首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Weak-acid preservatives are widely used to maintain microbial stability in foods and beverages. Classical weak-acid theory proposes that undissociated acid molecules pass through the plasma membrane, dissociate in the neutral pH of the cytoplasm, release protons and inhibit growth through acidification of the cytoplasm. Inhibitory concentrations of sorbic acid are shown to liberate fewer protons than other weak-acid preservatives. Sorbic acid shows similar inhibition to other six-carbon acids, alcohols and aldehydes, the latter being unable to act as weak acids. A survey of 22 yeasts showed high correlation between sorbate resistance and ethanol tolerance. Inhibition by short-chain acids or alcohols showed strong correlation with lipophilicity. It is proposed that sorbic acid acts as a membrane-active substance rather than as a weak-acid preservative.  相似文献   

2.
Goat mammary-gland microsomal fraction by itself induces synthesis of medium-chain-length fatty acids by goat mammary fatty acid synthetase and incorporates short- and medium-chain fatty acids into triacylglycerol. Addition of ATP in the absence or presence of Mg2+ totally inhibits triacylglycerol synthesis from short- and medium-chain fatty acids, and severely inhibits synthesis de novo of medium-chain fatty acids. The inhibition by ATP of fatty acid synthesis and triacylglycerol synthesis de novo can be relieved by glycerol 3-phosphate. The effect of ATP could not be mimicked by the non-hydrolysable ATP analogue, adenosine 5'-[beta,gamma-methylene]triphosphate and could not be shown to be caused by inhibition of the diacylglycerol acyltransferase by a phosphorylation reaction. Possible explanations for the mechanism of the inhibition by ATP are discussed, and a hypothetical model for its action is outlined.  相似文献   

3.
Fatty acids of different chain lengths were added to cultures of Bacillus subtilis growing in nutrient sporulation medium, and the effects of these fatty acids on growth, oxygen uptake, adenosine triphosphate (ATP) concentration, and membrane protein composition were examined. All fatty acids inhibited growth, the effect being reduced in the presence of glycolytic compounds and reversed by transfer to medium without fatty acids. The inhibition of growth was correlated with a reduction in both the rate of oxygen consumption and the concentration of ATP per cell. The concentration required to obtain a certain degree of inhibition increased with decreasing molecular weight of the fatty acid. However, the reduced nicotinamide adenine dinucleotide oxidation system of cell envelope preparations (i.e., the electron transport system) was not inhibited. Submaximal growth inhibition was accompanied by the relative increase of a membrane protein band revealed by urea-acetic acid gel electrophoresis. This increase was blocked by actinomycin or chloramphenicol. All of the above changes could also be produced by 2,4-dinitrophenol. The inhibition results are best explained by assuming that the fatty acids reversibly react with the cell membrane or proteins in it; they could either alter the membrane structure or uncouple the electron transport chain from two types of proteins, those used for ATP regeneration and others needed for the transport of certain compounds into the cells.  相似文献   

4.
5.
In rat liver mitochondria suspended in KC1 medium, oligomycin interfered with the effect of uncouplers on energy conservation. It antagonized the effect of uncouplers that are weak acids (2,4-dinitrophenol etc.), but enhanced that of the lipid-penetrating cation NN-dimethyl-N'N'-dibenzylammonium. Oligomycin caused none of the above effects when Br- or NO-/3 was substituted for C1- as the major anionic species in the assay medium. The concentration of oligomycin that exerted the above-mentioned effects was lower than that necessary for the inhibition of energy transfer, but was in the range that induced C1- permeation through the cristae membrane. The possible connexion between the effect of oligomycin on C1- permeation and its interference with the action of uncouplers is discussed.  相似文献   

6.
The fatty acid composition of pyruvate-grown Comamonas testosteroni ATCC 17454 was analyzed after growth at 30 and 20°C and after half-maximum growth inhibition caused by different membrane-active chemicals at 30°C. Palmitic acid (16:0), palmitoleic acid (16:1 ω7c) and vaccenic acid (18:1 ω7c) were the dominant fatty acids. At 20°C, the proportion of palmitic acid decreased and those of palmitoleic and vaccenic acid increased. Saturation degree was also lowered when half-maximum growth inhibition was caused by 4-chlorosalicylic acid, 2,4-dichlorophenoxyacetic acid and 2,4-dinitrophenol and, to a lesser extent, in the presence of 2,4-dichlorophenol, phenol and ethanol. It appeared that the dissociated forms of the former group of chemicals were preferentially incorporated near the head group region of the lipid bilayer, thereby somewhat extending the outer region of the membranes, and that the increased amount of bent, unsaturated fatty acids helped to maintain membrane integrity. Irrespective of how the decrease of the saturation degree was triggered, it caused electron transport phosphorylation (adenosine triphosphate synthesis driven by n-hexanol oxidation) to become more sensitive to uncoupling. Apparently, the viscosity and phase stability of the cytoplasmic membrane of C. testosteroni were maintained at the price of a reduced protection against energy toxicity.  相似文献   

7.
As shown in a previous paper, threshold concentrations of lower and intermediate fatty acids inhibit the uptake of inorganic phosphate, growth, and cell division in yeast cells. This demonstrates that, apart from these effects, the acids cause an increase in the respiration quotient (RQ), inhibition of CO2 fixation, production of ethanol at the expense of anabolic processes, and inhibition of active amino acid transport in the yeast Candida utilis. On the other hand, the threshold concentrations have no effect on intracellular pH. The inhibition of the inorganic phosphate uptake cannot be the sole primary mode of action of fatty acids since the omission of inorganic phosphate in the incubation medium brings about an inhibition of anabolic processes that is lower than that brought about by fatty acids since the omission of inorganic phosphate in the incubation medium brings about an inhibition of anabolic processes that is lower than that brought by fatty acids at concentrations still premitting some phosphate uptake. Although 2,4-dinitrophenol and caproic acid at low concentrations cause an analogous decrease in biomass yield, their combination does not bring about any marked increase in the effect. Considering the physicochemical properties of fatty acids and their preferential action on energy-requiring processes, one of the key sites of action can be assumed to be the mitochondrial membrane. Fatty acids might inhibit the transport of anions, especially phosphate, across the membrane, and disturb the membrane potential by affecting the transport protons. The physiocochemical properties of fatty acids may also give rise to their binding to other intracellular membranes and to a subsequent interference with the function of the corresponding organelles.  相似文献   

8.
At the subcellular level, the synthesis of ceramide from free lignoceric acid and sphingosine in brain required reconstituted enzyme system (particulate fraction, heat-stable and heat-labile factors) and pyridine nucleotide (NADPH). The mitochondrial electron transfer inhibitors (KCN and antimycin A), energy uncouplers (oligomycin and 2,4-dinitrophenol), and carboxyatractyloside, which prevents the transport of ATP and ADP through the mitochondrial wall, inhibit the synthesis of ceramide in the presence of NADPH but have very little effect in the presence of ATP. Similar to the synthesis of ceramide, the synthesis of ATP from NADPH and NADH by the particulate fraction also required cytoplasmic factors (heat-stable and heat-labile factors). Moreover, ATP, but not its analog (AMP-CH2-P-O-P), can replace NADPH, thus suggesting that the function of the pyridine nucleotide is to provide ATP for the synthesis of ceramide. The cytoplasmic factors were not required for the synthesis of ceramide in the presence of ATP. The maximum velocity for synthesis of ceramide from free fatty acids of different chain lengths (C16-C26) was bimodal, with maxima around stearic acid (C18) and behenic acid (C22). The relative rate of synthesis of ceramide parallels the relative distribution of these fatty acids in brain cerebrosides and sulfatides.  相似文献   

9.
Analysis of serum free fatty acids by gas-liquid chromatography showed high proportions (27-57%) of octanoic acid for up to 4 hr after the ingestion of a single oral load of medium-chain triglyceride (approximately 1 g/kg body weight) in four volunteers. The effects of a medium-chain triglyceride load on the concentrations of plasma free long-chain fatty acids, plasma glucose, serum insulin, and serum triglyceride were observed and compared with the effects of a glucose load. A rapid fall in the free long-chain fatty acids followed both loads but only a small rise in serum insulin was observed after medium-chain triglyceride. The fall in free long-chain fatty acids following ingestion of medium-chain triglyceride cannot therefore be caused mainly by the release of insulin and may be due to a direct action on adipose tissue. No medium-chain fatty acids were detected in the serum triglyceride after ingestion of medium-chain triglyceride, but there was a small but significant increase in the percentage of hexadecenoic acid in this fraction.  相似文献   

10.
Microbial fatty acids are an attractive source of precursors for a variety of renewable commodity chemicals such as alkanes, alcohols, and biofuels. Rerouting lipid biosynthesis into free fatty acid production can be toxic, however, due to alterations of membrane lipid composition. Here we find that membrane lipid composition can be altered by the direct incorporation of medium-chain fatty acids into lipids via the Aas pathway in cells expressing the medium-chain thioesterase from Umbellularia californica (BTE). We find that deletion of the aas gene and sequestering exported fatty acids reduces medium-chain fatty acid toxicity, partially restores normal lipid composition, and improves medium-chain fatty acid yields.  相似文献   

11.
The regulatory effects of fatty acids on the oxidative decarboxylation of leucine and 4-methyl-2-oxopentanoate were investigated in the isolated rat heart. Infusion of the long-chain fatty acid palmitate resulted in both an inactivation of the branched-chain 2-oxo acid dehydrogenase and an inhibition of the measured metabolic flux through this enzyme complex. Pyruvate addition also caused both an inactivation and an inhibition of the flux through the complex. On the other hand, the medium-chain fatty acid octanoate caused an activation of and a stimulation of flux through the branched-chain 2-oxo acid dehydrogenase when the perfusion conditions before octanoate addition maintained the enzyme complex in its inactive state. When the enzyme complex was activated before octanoate infusion, this fatty acid caused a significant inhibition of the flux through the branched-chain 2-oxo acid dehydrogenase reaction. Inclusion of glucose in the perfusion medium prevented the octanoate-mediated activation of the branched-chain 2-oxo acid dehydrogenase.  相似文献   

12.
15N-labelled nitrate was used to show that nitrate reduction by leaf discs in darkness was suppressed by oxygen, whereas nitrite present within the cell could be reduced under aerobic dark conditions. In other experiments, unlabelled nitrite, allowed to accumulate in the tissue during the dark anaerobic reduction of nitrate was shown by chemical analysis to be metabolised during a subsequent dark aerobic period. Leaves of intact plants resembled incubated leaf discs in accumulating nitrite under anaerobic conditions. Nitrate, n-propanol and several respiratory inhibitors or uncouplers partly reversed the inhibitory effect of oxygen on nitrate reduction in leaf discs in the dark. Of these nitrate and propanol acted synergistically. Reversal was usually associated with inhibition of respiration but some concentrations of 2,4-dinitrophenol (DNP) and ioxynil reversed inhibition without affecting respiratory rates. Respiratory inhibitors and uncouplers stimulated nitrate reduction in the anaerobic in vivo assay i.e. in conditions where the respiratory process is non-functional. Freezing and thawing leaf discs diminished but did not eliminate the sensitivity of nitrate reduction to oxygen inhibition.Abbreviations DNP 2,4-dinitrophenol - HOQNO 8-hydroxyquinoline-N-oxide - DCPIP 2,6-dichlorophenolindophenol - CCCP Carbonyl cyanide m-chlorophenylhydrazone - TES N-tris(hydroxymethyl)methyl-2-amino ethanesulphonic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid  相似文献   

13.
Fluoride and organic weak acids as modulators of microbial physiology   总被引:3,自引:0,他引:3  
Fluoride is widely used as an anticaries agent in drinking water and a variety of other vehicles. This use has resulted in major health benefits. However, there are still open questions regarding the mechanisms of anticaries action and the importance of antimicrobial effects in caries reduction. Fluoride acts in multiple ways to affect the metabolism of cariogenic and other bacteria in the mouth. F(-)/HF can bind directly to many enzymes, for example, heme-containing enzymes or other metalloenzymes, to modulate metabolism. Fluoride is able also to form complexes with metals such as aluminum or beryllium, and the complexes, notably AlF(4)(-) and BeF(3)(-).H(2)O, can mimic phosphate with either positive or negative effects on a variety of enzymes and regulatory phosphatases. The fluoride action that appears to be most important for glycolytic inhibition at low pH in dental plaque bacteria derives from its weak-acid properties (pK(a)=3.15) and the capacity of HF to act as a transmembrane proton conductor. Since many of the actions of fluoride are related to its weak-acid character, it is reasonable to compare fluoride action to those of organic weak acids, including metabolic acids, food preservatives, non-steroidal anti-inflammatory agents and fatty acids, all of which act to de-energize the cell membrane by discharging DeltapH. Moreover, with the realization that the biofilm state is the common lifestyle for most microorganisms in nature, there is need to consider interactions of fluoride and organic weak acids with biofilm communities. Hopefully, this review will stimulate interest in the antimicrobial effects of fluoride or other weak acids and lead to more effective use of the agents for disease control and other applications.  相似文献   

14.
Stimulation of K+ efflux from non-metabolizing yeast cells by 2,4-dinitrophenol or by salicylic acid occurs only after accumulation of the compounds into the cells, indicating that the site of action of the uncouplers is inside the cells. A correlation is found between the partition ratio of the lipophilic cation dibenzyldimethylammonium between cells and medium and the rate of K+ efflux.  相似文献   

15.
Dicarboxylic acids are excreted in urine when fatty acid oxidation is increased (ketosis) or inhibited (defects in beta-oxidation) and in Reye's syndrome. omega-Hydroxylation and omega-oxidation of C6-C12 fatty acids were measured by mass spectrometry in rat liver microsomes and homogenates, and beta-oxidation of the dicarboxylic acids in liver homogenates and isolated mitochondria and peroxisomes. Medium-chain fatty acids formed large amounts of medium-chain dicarboxylic acids, which were easily beta-oxidized both in vitro and in vivo, in contrast to the long-chain C16-dicarboxylic acid, which was toxic to starved rats. Increment of fatty acid oxidation in rats by starvation or diabetes increased C6:C10 dicarboxylic acid ratio in rats fed medium-chain triacylglycerols, and increased short-chain dicarboxylic acid excretion in urine in rats fed medium-chain dicarboxylic acids. Valproate, which inhibits fatty acid oxidation and may induce Reye like syndromes, caused the pattern of C6-C10-dicarboxylic aciduria seen in beta-oxidation defects, but only in starved rats. It is suggested, that the origin of urinary short-chain dicarboxylic acids is omega-oxidized medium-chain fatty acids, which after peroxisomal beta-oxidation accumulate as C6-C8-dicarboxylic acids. C10-C12-dicarboxylic acids were also metabolized in the mitochondria, but did not accumulate as C6-C8-dicarboxylic acids, indicating that beta-oxidation was completed beyond the level of adipyl CoA.  相似文献   

16.
2,4-enhances root formation on hypocotyl cuttings made fromdark-grown seedlings of Phaseolus mungo. The effect is increasedby indol-3-ylacetic acid + sucrose. In the presence of indol-3-ylaceticacid + sucrose, root formation is also enhanced by sodium azideand ammonium sulphate, two non-phenolic uncouplers of oxidativephosphorylation. It appears that the enhancement in root formationby these uncoupters is due to increased respiration by removingthe obligatory link to phosphorylation and, thereby, regulatingthe endogenous levels of adenosine triphosphate. This is alsosupported by the fact that root formation in this system isdepressed both by cobalt which counteracts the uncoupling effectof 2,4-dinitrophenol and also by an exogenous supply of adenosinetn phosphate.  相似文献   

17.
Members of the Bacteroidetes phylum, represented by Alistipes finegoldii, are prominent anerobic, Gram-negative inhabitants of the gut microbiome. The lipid biosynthetic pathways were analyzed using bioinformatic analyses, lipidomics, metabolic labeling and biochemistry to characterize exogenous fatty acid metabolism. A. finegoldii only produced the saturated fatty acids. The most abundant lipids were phosphatidylethanolamine (PE) and sulfonolipid (SL). Neither phosphatidylglycerol nor cardiolipin are present. PE synthesis is initiated by the PlsX/PlsY/PlsC pathway, whereas the SL pathway is related to sphingolipid biosynthesis. A. finegoldii incorporated medium-chain fatty acids (≤14 carbons) into PE and SL after their elongation, whereas long-chain fatty acids (≥16 carbons) were not elongated. Fatty acids >16 carbons were primarily incorporated into the 2-position of phosphatidylethanolamine at the PlsC step, the only biosynthetic enzyme that utilizes long-chain acyl-ACP. The ability to assimilate a broad-spectrum of fatty acid chain lengths present in the gut environment is due to the expression of two acyl-acyl carrier protein (ACP) synthetases. Acyl-ACP synthetase 1 had a substrate preference for medium-chain fatty acids and synthetase 2 had a substrate preference for long-chain fatty acids. This unique combination of synthetases allows A. finegoldii to utilize both the medium- and long-chain fatty acid nutrients available in the gut environment to assemble its membrane lipids.  相似文献   

18.
Recent trials have reported the ability of triheptanoin to improve clinical outcomes for the severe symptoms associated with long-chain fatty acid oxidation disorders, including very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency.However, the milder myopathic symptoms are still challenging to treat satisfactorily. Myopathic pathogenesis is multifactorial, but oxidative stress is an important component. We have previously shown that metabolic stress increases the oxidative burden in VLCAD-deficient cell lines and can deplete the antioxidant glutathione (GSH).We investigated whether medium-chain fatty acids provide protection against GSH depletion during metabolic stress in VLCAD-deficient fibroblasts. To investigate the effect of differences in anaplerotic capacity, we included both even-(octanoate) and odd-numbered (heptanoate) medium-chain fatty acids. Overall, we show that modulation of the concentration of medium-chain fatty acids in culture media affects levels of GSH retained during metabolic stress in VLCAD-deficient cell lines but not in controls.Lowered glutamine concentration in the culture media during metabolic stress led to GSH depletion and decreased viability in VLCAD deficient cells, which could be rescued by both heptanoate and octanoate in a dose-dependent manner. Unlike GSH levels, the levels of total thiols increased after metabolic stress exposure, the size of this increase was not affected by differences in cell culture medium concentrations of glutamine, heptanoate or octanoate.Addition of a PPAR agonist further exacerbated stress-related GSH-depletion and viability loss, requiring higher concentrations of fatty acids to restore GSH levels and cell viability.Both odd- and even-numbered medium-chain fatty acids efficiently protect VLCADdeficient cells against metabolic stress-induced antioxidant depletion.  相似文献   

19.
Incubation of stroma preparations from spinach chloroplasts with low concentrations of cerulenin (10 muM) resulted in severe inhibition of fatty acid synthesis but stimulated the release of medium-chain acids in very high proportions (60-70%). Preincubation of these preparations with cerulenin in the absence of substrate exerted no additional effect on subsequent fatty acid synthesis (as measured by incorporation of [14C]acetate into fatty acids) or the pattern of radioactive acids obtained. Acyl-protein, acyl-CoA, free fatty acids and lipids were resolved from each other and analysed for their distribution of 14C-labelled fatty acids. Acyl-protein derived from cerulenin-treated preparations was the only fraction which contained short- and medium-chain acids (C6--C12). The other fractions from both control and cerulenin-treated groups consisted exclusively of C16 and C18 acids. Acyl-protein was purified by gel filtration chromatography and was characterized as acyl-acyl carrier protein.  相似文献   

20.
The cellular ATP concentration was tested for its effect on fatty acid biosynthesis from glucose in hepatocytes. ATP was manipulated by adding increasing concentrations of cycloheximide, amytal, atractyloside, 2,4-dinitrophenol or adenosine. A slight decrease in cellular ATP coincided with a stimulation of fatty acid biosynthesis whereas a further lowering of cellular ATP resulted in a gradual inhibition. Increasing the cellular ATP level by titration with adenosine had the opposite effect. These results are in line with the suggestion that fatty acid biosynthesis from glucose is an energy-yielding process which is stimulated by a moderate drop in cellular ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号