首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of the gene frequencies at a single multiallelic locus under the joint action of migration and viability selection with dominance is investigated. The monoecious, diploid population is subdivided into finitely many panmictic colonies that exchange adult migrants independently of genotype. Underdominance and overdominance are excluded. If the degree of dominance is deme independent for every pair of alleles, then under the Levene model, the qualitative evolution of the gene frequencies (i.e., the existence and stability of the equilibria) is the same as without dominance. In particular: (i) the number of demes is a generic upper bound on the number of alleles present at equilibrium; (ii) there exists exactly one stable equilibrium, and it is globally attracting; and (iii) if there exists an internal equilibrium, it is globally asymptotically stable. Analytic examples demonstrate that if either the Levene model does not apply or the degree of dominance is deme dependent, then the above results can fail. A complete global analysis of weak migration and weak selection on a recessive allele in two demes is presented.  相似文献   

2.
Under haploid selection, a multi-locus, diallelic, two-niche Levene (1953) model is studied. Viability coefficients with symmetrically opposing directional selection in each niche are assumed, and with a further simplification that the most and least favored haplotype in each niche shares no alleles in common, and that the selection coefficients monotonically increase or decrease with the number of alleles shared. This model always admits a fully polymorphic symmetric equilibrium, which may or may not be stable.We show that a stable symmetric equilibrium can become unstable via either a supercritical or subcritical pitchfork bifurcation. In the supercritical bifurcation, the symmetric equilibrium bifurcates to a pair of stable fully polymorphic asymmetric equilibria; in the subcritical bifurcation, the symmetric equilibrium bifurcates to a pair of unstable fully polymorphic asymmetric equilibria, which then connect to either another pair of stable fully polymorphic asymmetric equilibria through saddle-node bifurcations, or to a pair of monomorphic equilibria through transcritical bifurcations. As many as three fully polymorphic stable equilibria can coexist, and jump bifurcations can occur between these equilibria when model parameters are varied.In our Levene model, increasing recombination can act to either increase or decrease the genetic diversity of a population. By generating more hybrid offspring from the mating of purebreds, recombination can act to increase genetic diversity provided the symmetric equilibrium remains stable. But by destabilizing the symmetric equilibrium, recombination can ultimately act to decrease genetic diversity.  相似文献   

3.
T. Nagylaki 《Genetics》1994,136(1):361-381
A model for the evolution of the local averages of a quantitative character under migration, selection, and random genetic drift in a subdivided population is formulated and investigated. Generations are discrete and nonoverlapping; the monoecious, diploid population mates at random in each deme. All three evolutionary forces are weak, but the migration pattern and the local population numbers are otherwise arbitrary. The character is determined by purely additive gene action and a stochastically independent environment; its distribution is Gaussian with a constant variance; and it is under Gaussian stabilizing selection with the same parameters in every deme. Linkage disequilibrium is neglected. Most of the results concern the covariances of the local averages. For a finite number of demes, explicit formulas are derived for (i) the asymptotic rate and pattern of convergence to equilibrium, (ii) the variance of a suitably weighted average of the local averages, and (iii) the equilibrium covariances when selection and random drift are much weaker than migration. Essentially complete analyses of equilibrium and convergence are presented for random outbreeding and site homing, the Levene and island models, the circular habitat and the unbounded linear stepping-stone model in the diffusion approximation, and the exact unbounded stepping-stone model in one and two dimensions.  相似文献   

4.
A general model is analyzed in which arbitrarily frequency-dependent selection acts on one sex of a diploid population with several alleles at one locus, as a result of viability or mating-success differences. The existence of boundary and polymorphic equilibria is examined, and conditions for local stability, internal and external, are obtained. The status of Hardy-Weinberg approximations in studying stability and approach to equilibria is also considered. The general principles are then applied to two specific models: one where genotypes fall into two phenotypic classes; and one with a hierarchy of dominance where viability and sexual selection are opposed. In the latter case it is found that, of all the equilibria present, there is one and only one which could possibly be stable: the existence of a unique globally stable equilibrium might then be inferred.  相似文献   

5.
Circumstances assuring a unique stable equilibrium are investigated for a subdivided population with several alleles segregating at a single locus. For a broad class of selection regimes entailing heterozygote viabilities greater than the geometric mean of the corresponding homozygote viabilities, a stable fixation state precludes any other stable equilibria if either total-panmixia or temporal variation is operating. This extends known results for two alleles at a single locus and partially delimits when some of the bizarre behaviour engendered by multiple alleles may occur.Supported in part by National Science Foundation (USA) grant MCS-8002227  相似文献   

6.
The evolutionary dynamics in general two-sex two-phenotype frequency-dependent selection models are studied with respect to underlying multi-allele one-locus genetic systems. Two classes of equilibria come into play: genotypic equilibria, with equilibrium allelic frequencies independent of the phenotype, and phenotypic equilibria, which are characterized by equal mean phenotypic fitnesses. The exact conditions for genotypic equilibria to exist and be stable and for phenotypic equilibria to exist and be evolutionarily attractive are examined. Using adequate definitions of mean fitnesses in general contexts of frequency-dependent selection in dioecious populations, we show that two phenotypes, when they can coexist in the population, tend to balance their fitnesses as far as is allowed by the genetic system as more alleles responsible for phenotype determination are introduced into the population.  相似文献   

7.
Evolution at a multiallelic locus under the joint action of migration and viability selection is investigated. Generations are discrete and nonoverlapping. The monoecious, diploid population is subdivided into finitely many panmictic colonies that exchange adult migrants independently of genotype. The forward migration matrix is arbitrary, but time independent and ergodic (i.e., irreducible and aperiodic). Several examples of globally attracting multiallelic equilibria are presented. Migration can cause global fixation even if, without migration, there is a globally attracting multiallelic equilibrium in every colony. Migration can also cause the global fixation of an allele that, without migration, is eliminated in every colony. Without dominance, generically, the number of alleles present at equilibrium cannot exceed the number of colonies. Some general properties and examples of the Levene model are studied in detail. If in each colony there is either no dominance or, without migration, a globally attracting internal equilibrium, then there exists a globally attracting equilibrium with migration. Therefore, if an internal equilibrium exists, it is the global attractor.  相似文献   

8.
Evolution and the maintenance of polymorphism under the multilocus Levene model with soft selection are studied. The number of loci and alleles, the number of demes, the linkage map, and the degree of dominance are arbitrary, but epistasis is absent or weak. We prove that, without epistasis and under mild, generic conditions, every trajectory converges to a stationary point in linkage equilibrium. Consequently, the equilibrium and stability structure can be determined by investigating the much simpler gene-frequency dynamics on the linkage-equilibrium manifold. For a haploid species an analogous result is shown. For weak epistasis, global convergence to quasi-linkage equilibrium is established. As an application, the maintenance of multilocus polymorphism is explored if the degree of dominance is intermediate at every locus and epistasis is absent or weak. If there are at least two demes, then arbitrarily many multiallelic loci can be maintained polymorphic at a globally asymptotically stable equilibrium. Because this holds for an open set of parameters, such equilibria are structurally stable. If the degree of dominance is not only intermediate but also deme independent, and loci are diallelic, an open set of parameters yielding an internal equilibrium exists only if the number of loci is strictly less than the number of demes. Otherwise, a fully polymorphic equilibrium exists only nongenerically, and if it exists, it consists of a manifold of equilibria. Its dimension is determined. In the absence of genotype-by-environment interaction, however, a manifold of equilibria occurs for an open set of parameters. In this case, the equilibrium structure is not robust to small deviations from no genotype-by-environment interaction. In a quantitative-genetic setting, the assumptions of no epistasis and intermediate dominance are equivalent to assuming that in every deme directional selection acts on a trait that is determined additively, i.e., by nonepistatic loci with dominance. Some of our results are exemplified in this quantitative-genetic context.  相似文献   

9.
Much of the extant polymorphism has been attributed to spatial and temporal variation among selection regimes. Analysis of models entailing two alleles at a single locus has demonstrated that polymorphism may result from variation among selection regimes which prescribe monomorphism if constant. This relationship is studied in the context of several alleles at a locus.One result which is not valid with only two alleles is that variation among selection regimes which specify polymorphic equilibria may lead to a stable monomorphic equilibrium. The analyses of temporal variation and total panmixia spatial variation among environments show that temporal variation allows the simultaneous stability of equilibrium configurations which cannot be simultaneously stable under total panmixia spatial variation (hard or soft selection). The principle that polymorphism is more readily maintained with spatial than temporal variation is invalidated.Supported in part by Purdue Research Foundation and National Science Foundation (USA) grant MCS-8002227  相似文献   

10.
Two modes of assortative mating, partial selfing and assorting by phenotypic classes, are studied in a subdivided population. Differential viability is allowed and the selection intensities and assorting tendencies are permitted to vary among the habitats. There exists a symmetric polymorphism; we delimit its level of heterozygosity and stability nature (dependent on the selection intensities and assorting propensities). This complements studies of the fixation states and thereby provides further insight into the global equilibrium structure in subdivided populations. Circumstances are given where the fixation states and symmetric polymorphism comprise the global equilibrium structure. Examples are also given where migration engenders stable polymorphic equilibria and stable polymorphic equilibrium cycles which are absent in single demes without migration.  相似文献   

11.
It is well known that in a subdivided population subject to soft selection with two alleles at one locus, instability of both fixation states (a “protected polymorphism”) entails at least one stable polymorphic equilibrium. Although stable polymorphic and monomorphic equilibria can coexist in general, a stable fixation state (monomorphic equilibrium) precludes the existence of any polymorphic equilibrium under the circumstances of haploid or submultiplicative diploid viabilities. This provides that a stable monomorphism is robust against random fluctuations in allele frequencies. It also increases the known circumstances where there is a unique globally attracting stable equilibrium, i.e., where allele frequencies are determined by the selection-migration structure independent of the history of the system.  相似文献   

12.
Selection due to differential viability is studied in an n-locus two-allele model using a set indexation that allows the simplicity of the one-locus two-allele model to be carried to multi-locus models. The existence condition is analyzed for polymorphic equilibria with linkage equilibrium: Robbins' equilibria. The local stability condition is given for the Robbins' equilibria on the boundaries in the generalized non-epistatic selection regimes of Karlin and Liberman (1979). These generalized non-epistatic regimes include the additive selection model, the multiplicative selection model and the multiplicative interaction model, and their symmetric versions cover all the symmetric viability models.Research supported by grant no. 11-7805 from the Danish Natural Science Research Council, by NIH grant GM 28016, by a fellowship from the Research Foundation of Aarhus University, and by a visiting fellowship from the University of New England, N.S.W.  相似文献   

13.
Polygenic variation can be maintained by a balance between mutation and stabilizing selection. When the alleles responsible for variation are rare, many classes of equilibria may be stable. The rate at which drift causes shifts between equilibria is investigated by integrating the gene frequency distribution W2N II (pq)4N mu-1. This integral can be found exactly, by numerical integration, or can be approximated by assuming that the full distribution of allele frequencies is approximately Gaussian. These methods are checked against simulations. Over a wide range of population sizes, drift will keep the population near an equilibrium which minimizes the genetic variance and the deviation from the selective optimum. Shifts between equilibria in this class occur at an appreciable rate if the product of population size and selection on each locus is small (Ns alpha 2 less than 10). The Gaussian approximation is accurate even when the underlying distribution is strongly skewed. Reproductive isolation evolves as populations shift to new combinations of alleles: however, this process is slow, approaching the neutral rate (approximately mu) in small populations.  相似文献   

14.
Ubeda F  Haig D 《Genetics》2004,167(4):2083-2095
We present a one-locus model that breaks two symmetries of Mendelian genetics. Whereas symmetry of transmission is breached by allowing sex-specific segregation distortion, symmetry of expression is breached by allowing genomic imprinting. Simple conditions for the existence of at least one polymorphic stable equilibrium are provided. In general, population mean fitness is not maximized at polymorphic equilibria. However, mean fitness at a polymorphic equilibrium with segregation distortion may be higher than mean fitness at the corresponding equilibrium with Mendelian segregation if one (or both) of the heterozygote classes has higher fitness than both homozygote classes. In this case, mean fitness is maximized by complete, but opposite, drive in the two sexes. We undertook an extensive numerical analysis of the parameter space, finding, for the first time in this class of models, parameter sets yielding two stable polymorphic equilibria. Multiple equilibria exist both with and without genomic imprinting, although they occurred in a greater proportion of parameter sets with genomic imprinting.  相似文献   

15.
Ecological isolation is a process whereby gene flow between selective environments is reduced due to selection against maladapted dispersers, migrant alleles, or hybrids. Although ecological isolation has been documented in several systems, gene flow can often be high among selective regimes, and more studies are thus needed to better understand the conditions under which ecological gradients or divergent selective regimes should influence population structure. We test for ecological isolation in a system in which high plasticity occurs with respect to traits that are adaptive in alternate forms under different environmental conditions. Pseudocrenilabrus multicolor victoriae is a widespread haplochromine cichlid fish in East Africa that exploits both normoxic (normal oxygen) rivers/lakes and hypoxic (low oxygen) swamps. Here, we examine population structure, using mitochondrial DNA and microsatellites, to determine if genetic divergence is significantly increased between dissolved oxygen regimes relative to within them, while controlling for geographical structure. Our results indicate that geographical separation influences population structure, while no effects of divergent selection with respect to oxygen regimes were detected. Specifically, we document (i) genetic clustering according to geographical region, but no clustering according to oxygen regime; (ii) higher genetic variation among than within regions, but no effect of oxygen regime on genetic variation; (iii) isolation by distance within one region; and (iv) decreasing genetic variability with increasing geographical distance from Lake Victoria. We speculate that plasticity may be facilitating gene flow between oxygen regimes in this system.  相似文献   

16.
Multilocus genetics and the coevolution of quantitative traits   总被引:1,自引:0,他引:1  
We develop and analyze an explicit multilocus genetic model of coevolution. We assume that interactions between two species (mutualists, competitors, or victim and exploiter) are mediated by a pair of additive quantitative traits that are also subject to direct stabilizing selection toward intermediate optima. Using a weak-selection approximation, we derive analytical results for a symmetric case with equal locus effects and no mutation, and we complement these results by numerical simulations of more general cases. We show that mutualistic and competitive interactions always result in coevolution toward a stable equilibrium with no more than one polymorphic locus per species. Victim-exploiter interactions can lead to different dynamic regimes including evolution toward stable equilibria, cycles, and chaos. At equilibrium, the victim is often characterized by a very large genetic variance, whereas the exploiter is polymorphic in no more than one locus. Compared to related one-locus or quantitative genetic models, the multilocus model exhibits two major new properties. First, the equilibrium structure is considerably more complex. We derive detailed conditions for the existence and stability of various classes of equilibria and demonstrate the possibility of multiple simultaneously stable states. Second, the genetic variances change dynamically, which in turn significantly affects the dynamics of the mean trait values. In particular, the dynamics tend to be destabilized by an increase in the number of loci.  相似文献   

17.
We study the equilibrium structure of a well-known two-locus model in which two diallelic loci contribute additively to a quantitative trait that is under Gaussian stabilizing selection. The population is assumed to be infinitely large, randomly mating, and having discrete generations. The two loci may have arbitrary effects on the trait, the strength of selection and the recombination rate may also be arbitrary. We find that 16 different equilibrium patterns exist, having up to 11 equilibria; up to seven interior equilibria may coexist, and up to four interior equilibria, three in negative and one in positive linkage disequilibrium, may be simultaneously stable. Also, two monomorphic and two fully polymorphic equilibria may be simultaneously stable. Therefore, the result of evolution may be highly sensitive to perturbations in the initial conditions or in the underlying genetic parameters. For the special case of equal effects, global stability results are proved. In the general case, we rely in part on numerical computations. The results are compared with previous analyses of the special case of extremely strong selection, of an approximate model that assumes linkage equilibrium, and of the much simpler quadratic optimum model.  相似文献   

18.
The conditions for a protected polymorphism for a general multideme population model subject to selection-migration interaction involving two stages of migration are determined. Migration occurs for adults from demes to mating areas and there exists a distinct distribution governing dispersal of offspring from mating areas to deme sites. A number of characterizations of the stable equilibrium configurations are presented. Some implications accruing due to the existence of multiple mating areas separated from the deme sites are discussed. In this framework the special nature of the Levene (Amer. Naturalist87, 331–333, 1953) and Strobeck (Amer. Naturalist108, 152–156, 1974) population subdivision models are elucidated.  相似文献   

19.
Whitlock MC 《Genetics》2002,160(3):1191-1202
The subdivision of a species into local populations causes its response to selection to change, even if selection is uniform across space. Population structure increases the frequency of homozygotes and therefore makes selection on homozygous effects more effective. However, population subdivision can increase the probability of competition among relatives, which may reduce the efficacy of selection. As a result, the response to selection can be either increased or decreased in a subdivided population relative to an undivided one, depending on the dominance coefficient F(ST) and whether selection is hard or soft. Realistic levels of population structure tend to reduce the mean frequency of deleterious alleles. The mutation load tends to be decreased in a subdivided population for recessive alleles, as does the expected inbreeding depression. The magnitude of the effects of population subdivision tends to be greatest in species with hard selection rather than soft selection. Population structure can play an important role in determining the mean fitness of populations at equilibrium between mutation and selection.  相似文献   

20.
The Levene model is the simplest mathematical model to describe the evolution of gene frequencies in spatially subdivided populations. It provides insight into how locally varying selection promotes a population’s genetic diversity. Despite its simplicity, interesting problems have remained unsolved even in the diallelic case.In this paper we answer an open problem by establishing that for two alleles at one locus and J demes, up to 2J−1 polymorphic equilibria may coexist. We first present a proof for the case of stable monomorphisms and then show that the result also holds for protected alleles. These findings allow us to prove that any odd number (up to 2J−1) of equilibria is possible, before we extend the proof to even numbers. We conclude with some numerical results and show that for J>2, the proportion of parameter space affording this maximum is extremely small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号