible to obtain. One approach to expanding the genetic code is to expand the genetic alphabet via the development of unnatural nucleotides that pair to form an unnatural base pair (UBP). Semi-synthetic organisms (SSOs), i.e. organisms that stably maintain the UBP, transcribe its component nucleotides into RNA, and use it to translate proteins, would have available to them new codons and the anticodons needed to assign them to ncAAs. This review summarizes the development of a family of UBPs, their use to create SSOs, and the optimization and application of the SSOs to produce candidate therapeutic proteins with improved properties that are now undergoing evaluation in clinical trials.  相似文献   

10.
Thaw what is frozen: it is generally accepted that the initial genetic code evolved from an ambiguous to a well‐defined (”frozen“) code with the repertoire of 20 (+2) canonical amino acids. If code is perfectly optimized by evolution, is it then possible to change it experimentally? If so, what are the barriers to overcome? Kubyshkin and Budisa have tried to answer this question by building a model that predicts ”entry points“ for invading the code with noncanonic amino acids. These experiments should lead to a chemical alienation of cells which represent an important step towards the creation of artificial life. The cover is prepared by Vladimir Kubyshkin and Nediljko Budisa authors of the article ”Synthetic alienation of microbial organisms by using genetic code engineering: Why and how?” ( https://doi.org/10.1002/biot.201600097 ).  相似文献   

11.
Two forces are generally hypothesised as being responsible for conditioning the origin of the organization of the genetic code: the physicochemical properties of amino acids and their biosynthetic relationships (relationships between precursor and product amino acids). If we assume that the biosynthetic relationships between amino acids were fundamental in defining the genetic code, then it is reasonable to expect that the distribution of physicochemical properties among the amino acids in precursor-product relationships cannot be random but must, rather, be affected by some selective constraints imposed by the structure of primitive proteins. Analysis shows that measurements representing the size of amino acids, e.g. bulkiness, are specifically associated to the pairs of amino acids in precursor-product relationships. However, the size of amino acids cannot have been selected per se but, rather, because it reflects the-sheets of proteins which are, therefore, identified as the main adaptive theme promoting the origin of genetic code organization. Whereas there are no traces of the-helix in the genetic code table.The above considerations make it necessary to re-examine the relationship linking the hydrophilicity of the dinucleoside monophosphates of anticodons and the polarity and bulkiness of amino acids. It can be concluded that this relationship seems to be meaningful only between the hydrophilicity of anticodons and the polarity of amino acids. The latter relationship is supposed to have been operative on hairpin structures, ancestors of the tRNA molecule. Moreover, it is on these very structures that the biosynthetic links between precursor and product amino acids might have been achieved, and the interaction between the hydrophilicity of anticodons and the polarity of amino acids might have had a role in the concession of codons (anticodons) from precursors to products.  相似文献   

12.
An anaerobic methylotrophic methanogenic enrichment culture, with sustained metabolic characteristics, including that of methanation for over a decade, was the choice of the present study on interspecies interactions. Growth and methanation by the enrichment were suppressed in the presence of antibiotics, and no methanogen grown on methanol could be isolated using stringent techniques. The present study confirmed syntrophic metabolic interactions in this enrichment with the isolation of a strain ofPseudomonas sp. The organism had characteristic metabolic versatility in metabolizing a variety of substrates including alcohols, aliphatic acids, amino acids, and sugars. Anaerobic growth was favoured with nitrate in the growth medium. Cells grown anaerobically with methanol, revealed maximal nitrate reductase activity. Constitutive oxidative activity of the membrane system emerged from the high-specific oxygen uptake and nitrate reductase activities of the aerobically and anerobically grown cells respectively. Cells grown anaerobically on various alcohols effectively oxidized methanol in the presence of flavins, cofactor FAD and the methanogenic cofactor F420, suggesting a constitutive alcohol oxidizing capacity. In cells grown anaerobically on methanol, the rate of methanol oxidation with F420 was three times that of FAD. Efficient utilization of alcohols in the presence of F420 is a novel feature of the present study. The results suggest that utilization of methanol by the mixed culture would involve metabolic interactions between thePseudomonas sp. and the methanogen(s). Methylotrophic, methanogenic partnership involving an aerobe is a novel feature hitherto unreported among anaerobic syntrophic associations and is of ecological significance.  相似文献   

13.
We have investigated the origin of genes, the genetic code, proteins and life using six indices (hydropathy, α-helix, β-sheet and β-turn formabilities, acidic amino acid content and basic amino acid content) necessary for appropriate three-dimensional structure formation of globular proteins. From the analysis of microbial genes, we have concluded that newly-born genes are products of nonstop frames (NSF) on antisense strands of microbial GC-rich genes [GC-NSF(a)] and from SNS repeating sequences [(SNS)n] similar to the GC-NSF(a) (S and N mean G or C and either of four bases, respectively). We have also proposed that the universal genetic code used by most organisms on the earth presently could be derived from a GNC-SNS primitive genetic code. We have further presented the [GADV]-protein world hypothesis of the origin of life as well as a hypothesis of protein production, suggesting that proteins were originally produced by random peptide formation of amino acids restricted in specific amino acid compositions termed as GNC-, SNS and GC-NSF(a)-0th order structures of proteins. The [GADV]-protein world hypothesis is primarily derived from the GNC-primitive genetic code hypothesis. It is also expected that basic properties of extant genes and proteins could be revealed by considerations based on the scenario with four stages This review is a modified English version of the paper, which was written in Japanese and published inViva Origino 2001 29 66–85.  相似文献   

14.
For most proteins, multiple sequence alignments are a viable method to identify functionally and structurally important amino acids, but for most organisms, there is a subset of proteins that are unique or found in a few closely related organisms. For these proteins, it is not possible to produce sequence alignments that are useful in identifying functionally or structurally important amino acids. We have investigated the relationship between amino acid conservation and five factors (the amino acid’s identity, N-terminal neighbor, C-terminal neighbor, the local hydropathy of surrounding amino acids, and the local expected net charge of the surrounding amino acids based on the primary sequence) in Escherichia coli proteins. For four of the factors examined (all but the amino acid’s identity), there is a significant relationship with conservation for some of the standard 20 amino acids. Using the combination of all five factors, we show that it is possible to calculate a score based on the primary sequences of a subset of E. coli proteins that has statistically significant predictive value with respect to predicting conserved amino acids in other E. coli proteins and Saccharomyces cerevisiae proteins. As these five variables show significant relationships with conservation, we have termed them conservation factors. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Grassland management influences soil archaeal communities, which appear to be dominated by nonthermophilic crenarchaeotes. To determine whether methanogenic Archaea associated with the Euryarchaeota lineage are also present in grassland soils, anaerobic microcosms containing both managed (improved) and natural (unimproved) grassland rhizosphere soils were incubated for 28 days to encourage the growth of anaerobic Archaea. The contribution of potential methanogenic organisms to the archaeal community was assessed by the molecular analysis of RNA extracted from soil, using primers targeting all Archaea and Euryarchaeota. Archaeal RT‐PCR products were obtained from all anaerobic microcosms. However, euryarchaeal RT‐PCR products (of putative methanogen origin) were obtained only from anaerobic microcosms of improved soil, their presence coinciding with detectable methane production. Sequence analysis of excised denaturing gradient gel electrophoresis (DGGE) bands revealed the presence of euryarchaeal organisms that could not be detected before anaerobic enrichment. These data indicate that nonmethanogenic Crenarchaeota dominate archaeal communities in grassland soil and suggest that management practices encourage euryarchaeal methanogenic activity.  相似文献   

16.
The entropy of the amino acid sequences coded by DNA is considered as a measure of diversity or variety of proteins, and is taken as a measure of evolution. The DNA or m-RNA sequence is corsidered as a stationary second-order Markov chain composed of four kinds of bases. Because of the biased nature of the genetic code table, increase of entropy of amino acid sequences is possible with biased nucleotide sequence. Thus the biased DNA base composition and the extreme rarity of the base doubletC p G of higher organisms are explained. It is expected that the amino acid composition was highly biased at the days of the origin of the genetic code table, and the more frequent amino acids have tended to get rarer, and the rarer ones more frequent. This tendency is observed in the evolution of hemoglobin, cytochrome C, fibrinopeptide, immunoglobulin and lysozyme, and protein as a whole.  相似文献   

17.
18.
A new approach to the origin of the genetic code is proposed based on some regularities in the nucleotide distribution pattern of the code. The relative amounts of various amino acids in primitive proteins were possibly different from those in organisms living today. The primordial ratio was supposed to shift to the modern one guided by the action of primitive nucleotides. Each primitive tRNA had a discriminator site and, distinguished from it, an anticodon site. It also postulated that primordially each amino acid could correspond to a wide variety of codons. During the course of the evolutionary change, a selective mechanism worked among the protobionts so that less frequent nucleotides became associated with more abundant amino acids in the primordial conditions,thus finally leading to the present codon catalogue.  相似文献   

19.
The frequency of amino acid replacements in families of typical proteins has been elegantly analyzed by Argyle (1980) showing that the most frequent replacements involve a conservation of the amino acid chemical properties. The cyclic arrangement of the twenty amino acids resulting from the most frequent replacements has been described as an amino acid chemical ring.In this work, a novel amino acid replacement frequency ring is proposed, for which a conservation of over 90% of the most general physico-chemical properties can be deduced.The amino acid chemical similarity ring is also analyzed in terms of the genetic code base probability changes, showing that the discrepancy that exists between the standard deviation value of the amino acid replacement frequency matrix and its respective ideal value is almost equal to that deduced from the corresponding base codon replacement probability matrices. These differences are finally evaluated and discussed in terms of the restrictions imposed by the structure of the genetic code and the physico-chemical dissimilarities between some codons of amino acids which are chemically similar.This work was partially supported by OEA and Departamento de Desarrollo de la Investigación.  相似文献   

20.
Data on the amino acid composition of proteins having various functions from organisms representing different evolutionary levels (83 superfamilies) are used in order to elucidate the trends in protein molecular evolution. The interconnections evolutionary rate (rate of mutation acceptance) — amino acid composition, and evolutionary level of the organism — amino acid composition (in case of proteins of the same or very similar function) are studied. The amino acid compositions of proteins performing jointly an evolutionarily old functions are also juxtaposed. The mean contemporary protein composition is used as a basis for comparison. The obtained results are evidence in favour of the existence of a trend for an increase of the special amino acids (Met, Ile, Gln, His, Lys, Asn, Phe, Tyr, Trp, Cys) at the expense of the usual ones (Thr, Pro, Ala, Ser, Arg, Gly, Leu, Val, Glu, Asp). The tests of statistical significance of the obtained results (comparison of the mean compositions of proteins from low evolutionary level organisms with that of all sequenced proteins; comparison of the mean contemporary protein composition with that obtained after simulation of the evolutionary process) confirm and universalize the observed trend. The above results direct the attention to the concept of a smaller number of amino acids in the ancient proteins and respectively simpler genetic code. A fluctuation around the initial primitive level is suggested to explain the conservatism of proteins of the same function in evolutionarily low level organisms. The observed trend could be applied for designing new proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号