共查询到20条相似文献,搜索用时 8 毫秒
1.
Influence of cholesterol on bilayers of ester- and ether-linked phospholipids. Permeability and 13C-nuclear magnetic resonance measurements 总被引:1,自引:0,他引:1
13C-NMR and permeability studies are described for sonicated vesicles of phosphatidylcholines bearing two 16-carbon saturated hydrocarbon chains with (a) one ether linkage at carbon 1 (3) or 2 of glycerol and one ester linkage at carbon 2 or 1 (3) of glycerol; (b) two ether linkages and (c) two ester linkages at carbons 1 (3) and 2 of glycerol. The results of 13C-NMR relaxation enhancement measurements using cholesterol enriched with 13C at the 4 position indicate that no significant relocation of the cholesterol molecules takes place in the bilayer when a methylene group is substituted for a carbonyl group in phosphatidylcholine. The 4-13C atom of cholesterol undergoes similar fast anisotropic motions in diester- and diether -phosphatidylcholine bilayers, as judged by spin-lattice relaxation time measurements in the liquid-crystalline phase; although the fast motions are unaltered, linewidth and spin-spin relaxation time measurements suggested some restriction of the slow motions of cholesterol molecules in bilayers from phosphatidylcholines containing an O-alkyl linkage at the sn-2 position instead of an acyl linkage. At temperatures above the gel to liquid-crystal phase transition, the kinetics of ionophore A23187-mediated 45Ca2+ efflux from vesicles prepared from each type of phosphatidylcholine molecule were the same; the kinetics of spontaneous carboxyfluorescein diffusion from diester- and diether -phosphatidylcholine vesicles were the same, whereas mixed ether/ester phosphatidylcholine molecules gave bilayers which are less permeable. The rate constants were reduced on cholesterol incorporation into the bilayers of each type of phosphatidylcholine molecule. The reductions were not statistically significant for 45Ca2+ release. The rate constants for carboxyfluorescein release were also reduced by cholesterol to the same extent in vesicles from diester-, diether -, and 1-ether, and 1-ether-2-ester-phosphatidylcholines; however, a smaller reduction was noted in bilayers from the 1-ester-2-ether analog. The results provide further evidence that there are no highly specific requirements for ester or ether linkages in phosphatidylcholine for cholesterol to reduce bilayer permeability. This is a reflection of the fact that in both diester- and diether -phosphatidylcholine bilayers, the 4-13C atom of cholesterol is located in the region of the acyl carboxyl group or the glyceryl ether oxygen atom. 相似文献
2.
Robert Bittman Sanda Clejan Sissel Lund-Katz Michael C. Phillips 《生物化学与生物物理学报:生物膜》1984,772(2):117-126
13C-NMR and permeability studies are described for sonicated vesicles of phosphatidylcholines bearing two 16-carbon saturated hydrocarbon chains with (a) one ether linkage at carbon 1 (3) or 2 of glycerol and one ester linkage at carbon 2 or 1 (3) of glycerol; (b) two ether linkages and (c) two ester linkages at carbons 1 (3) and 2 of glycerol. The results of 13C-NMR relaxation enhancement measurements using cholesterol enriched with 13C at the 4 position indicate that no significant relocation of the cholesterol molecules takes place in the bilayer when a methylene group is substituted for a carbonyl group in phosphatidylcholine. The 4-13C atom of cholesterol undergoes similar fast anisotropic motions in diester- and diether-phosphatidylcholine bilayers, as judged by spin-lattice relaxation time measurements in the liquid-crystalline phase; although the fast motions are unaltered, linewidth and spin-spin relaxation time measurements suggested some restriction of the slow motions of cholesterol molecules in bilayers from phosphatidylcholines containing an O-alkyl linkage at the sn-2 position instead of an acyl linkage. At temperatures above the gel to liquid-crystal phase transition, the kinetics of ionophore A23187-mediated 45Ca2+ efflux from vesicles prepared from each type of phosphatidylcholine molecule were the same; the kinetics of spontaneous carboxyfluorescein diffusion from diester- and diether-phosphatidylcholine vesicles were the same, whereas mixed ether/ester phosphatidylcholine molecules gave bilayers which are less permeable. The rate constants were reduced on cholesterol incorporation into the bilayers of each type of phosphatidylcholine molecule. The reductions were not statistically significant for 45Ca2+ release. The rate constants for carboxyfluorescein release were also reduced by cholesterol to the same extent in vesicles from diester-, diether-, and 1-ether-2-ester-phosphatidylcholines; however, a smaller reduction was noted in bilayers from the 1-ester-2-ether analog. These results provide further evidence that there are no highly specific requirements for ester or ether linkages in phosphatidylcholine for cholesterol to reduce bilayer permeability. This is a reflection of the fact that in both diester- and diether-phosphatidylcholine bilayers, the 4-13C atom of cholesterol is located in the region of the acyl carboxyl group or the glyceryl ether oxygen atom. 相似文献
3.
Michael Singer 《Chemistry and physics of lipids》1982,31(2):145-159
Liposomes composed of an equimolar binary mixture of phospholipids were formed from a series of saturated phosphatidylcholines (PC) and phosphatidylethanolamines (PE). Mixtures were chosen such that the two phospholipids differed either in terms of head group alone, chain length alone, or both head group and chain length. Cation effluxes, both with and without ionophores (nigericin and valinomycin) were measured over a range of temperatures that encompassed the regions of phase separation for these different lipid mixtures. There was a good correlation between the temperatures at which permeability maxima and phase separation occur. For phospholipid mixtures with the same acyl chain but different head groups (PC vs. PE), the PC component ‘controls’ permeability. For mixtures of PCs differing in chain length, the short chain lipid dominates the permeability pattern particularly if the chain lengths are sufficiently different. Lipids differing in both head group and chain length give rise to more complex permeability patterns. The results of the present study are interpreted in terms of a model in which one of the lipid components of the mixture may specifically congregate at defects between co-existing phases and thus ‘regulate’ permeability. 相似文献
4.
Coghi P Vaiana N Pezzano MG Rizzi L Kaiser M Brun R Romeo S 《Bioorganic & medicinal chemistry letters》2008,18(16):4658-4660
The synthesis and antileishmanial activity of 18 edelfosine analogues are described. Compounds were obtained in parallel combining solid phase and solution phase synthesis. The most active analogue is characterized by the octadecyl group in position 2 of the glycerol chain. Considering that this substitution determines the loss of antitumor activity, a different mechanism of antileishmanial action can be hypothesized. 相似文献
5.
Structure of supported bilayers composed of lipopolysaccharides and bacterial phospholipids: raft formation and implications for bacterial resistance 下载免费PDF全文
Lipopolysaccharide (LPS), the major lipid on the surface of Gram-negative bacteria, plays a key role in bacterial resistance to hydrophobic antibiotics and antimicrobial peptides. Using atomic force microscopy (AFM) we characterized supported bilayers composed of LPSs from two bacterial chemotypes with different sensitivities to such antibiotics and peptides. Rd LPS, from more sensitive "deep rough" mutants, contains only an inner saccharide core, whereas Ra LPS, from "rough" mutants, contains a longer polysaccharide region. A vesicle fusion technique was used to deposit LPS onto either freshly cleaved mica or polyethylenimine-coated mica substrates. The thickness of the supported bilayers measured with contact-mode AFM was 7 nm for Rd LPS and 9 nm for Ra LPS, consistent with previous x-ray diffraction measurements. In water the Ra LPS bilayer surface was more disordered than Rd LPS bilayers, likely due to the greater volume occupied by the longer Ra LPS polysaccharide region. Since deep rough mutants contain bacterial phospholipid (BPL) as well as LPS on their surfaces, we also investigated the organization of Rd LPS/BPL bilayers. Differential scanning calorimetry and x-ray diffraction indicated that incorporation of BPL reduced the phase transition temperature, enthalpy, and average bilayer thickness of Rd LPS. For Rd LPS/BPL mixtures, AFM showed irregularly shaped regions thinner than Rd LPS bilayers by 2 nm (the difference in thickness between Rd LPS and BPL bilayers), whose area increased with increasing BPL concentration. We argue that the increased permeability of deep rough mutants is due to structural modifications caused by BPL to the LPS membrane, in LPS hydrocarbon chain packing and in the formation of BPL-enriched microdomains. 相似文献
6.
Phosphatidates seem to play an important role in the control of cell proliferation modified by ligands (M. Kaszkin et al. 1991, Cancer Res. 51, 4328-4335). In this study the potency of calcium ionophore A23187 to alter phosphatidate levels in HeLa cells as a model was studied in detail. HeLa cells prelabeled with [14C]arachidonic acid responded to calcium ionophore A23187 with a rapid accumulation of labeled 1,2-diacylglycerophosphate (acyl-PA) and 2-acyl-1-O-alkylglycerophosphate (alkyl-PA) with a first peak at 5 min and a second increase starting at 20-30 min. In cells prelabeled with [14C]oleic acid the ionophore mobilized relatively more of labeled acyl-PA. The total amount of phosphatidates mobilized was in the order of 0.2 micrograms/10(6) cells, i.e. an almost 10(-4)M concentration. The transphosphatidylation of labeled acyl- and alkyl-PA to 1-butanol in all cases showed that activation of phospholipase D had occurred. The reaction became detectable at 10(-6)M ionophore and was fully expressed at 10(-5)M. Butyl phosphatidate generated during 1 h treatment with ionophore amounted to approx. 0.5 nmol per 10(6) cells (i.e. 10(-4)M conc. within cells) as shown by the use of [14C]butanol. The 3-5-fold rise of the overall phosphatidate level is probably sufficient to alter physically cellular membranes, particularly if the new phosphatidate is restricted to certain compartment(s). 相似文献
7.
A comparative study of diffusive and osmotic water permeation across bilayers composed of phospholipids with different head groups and fatty acyl chains. 总被引:7,自引:5,他引:2 下载免费PDF全文
Osmotic and diffusive water permeability coefficients Pf and Pd were measured for lipid vesicles of 100-250 nm diameter composed of a variety of phospholipids with different head groups and fatty acyl chains. Two different methods were applied: the H2O/D2O exchange technique for diffusive water flow, and the osmotic technique for water flux driven by an osmotic gradient. For phosphatidylcholines in the liquid-crystalline state at 70 degrees C, permeability constants Pd between 3.0 and 5.2.10(-4) cm/s and ratios Pf/Pd 7 and 23 were observed. The observation of a permeability maximum in the phase transition region and the fact that osmotically driven water flux is higher than diffusive water exchange suggest that water is diffusing through small transient pores arising from density fluctuations in the bilayers. The Pd values depend on the nature of the head group, on the chemical structure of the chains, and on the type of chain linkage. In the case of charged lipids, the ionic strength of the solution has a strong influence. For phosphatidylethanolamines, phosphatidic acids, and ether phosphatidylcholines, permeability constants Pd were considerably lower (2-4.10(-6) cm/s at 70 degrees C). For liquid-crystalline phosphatidylcholines, a strong reduction of Pd after addition of ethanol was observed (2-4.10(-6) cm/s at 70 degrees C). The experimental values are discussed in connection with different permeation models. 相似文献
8.
As determined by freeze fracture electron microscopy, increasing levels of bovine brain galactosylceramide (GalCer) altered the surface structure of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers by inducing a striking "macro-ripple" phase in the larger, multilamellar lipid vesicles at GalCer mole fractions between 0.4 and 0.8. The term "macro-ripple" phase was used to distinguish it from the P beta' ripple phase observed in saturated, symmetric-chain length phosphatidylcholines. Whereas the P beta' ripple phase displays two types of corrugations, one with a wavelength of 12-15 nm and the other with a wavelength of 25-35 nm, the macro-ripple phase occurring in GalCer/POPC dispersions was of one type with a wavelength of 100-110 nm. Also, in contrast to the extended linear arrays of adjacent ripples observed in the P beta' ripple phase, the macro-ripple phase of GalCer/POPC dispersions was interrupted frequently by packing defects resulting from double dislocations and various disclinations and, thus, appeared to be continuously twisting and turning. Control experiments verified that the macro-ripple phase was not an artifact of incomplete lipid mixing or demixing during preparation. Three different methods of lipid mixing were compared: a spray method of rapid solvent evaporation, a sublimation method of solvent removal, and solvent removal using a rotary evaporation apparatus. Control experiments also revealed that the macro-ripple phase was observed regardless of whether lipid specimens were prepared by either ultra-rapid or manual plunge freezing methods as well as either in the presence or absence of the cryo-protectant glycerol. The macro-ripple phase was always observed in mixtures that were fully annealed by incubation above the main thermal transition of both POPC and bovine brain GalCer before rapid freezing. If the GalCer mixed with POPC contained only nonhydroxy acyl chains or only 2-hydroxy acyl chains, then the occurrence of macro-ripple phase decreased dramatically. 相似文献
9.
Theoretical conformational analysis of phospholipids bilayers 总被引:2,自引:0,他引:2
R Brasseur E Goormaghtigh J M Ruysschaert 《Biochemical and biophysical research communications》1981,103(1):301-310
We present a computational approach describing the conformation of lipid molecules (1-2-dipalmitoyl-sn-glycero-3 phosphocholine (DPPC)) organized in bilayers. The classical semi-empirical method used in peptide conformational analysis has been extended successfully to lipids. The excellent agreement between our theoretical predictions and recent experimental data on the molecular organization of lipid bilayers suggests that the method could be a valuable tool in the lipid conformational analysis but also in the prediction of orientation and mode of insertion of amphiphilic molecules into the lipid bilayer. 相似文献
10.
Molecular ordering of interfacially localized tryptophan analogs in ester- and ether-lipid bilayers studied by 2H-NMR. 总被引:1,自引:0,他引:1 下载免费PDF全文
Perdeuterated indole-d6 and N-methylated indole-d6 were solubilized in lamellar liquid crystalline phases composed of either 1,2-diacyl-glycero-3-phosphocholine (14:0)/water or 1,2-dialkyl-glycero-3-phosphocholine(14:0/water. The molecular ordering of the tryptophan analogs was determined from deuteron quadrupole splittings observed in 2H-NMR spectra on macroscopically aligned lipid bilayers. NMR spectra were recorded with the bilayers oriented perpendicular to or parallel with the external magnetic field, and the values of the splittings differed by a factor of 2 between these distinct orientations, indicating fast rotational motion of the molecules about an axis parallel to the bilayer normal. In all cases the splittings were found to decrease with increasing temperature. Relatively large splittings were observed in all systems, demonstrating that the tryptophans partition into a highly anisotropic environment. Solubilization most likely occurs at the lipid/water interface, as indicated by 1H-NMR chemical shift studies. The 2H-NMR spectra obtained for each analog were found to be rather similar in ester and ether lipids, but with smaller splittings in the ether lipid under similar conditions. The difference was slightly less for the indole molecule. Furthermore, in both lipid systems the positions of the splittings from indole were different from those of N-methyl indole. The results suggest that 1) the tryptophan analogs are solubilized in the interfacial region of the lipid bilayer, 2) the behavior may be modulated by hydrogen bonding in the case of indole, and 3) hydrogen bonding with the lipid carbonyl groups is not likely to play a major role in the solubilization of single indole molecules in the ester lipid bilayer interface. 相似文献
11.
The ethanolamine-containing glycerophospholipids, choline-containing glycerophospholipids, and phosphatidylinositol fractions are major sources of arachidonic acid in murine mastocytoma P-815 cloned cells. The choline-linked fraction contained high arachidonic acid contents in 1-O-alkyl-2-acyl- (18%) and 1,2-diacyl-sn-glycero-3-phosphocholine (11%), with smaller amounts in 1-O-alk-1'-enyl-2-acyl species, whereas the arachidonic acid content of the ethanolamine-linked fraction was high in 1-O-alk-1'-enyl-2-acyl (26%) and 1,2-diacyl species (15%) and low in 1-O-alkyl-2-acyl species. The uptake and transfer of [3H]arachidonic acid into the 1,2-diacyl and ether classes of choline-containing glycerophospholipids and ethanolamine-containing glycerophospholipids in mastocytoma cells were examined. There was very rapid incorporation of radioactive arachidonic acid into mastocytoma cells that leveled off after 30 min. By labeling cells with [3H]arachidonic acid for 7.5 min, the radioactivity was recovered in the choline-containing glycerophospholipids (43%), phosphatidylinositol (32%), and ethanolamine-containing glycerophospholipids (20%) with little in other phospholipids, neutral lipid, or free fatty acid fractions. Upon reincubation of the mastocytoma cells in the radiolabel-free medium, the [3H]arachidonate radioactivity was gradually lost from the choline-containing glycerophospholipids fraction and, concomitantly, increased in ethanolamine-containing glycerophospholipids. At the zero time of reincubation, most of the radioactivity was recovered in the 1,2-diacyl species of both choline-containing glycerophospholipids and ethanolamine-containing glycerophospholipids.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
12.
The levels of alkenylacyl, alkylacyl and diacyl subclasses of choline glycerophospholipid (CGP) and ethanolamine glycerophospholipid (EGP) fractions in 28 species of various invertebrates were studied. We found that only small amounts of either 1-alkyl-2-acyl-sn-glycero-3-phosphocholine (alkylacyl-GPC) or 1-alkenyl-2-acyl-sn-glycero-3-phosphoethanolamine (alkenylacyl-GPE) are present in most species of insects. On the other hand, almost all species examined in various phyla other than Arthropoda were shown to contain large amounts of both alkylacyl-GPC and alkenylacyl-GPE. The highest proportion of alkylacyl subclass in CGP was noted in sponge, Halichondria japonica (81.8% of CGP) and the highest proportion of alkenylacyl subclass in EGP was found in clam worm, Marphysa sanguinea (88.7% of EGP). We next surveyed the presence of platelet-activating factor (PAF)-like lipid in 45 species of invertebrates. PAF-like lipid was widely distributed among various lower animals. The highest value was obtained for sea cucumber, Stichopus japonicus, in which PAF-like lipid was present throughout the body. We also confirmed the presence of acetyltransferase activity in several lower animals. These results suggest that alkyl and alkenyl ether-linked phospholipids including PAF are physiologically important molecules particularly for invertebrates belonging to lower phyla. 相似文献
13.
Priest's phenomenological model (Mol. Cryst. Liq. Cryst. 60 (1980) 167.) on one- and two-component PC bilayers is extended here. We constructed a new excess free energy term in the state function to describe the thermodynamic properties of the two-component phospholipid bilayers where the chain lengths and the polar heads of the components can be different simultaneously. By means of this generalized state function, we can calculate the phase diagrams of DPPC/DPPE, DMPC/DMPE, DMPC/DPPE, DPPC/DMPE and DSPC/DMPE mixtures. We obtained complete miscibility both in the liquid crystalline and in the gel phase if the chain lengths of the components were the same. If the chain length of the PE component was longer than that of the PC component, we obtained a peritectic system. A eutectic system was obtained in the reverse case. The results of the model were compared with the experimental data available. Applying the quasichemical approximation, we determined the molecular meaning of the phenomenological model parameters. Namely, sigma and gamma are proportional to the sublimation heat of the CH2 group in the long-chain alkanes and to the hydrogen-bonding energy between the polar heads of the ethanolamines; otherwise the model resulted in--1.94 kcal/mol per CH2 for the sublimation heat and --1.4 kcal/mol for the hydrogen-bond energy. 相似文献
14.
Castro V Dvinskikh SV Widmalm G Sandström D Maliniak A 《Biochimica et biophysica acta》2007,1768(10):2432-2437
Lipid membranes composed of monogalactosyldiacylglycerol (MGDG) and dimyristoylphosphatidylcholine (DMPC) were studied by means of NMR spectroscopy. The macroscopic phase behaviour was investigated by (31)P NMR under stationary conditions, whereas microscopic properties such as segmental ordering were probed by two-dimensional (1)H-(13)C separated local field experiments under magic-angle spinning conditions. Our results clearly show that ordering/disordering effects occur for the headgroups as well as for the acyl chains when the sample composition is varied. In particular, the (1)H-(13)C dipolar couplings within the galactose headgroup of MGDG exhibited significant concentration dependence. 相似文献
15.
Topology of gel-phase domains and lipid mixing properties in phase-separated two-component phosphatidylcholine bilayers. 下载免费PDF全文
The influence of the lipid mixing properties on the lateral organization in a two-component, two-phase phosphatidylcholine bilayer was investigated using both an experimental (fluorescence recovery after photobleaching (FRAP)) and a simulated (Monte Carlo) approach. With the FRAP technique, we have examined binary mixtures of 1-stearoyl-2-capryl-phosphatidylcholine/1,2-distearoyl-phosphat idylcholine (C18C10PC/DSPC), and 1-stearoyl-2-capryl-phosphatidylcholine/1,2-dipalmitoyl-phospha tid ylcholine (C18C10PC/DPPC). Comparison with the 1,2-dimyristoyl-phosphatidylcholine/1,2-distearoyl-phosphatidylcholine (DMPC/DSPC) previously investigated by FRAP by Vaz and co-workers (Biophys. J., 1989, 56:869-876) shows that the gel phase domains become more effective in restricting the diffusion coefficient when the ideality of the mixture increases (i.e., in the order C18C10PC/DSPC-->C18C10PC/DPPC-->DMPC/DSPC). However, an increased lipid miscibility is accompanied by an increasing compositional dependence: the higher the proportion of the high-temperature melting component, the less efficient the gel phase is in compartmentalizing the diffusion plane, a trend that is best accounted for by a variation of the gel phase domain shape rather than size. Computer-simulated fluorescence recoveries obtained in a matrix obstructed with obstacle aggregates of various fractal dimension demonstrate that: 1) for a given obstacle size and area fraction, the relative diffusion coefficient increases linearly with the obstacle fractal dimension and 2) aggregates with a lower fractal dimension are more efficient in compartmentalizing the diffusion plane. Comparison of the simulated with the experimental mobile fractions strongly suggests that the fractal dimension of the gel phase domains increases with the proportion of high-temperature melting component in DMPC/DSPC and (slightly) in C18C10PC/DPPC. 相似文献
16.
Lipid membranes composed of monogalactosyldiacylglycerol (MGDG) and dimyristoylphosphatidylcholine (DMPC) were studied by means of NMR spectroscopy. The macroscopic phase behaviour was investigated by 31P NMR under stationary conditions, whereas microscopic properties such as segmental ordering were probed by two-dimensional 1H-13C separated local field experiments under magic-angle spinning conditions. Our results clearly show that ordering/disordering effects occur for the headgroups as well as for the acyl chains when the sample composition is varied. In particular, the 1H-13C dipolar couplings within the galactose headgroup of MGDG exhibited significant concentration dependence. 相似文献
17.
《生物化学与生物物理学报:生物膜》1986,860(3):558-565
The amphiphilic heme derivative, 5,10,15,20-tetra(α,α,α,α-o-(2′,2′-dimethyl-20′-(2′-trimethylammonioethyl) phosphonatoxyicosanamido)pheny)phorphinatoiron(II) (lipid-heme), formed a stable liposome (Φ ≈ 400 Å) with phospholipids. Differential scanning calorimetry showed that incorporation of the lipid-heme in the liposome bilayer (lipid/lipid-heme > 25) causes no disordering of the bilayer structure. Ligation of a bulky ligand to the lipid-heme liposome indicated that the lipid-heme situates facing predominantly outwards in the liposome. The closed vesicle structure and the stability of the lipid-heme liposome were also confirmed by the encapsulating capability of the fluorescence compound. 相似文献
18.
C S Lai J Joseph C C Shih 《Biochemical and biophysical research communications》1989,160(3):1189-1195
We have synthesized a spin-labeled derivative of ET-18-OCH3, a known antitumor ether-linked phospholipid. The spin-labeled analog was shown to be as potent as ET-18-OCH3 in inhibiting 3H-thymidine uptake of HL60 leukemic cells. Electron spin resonance (ESR) studies showed that the mobility of this ether-linked phospholipid in the membrane is more restricted when compared to its ester-linked counterparts. It is probable that the absence of the bulky carbonyl oxygens allows closer packing of the two alkyl chains in the ether-linked phospholipid, thereby reducing the angular amplitude of the motion of the alkyl chains. These findings may be of importance in elucidating mechanisms by which the antitumor ether-linked phospholipids perturb the structure of cellular membranes. 相似文献
19.
A Sturk M C Schaap A Prins J W ten Cate H van den Bosch 《Biochimica et biophysica acta》1989,993(2-3):148-156
Synthesis of platelet activating factor (PAF) in blood platelet suspensions may be due to leucocyte contamination. We therefore investigated PAF synthesis in human blood platelet suspensions and granulocyte- (PMN)-enriched leucocyte suspensions upon stimulation by thrombin and Ca2+-ionophore A23187, both in the presence and absence of the presumed PAF catabolism inhibitor phenylmethylsulfonyl fluoride (PMSF). PAF synthesis was measured by aggregation of washed rabbit platelets and by [3H]acetate incorporation. In contrast to A23187, thrombin was unable to stimulate PAF synthesis by leucocytes. As thrombin did induce PAF synthesis by platelet suspensions, this was evidently not due to leucocyte contamination. A23187 also induced PAF synthesis by platelets, but this was dependent upon the platelet isolation method and possibly associated activation. The ratio of [3H]acetate incorporation into 1-alkyl- versus 1-acyl-2-acetylglycerophosphocholine upon stimulation of non-PMSF-treated leucocytes and platelets amounted to 12.8 and 1.2, respectively. These values are at least 10-fold higher than the ratio of 1-alkyl versus 1-acyl species in the cellular phosphatidylcholine precursor for PAF. By PMSF pretreatment, the distribution of incorporated [3H]acetate between 1-ether- and 1-ester-linked species became similar to that in the precursor phosphatidylcholines of the respective cell type, due to increased recovery of [3H]acetate in the acyl compounds. Both leucocyte and platelet homogenates rapidly degraded acylacetylglycerophosphocholine to (acetyl)glycerophosphocholine, and this deacylation was inhibited by PMSF pretreatment of the cells. We conclude that upon cell stimulation a phospholipase A2 converts both alkylacylglycerophosphocholine and diacylglycerophosphocholine to the 2-lysoanalogs in a ratio similar to the occurrence of the parent compounds. The acetyltransferase subsequently acetylates both compounds to acylacetylglycerophosphocholine and alkylacetylglycerophosphocholine (PAF), respectively. Deacylation of the 1-ester-linked species, either before or after acetylation, gives the impression of selective utilization of 1-ether-linked species for PAF production. It is only after inhibition of the deacylation by pretreatment of the cells with PMSF that a mainly nondiscriminative use of 1-ether- and 1-ester-linked species by both phospholipase A2 and acetyltransferase becomes evident. 相似文献
20.
Monte Carlo simulations of fluorescence recovery after photobleaching (FRAP) experiments on two-component lipid bilayers systems in the solid-fluid phase coexistence region were carried out to study the geometry and size of fluid domains in these bilayers. The gel phase was simulated by superposable elliptical domains, which were either of predetermined dimensions, increasing in number with increasing gel phase fraction, or of predetermined number, increasing in dimensions with increasing gel phase fraction. The simulations were done from two perspectives: 1) a time-independent analysis of fractional fluorescence recovery as a function of fractional fluid phase in the system; and 2) a time-dependent analysis of fractional fluorescence recovery as a function of time at a given fraction of fluid phase in the system. The time-dependent simulations result in recovery curves that are directly comparable to experimental FRAP curves and provide topological and geometrical models for the coexisting phases that are consistent with the experimental result. 相似文献