首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Multi-allelic microsatellite markers have become the markers of choice for the determination of genetic structure in plants. Synteny across cereals has allowed the cross-species and cross-genera transferability of SSR markers, which constitute a valuable and cost-effective tool for the genetic analysis and marker-assisted introgression of wild related species. Hordeum chilense is one of the wild relatives with a high potential for cereal breeding, due to its high crossability (both interspecies and intergenera) and polymorphism for adaptation traits. In order to analyze the genetic structure and ecogeographical adaptation of this wild species, it is necessary to increase the number of polymorphic markers currently available for the species. In this work, the possibility of using syntenic wheat SSRs as a new source of markers for this purpose has been explored.  相似文献   

2.

Background

Genetic markers and linkage mapping are basic prerequisites for marker-assisted selection and map-based cloning. In the case of the key grassland species Lolium spp., numerous mapping populations have been developed and characterised for various traits. Although some genetic linkage maps of these populations have been aligned with each other using publicly available DNA markers, the number of common markers among genetic maps is still low, limiting the ability to compare candidate gene and QTL locations across germplasm.

Results

A set of 204 expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers has been assigned to map positions using eight different ryegrass mapping populations. Marker properties of a subset of 64 EST-SSRs were assessed in six to eight individuals of each mapping population and revealed 83% of the markers to be polymorphic in at least one population and an average number of alleles of 4.88. EST-SSR markers polymorphic in multiple populations served as anchor markers and allowed the construction of the first comprehensive consensus map for ryegrass. The integrated map was complemented with 97 SSRs from previously published linkage maps and finally contained 284 EST-derived and genomic SSR markers. The total map length was 742 centiMorgan (cM), ranging for individual chromosomes from 70 cM of linkage group (LG) 6 to 171 cM of LG 2.

Conclusions

The consensus linkage map for ryegrass based on eight mapping populations and constructed using a large set of publicly available Lolium EST-SSRs mapped for the first time together with previously mapped SSR markers will allow for consolidating existing mapping and QTL information in ryegrass. Map and markers presented here will prove to be an asset in the development for both molecular breeding of ryegrass as well as comparative genetics and genomics within grass species.  相似文献   

3.
Tibetan annual wild barley is rich in genetic variation. This study was aimed at the exploitation of new SSRs for the genetic diversity and phylogenetic analysis of wild barley by data mining. We developed 49 novel EST-SSRs and confirmed 20 genomic SSRs for 80 Tibetan annual wild barley and 16 cultivated barley accessions. A total of 213 alleles were generated from 69 loci with an average of 3.14 alleles per locus. The trimeric repeats were the most abundant motifs (40.82%) among the EST-SSRs, while the majority of the genomic SSRs were di-nuleotide repeats. The polymorphic information content (PIC) ranged from 0.08 to 0.75 with a mean of 0.46. Besides this, the expected heterozygosity (He) ranged from 0.0854 to 0.7842 with an average of 0.5279. Overall, the polymorphism of genomic SSRs was higher than that of EST-SSRs. Furthermore, the number of alleles and the PIC of wild barley were both higher than that of cultivated barley, being 3.12 vs 2.59 and 0.44 vs 0.37. Indicating more polymorphism existed in the Tibetan wild barley than in cultivated barley. The 96 accessions were divided into eight subpopulations based on 69 SSR markers, and the cultivated genotypes can be clearly separated from wild barleys. A total of 47 SSR-containing EST unigenes showed significant similarities to the known genes. These EST-SSR markers have potential for application in germplasm appraisal, genetic diversity and population structure analysis, facilitating marker-assisted breeding and crop improvement in barley.  相似文献   

4.
5.
A total of 26,685 unutilized public domain expressed sequence tags (ESTs) of Arachis hypogaea L. were analyzed to give a total of 4442 EST-SSRs, in which 517 ESTs contained more than one simple sequence repeat (SSR). Of these EST-SSRs, 2542 were mononucleotide repeats (MNRs), 803 were dinucleotide repeats (DNRs), 1043 were trinucleotide repeats (TNRs), 40 were tetranucleotide repeats (TtNRs), six were pentanucleotide repeats (PNRs) and eight were hexanucleotide repeats (HNRs). Out of these 4442 EST-SSRs, only 1160 were found to be successful in non-redundant primer design; 1060 were simple SSRs, while the remaining 100 were compound forms. Among all the motifs, MNRs were abundant, followed by TNRs and DNRs. The AAG/CTT motif was the most abundant (~33 %) TNR, while AG/CT was the most abundant DNR. For redundancy and novelty, a stringent criterion deploying three different strategies was used and a total of 782 novel EST-SSRs were added to the public domain of peanut. These novel EST-SSR markers will be useful for qualitative and quantitative trait mapping, marker-assisted selection and genetic diversity studies in cultivated peanut as well as related Arachis species. A subset of 30 novel EST-SSRs was further randomly selected for validation and genotyping studies with eight well-known cultivars and 32 advanced breeding lines (ADBX lines, ADBY lines and ADBZ lines) from Odisha state, India. The number of polymorphic markers among accessions of A. hypogaea was low; however, a set of informative EST-SSR markers detected considerable levels of genetic variability in peanut cultivars and uncharacterized breeding lines collected from Odisha. The 30 newly developed EST-SSRs from Arachis spp. showed ~97 % amplification in Cicer arientinum and 93 % in pigeon pea. Thus, the EST-SSRs developed in this study will be a very useful asset for genetic analysis, comparative genome mapping, population genetic structure and phylogenetic inferences among wild and allied species of Arachis.  相似文献   

6.
The first genetic map of the wild South Ameri- can barley species Hordeum chilense is presented. The map, based on an F2 population of 114 plants, contains 123 markers, including 82 RAPDs, 13 SSRs, 16 RFLPs, four SCARs, two seed storage proteins and two STS markers. The map spans 694 cM with an average distance of 5.7 cM between markers. Six additional SSRs and seven additional SCARs which were not polymorphic were assigned to chromosomes using wheat/H. chilense addition lines. Polymorphisms were revealed by 50% of the RAPD amplifications, 13% of wheat and barley SSR primers, and 78% of the Gramineae RFLP anchor probes. The utility of SSR and RFLP probes from other Gramineae species shows the usefulness of a comparative approach as a source of markers and for aligning the genetic map of H. chilense with other species. This also indicates that the overall structure of the H. chilense linkage groups is probably similar to that of the B and D genomes of wheat and the H genome of barley. Applications of the map for tritordeum and wheat breeding are discussed. Received: 20 August 2000 / Accepted: 22 September 2000  相似文献   

7.

Key message

To find stable resistance using association mapping tools, QTL with major and minor effects on leaf rust reactions were identified in barley breeding lines by assessing seedlings and adult plants.”

Abstract

Three hundred and sixty (360) elite barley (Hordeum vulgare L.) breeding lines from the Northern Region Barley Breeding Program in Australia were genotyped with 3,244 polymorphic diversity arrays technology markers and the results used to map quantitative trait loci (QTL) conferring a reaction to leaf rust (Puccinia hordei Otth). The F3:5 (Stage 2) lines were derived or sourced from different geographic origins or hubs of international barley breeding ventures representing two breeding cycles (2009 and 2011 trials) and were evaluated across eight environments for infection type at both seedling and adult plant stages. Association mapping was performed using mean scores for disease reaction, accounting for family effects using the eigenvalues from a matrix of genotype correlations. In this study, 15 QTL were detected; 5 QTL co-located with catalogued leaf rust resistance genes (Rph1, Rph3/19, Rph8/14/15, Rph20, Rph21), 6 QTL aligned with previously reported genomic regions and 4 QTL (3 on chromosome 1H and 1 on 7H) were novel. The adult plant resistance gene Rph20 was identified across the majority of environments and pathotypes. The QTL detected in this study offer opportunities for breeding for more durable resistance to leaf rust through pyramiding multiple genomic regions via marker-assisted selection.  相似文献   

8.
Genic microsatellite markers, also known as functional markers, are preferred over anonymous markers as they reveal the variation in transcribed genes among individuals. In this study, we developed a total of 707 expressed sequence tag-derived simple sequence repeat markers (EST-SSRs) and used for development of a high-density integrated map using four individual mapping populations of B. rapa. This map contains a total of 1426 markers, consisting of 306 EST-SSRs, 153 intron polymorphic markers, 395 bacterial artificial chromosome-derived SSRs (BAC-SSRs), and 572 public SSRs and other markers covering a total distance of 1245.9 cM of the B. rapa genome. Analysis of allelic diversity in 24 B. rapa germplasm using 234 mapped EST-SSR markers showed amplification of 2 alleles by majority of EST-SSRs, although amplification of alleles ranging from 2 to 8 was found. Transferability analysis of 167 EST-SSRs in 35 species belonging to cultivated and wild brassica relatives showed 42.51% (Sysimprium leteum) to 100% (B. carinata, B. juncea, and B. napus) amplification. Our newly developed EST-SSRs and high-density linkage map based on highly transferable genic markers would facilitate the molecular mapping of quantitative trait loci and the positional cloning of specific genes, in addition to marker-assisted selection and comparative genomic studies of B. rapa with other related species.  相似文献   

9.
A selection of 147 wheat D-genome and 130 barley genomic simple sequence repeat (gSSR) markers were screened for their utility in Hordeum chilense, as an alien donor genome for cereal breeding. Fifty-eight wheat D-genome and 71 barley PCR primer pairs consistently amplified products from H. chilense. Nineteen wheat D-genome and 20 barley gSSR markers were polymorphic and allowed wide genome coverage of the H. chilense genome. Twenty-three of the wheat D-genome and 11 barley PCR primer pairs were suitable for studying the introgressions of H. chilense into wheat, amplifying H. chilense products of distinct size. In 88% of the markers tested, H. chilense products were maintained in the expected homeologous linkage group, as revealed by the analysis of wheat/H. chilense addition lines. Twenty-nine microsatellite markers (eight gSSRs and 21 expressed sequence tags-SSRs) uniformly distributed across the genome were tested for their utility in genetic diversity analysis within the species. Three genetic clusters are reported, in accordance with previous morphological and amplified fragment length polymorphism data. These results show that it is possible to discriminate the three previously established germplasm groups with microsatellite markers. The reported markers represent a valuable resource for the genetic characterisation of H. chilense, for the analysis of its genetic variability, and as a tool for wheat introgression. This is the first intraspecific study in a collection of H. chilense germplasm using microsatellite markers.  相似文献   

10.
A selection of 36 wheat and 35 barley simple sequence repeat markers (SSRs) were studied for their utility in Hordeum chilense. Nineteen wheat and nineteen barley primer pairs amplified consistent H. chilense products. Nine wheat and two barley SSRs were polymorphic in a H. chilense mapping population, producing codominant markers that mapped to the expected homoeologous linkage groups in all but one case. Thirteen wheat and 10 barley primer pairs were suitable for studying the introgression of H. chilense into wheat because they amplified H. chilense products of distinct size. Analysis of wheat/H. chilense addition lines showed that the H. chilense products derived from the expected homoeologous linkage groups. The results showed that wheat and barley SSRs provide a valuable resource for the genetic characterization of H. chilense, tritordeums and derived introgression lines. Received: 20 November 2000 / Accepted: 12 April 2001  相似文献   

11.
12.
13.
14.
In the present study, genetic variation among 40 cucumber genotypes was analyzed by means of morpho-physiological traits and 21 EST-SSR markers. Diversity was observed for morpho-physiological characters like days to 50% female flowering (37–46.9, number of fruits/plant (1.33–5.80), average fruit weight (41–333), vine length (36–364), relative water content (58.5–92.7), electrolyte leakage (15.9–37.1), photosynthetic efficiency (0.40–0.75) and chlorophyll concentration index (11.1–28.6). The pair wise Jaccard similarity coefficient ranged from 0.00 to 0.27 for quantitative traits and 0.24 to 0.96 for EST-SSR markers indicating that the accessions represent genetically diverse populations. With twenty-one EST-SSR markers, polymorphism revealed among 40 cucumber genotypes, number of alleles varied 2–6 with an average 3.05. Polymorphism information content varied from 0.002 to 0.989 (mean = 0.308). The number of effective allele (Ne), expected heterozygosity (He) and unbiased expected heterozygosity (uHe) of these EST-SSRs were 1.079–1.753, 0.074–0.428 and 0.074–0.434, respectively. Same 21 EST-SSR markers transferability checked in four other Cucumis species: snapmelon (Cucumis melo var. momordica), muskmelon (Cucumis melo L.), pickling melon (Cucumis melo var. conomon) and wild muskmelon (Cucumis melo var. agrestis) with frequency of 61.9, 95.2, 76.2, and 76.2%, respectively. Present study provides useful information on variability, which can assist geneticists with desirable traits for cucumber germplasm utilization. Observed physiological parameters may assists in selection of genotype for abiotic stress tolerance also, EST-SSR markers may be useful for genetic studies in related species.  相似文献   

15.
16.
Simple, reliable methods for the identification of alien genetic introgressions are required in plant breeding programmes. The use of genomic dot-blot hybridisation allows the detection of small Hordeum chilense genomic introgressions in the descendants of genetic crosses between wheat and H. chilense addition or substitution lines in wheat when molecular markers are difficult to use. Based on genomic in situ hybridisation, DNA samples from wheat lines carrying putatively H. chilense introgressions were immobilised on a membrane, blocked with wheat genomic DNA and hybridised with biotin-labelled H. chilense genomic DNA as a probe. This dot-blot screening reduced the number of plants necessary to be analysed by molecular markers or in situ hybridisation, saving time and money. The technique was sensitive enough to detect a minimum of 5 ng of total genomic DNA immobilised on the membrane or about 1/420 dilution of H. chilense genomic DNA in the wheat background. The robustness of the technique was verified by in situ hybridisation. In addition, the detection of other wheat relative species such as Hordeum vulgare, Secale cereale and Agropyron cristatum in the wheat background was also reported.  相似文献   

17.

Background

During the last decade, numerous microsatellite markers were developed for genotyping and to identify closely related plant genotypes. In citrus, previously developed microsatellite markers were arisen from genomic libraries and more often located in non coding DNA sequences. To optimize the use of these EST-SSRs as genetic markers in genome mapping programs and citrus systematic analysis, we have investigated their polymorphism related to the type (di or trinucleotide) or their position in the coding sequences.

Results

Among 11000 unigenes from a Clementine EST library, we have found at least one microsatellite sequence (repeated units size ranged from 2 to 6 nucleotides) in 1500 unigenes (13.6%). More than 95% of these SSRs were di or trinucleotides. If trinucleotide microsatellites were encountered trough all part of EST sequences, dinucleotide microsatellites were preferentially (50%) concentrated in the 5' 100th nucleotides. We assessed the polymorphism of 41 EST-SSR, by PCR amplification droved with flanking primers among ten Citrus species plus 3 from other genera. More than 90% of EST-SSR markers were polymorphic. Furthermore, dinucleotide microsatellite markers were more polymorphic than trinucleotide ones, probably related to their distribution that was more often located in the 5' UnTranslated Region (UTR). We obtained a good agreement of diversity relationships between the citrus species and relatives assessed with EST-SSR markers with the established taxonomy and phylogeny. To end, the heterozygosity of each genotype and all dual combinations were studied to evaluate the percentage of mappable markers. Higher values (> 45%) were observed for putative Citrus inter-specific hybrids (lime lemon, or sour orange) than for Citrus basic true species (mandarin, pummelo and citron) (<30%). Most favorable combinations for genome mapping were observed in those involving interspecific hybrid genotypes. Those gave higher levels of mappable markers (>70%) with a significant proportion suitable for synteny analysis.

Conclusion

Fourty one new EST-SSR markers were produced and were available for citrus genetic studies. Whatever the position of the SSR in the ESTs the EST-SSR markers we developed are powerful to investigate genetic diversity and genome mapping in citrus.
  相似文献   

18.
19.
20.

Key message

An effective approach for the further evolution of QTL markers, may be to create mapping populations for locally adapted gene pools, and to phenotype the studied trait under local conditions.

Abstract

Mapping populations of Polish fodder and malting spring barleys (Hordeum vulgare L.) were used to analyze traits describing short-time drought response at the seedlings stage. High-throughput genotyping (Diversity Array Technology (DArT) markers) and phenotyping techniques were used. The results showed high genetic diversity of the studied populations which allowed the creation of high-density linkage maps. There was also high diversity in the physiological responses of the barleys. Quantitative trait locus (QTL) analysis revealed 18 QTLs for nine physiological traits on all chromosomes except 1H in malting barley and 15 QTLs for five physiological traits on chromosomes 2H, 4H, 5H and 6H in fodder barley. Chromosomes 4H and 5H contained QTLs which explained most of the observed phenotypic variations in both populations. There was a major QTL for net photosynthetic rate in the malting barley located on chromosome 5H and two major QTLs for overall photochemical performance (PI) located on 5H and 7H. One major QTL related to photochemical quenching of chlorophyll fluorescence was located on chromosome 4H in fodder barley. Three QTL regions were common to both mapping populations but the corresponding regions explained different drought-induced traits. One region was for QTLs related to PSII photosynthetic activity stress index in malting barley, and the corresponding region in fodder barley was related to the water content stress index. These results are in accordance with previous studies which showed that different traits were responsible for drought tolerance variations in fodder and malting barleys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号