首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Summary We have isolated and genetically characterized 10 mutants of Chlamydomonas reinhardtii carrying single, mendelian, temperature-sensitive yellow mutations. The mutants have a yellow phenotype at the restrictive temperature (33°C), but have a wildtype phenotype at the permissive temperature (25°C). Based on complementation and recombination tests, the ten mutations include alleles of two previously described yellow loci (y-1 and y-6) and three new yellow loci (y-8, y-9, and y-10). At the restrictive temperature, y-8, y-9, and y-10 are physiologically similar to other yellow mutants. They accumulate small amounts of protochlorophyllide when grown under dim light, but synthesize normal amounts of chlorophyll when grown in the light. Linkage tests indicate that the three new mutations are not linked to each other. y-8 is linked to y-7 on linkage group III, and y-10 is linked to y-5 and y-6 on linkage group I. y-9 is located on linkage group II. We conclude that the control of light-independent protochlorophyllide reduction is complex, involving several genetic loci which are scattered in the genome and which code for gene products able to complement in trans. Temperature-sensitive alleles at several of the yellow loci suggest that the gene products made by these loci are proteins.  相似文献   

2.
Summary Three phenotypically yellow, mendelian mutants of Chlamydomonas reinhardtii have been isolated and tested for allelism with the yellow mutant v-1a 1 and with each other. The three mutants represent three new yellow loci, two of which are located on linkage group I. Like y-1a, the mutants accumulate protochlorophyllide when grown under dim light, but have a wildtype phenotype when grown in the light. We conclude that the control of light-independent protochlorophyllide reduction is more complex than has been thought previously.  相似文献   

3.
4.
Summary Twenty-three spontaneous yellow mutants were isolated from two stable green strains of the unicellular green alga Chlamydomonas reinhardtii. Genetic characterization indicated that 22 of 23 mutants had a mutation at the y-1 locus, and all 22 y-1 alleles were unstable. Crosses designed to follow the inheritance of instability at the y-1 locus showed that instability is caused by a single genetic factor located at the y-1 locus or very close to it.  相似文献   

5.
Part of the chlL gene encoding a component involved in light-independent protochlorophyllide reduction was deleted in wild type and in a photosystem I-less strain of Synechocystis sp. PCC 6803. In resulting mutants, chlorophyll biosynthesis was fully light-dependent. When these mutants were propagated under light-activated heterotrophic growth conditions (in darkness except for 15 min of weak light a day) for several weeks, essentially no chlorophyll was detectable but protochlorophyllide accumulated. Upon return of the chlL - mutant cultures to continuous light, within the first 6 h chlorophyll was synthesized at the expense of protochlorophyllide at a rate independent of the presence of photosystem I. Chlorophyll biosynthesized during this time gave rise to a 685 nm fluorescence emission peak at 77 K in intact cells. This peak most likely originates from a component different from those known to be directly associated with photosystems II and I. Development of 695 and 725 nm peaks (indicative of intact photosystem II and photosystem I, respectively) required longer exposures to light. After 6 h of greening, the rate of chlorophyll synthesis slowed as protochlorophyllide was depleted. In the chlL - strain, greening occurred at the same rate at two different light intensities (5 and 50 E m-2s-1), indicating that also at low light intensity the amount of light is not rate-limiting for protochlorophyllide reduction. Thus, in this system the rate of chlorophyll biosynthesis is limited neither by biosynthesis of photosystems nor by the light-dependent protochlorophyllide reduction. We suggest the presence of a chlorophyll-binding chelator protein (with 77 K fluorescence emission at 685 nm) that binds newly synthesized chlorophyll and that provides chlorophyll for newly synthesized photosynthetic reaction centers and antennae.  相似文献   

6.
    
Summary A Mendelian mutant r-1 in chlamydomonas reinhardtii has been shown to make the synthesis of -aminolevulinic acid (ALA) insensitive to inhibition by protoporphyrin. We have now combined the r-1 mutant with the protochlorophyllideaccumulating mutant y-1. From the phenotype of the double mutant y-1 r-1 and the phenocopy produced by feeding ALA to y-1, we conclude that r-1 also makes the synthesis of ALA insensitive to the inhibition by protochlorophyllide. To explain the fact that both ALA-fed y-1 and y-1 r-1 accumulate large amounts of protoporphyrin and smaller amounts of protochlorophyllide, we propose a new control feedback loop in the porphyrin biosynthetic pathway from protochlorophyllide to the step which converts protoporphyrin to magnesium protoporphyrin.  相似文献   

7.
B. Schoefs 《Photosynthetica》1999,36(4):481-496
Two different pathways for protochlorophyllide a (Pchlide) reduction in photosynthetic organisms have been proved: one is strictly light-dependent whereas the second is light-independent. Both pathways occur in all photosynthetic cells except in angiosperms which form chlorophyll only through the light-dependent pathway. Most cells belonging to Eubacteria (i.e., the anoxygenic photosynthetic bacteria) synthesize bacteriochlorophyll through the light-independent pathway. This review deals with the physiological, biochemical, and molecular biological features of molecules involved in both pathways of Pchlide reduction. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
When the absorption of light energy exceeds the capacity for its utilization in photosynthesis, regulation of light harvesting is critical in order for photosynthetic organisms to minimize photo-oxidative damage. Thermal dissipation of excess absorbed light energy, measured as non-photochemical quenching (NPQ) of chlorophyll fluorescence, is induced rapidly in response to excess light conditions, and it is known that xanthophylls such as zeaxanthin and lutein, the transthylakoid pH gradient, and the PsbS protein are involved in this mechanism. Although mutants affecting NPQ and the biosynthesis of zeaxanthin and lutein were originally isolated and characterized at the physiological level in the unicellular green alga Chlamydomonas reinhardtii, the molecular basis of several of these mutants, such as npq1 and lor1, has not been determined previously. The recent sequencing of the C. reinhardtii nuclear genome has facilitated the search for C. reinhardtii homologs of plant genes involved in xanthophyll biosynthesis and regulation of light harvesting. Here we report the identification of C. reinhardtii genes encoding PsbS and lycopene ɛ-cyclase, and we show that the lor1 mutation, which affects lutein synthesis, is located within the lycopene ɛ-cyclase gene. In contrast, no homolog of the plant violaxanthin de-epoxidase (VDE) gene was found. Molecular markers were used to map the npq1 mutation, which affects VDE activity, as a first step toward the map-based cloning of the NPQ1 gene.  相似文献   

9.
Dark-grown cells of a mutant strain of Chlorella regularis containedchlorophyll a and protochlorophyll, phytyl ester of protochlorophyllide.Under illumination, protochlorophyll was quantitatively anddirectly converted into chlorophyll a. The photoconversion wasdependent on light intensity and temperature and proceeded ina cell-free preparation. The pathway of chlorophyll formation found in the mutant cellsis entirely different from that from protochlorophyllide byway of chlorophyllide a, which is generally observed in greenplants. 1Present address: Division of Biology, Medical College of Miyazaki,Miyazaki 889-16, Japan. 2Present address: Division of Environmental Biology, The NationalInstitute for Environmental Studies, Ibaragi 300-21, Japan. (Received October 24, 1975; )  相似文献   

10.
Schoefs  B. 《Photosynthetica》2000,36(4):481-496
Two different pathways for protochlorophyllide a (Pchlide) reduction in photosynthetic organisms have been proved: one is strictly light-dependent whereas the second is light-independent. Both pathways occur in all photosynthetic cells except in angiosperms which form chlorophyll only through the light-dependent pathway. Most cells belonging to Eubacteria (i.e., the anoxygenic photosynthetic bacteria) synthesize bacteriochlorophyll through the light-independent pathway. This review deals with the physiological, biochemical, and molecular biological features of molecules involved in both pathways of Pchlide reduction.  相似文献   

11.
Cotyledons of conifers have a light-independent pathway for chlorophyll biosynthesis. To investigate whether the prolamellar body of Scots pine ( Pinus sylveslris L.) is similar to the better known prolamellar body of wheat, etioplast membrane fractions were isolated from cotyledons of dark-grown Scots pine. Dark-grown cotyledons contained both chlorophyll and protochlorophyllide, 158 and 10 nmol (g fresh weight)'respectively, and had a chlorophyll a to b ratio of 4.2. The content of glyco- and phospholipids was 7.1 μmol (g fresh weight)1. About 40 mol % of these lipids were the specific plastid lipids – monogalactosyl diacylglycerol. digalactosyl diacylglycerol and sulfoquinovosyl diacylglycerol in the relative amounts 50, 35 and 7 mol %. The mol ratio of monogalactosyl diacylglycerol to digalactosyl diacylglycerol was 1.7. Low temperature fluorescence emission spectra of intact cotyledons and homogenate showed maxima at 633, 657, 686, 696 nm and a broad peak at 725–735 nm. The maxima at 633 and 657 nm represented different forms of protochlorophyllide and the other emission maxima represented chlorophyll protein complexes. The 657 nm form of protochlorophyllide was phototransformable both in vivo and in the isolated membranes. The phototransformable protochlorophyllide was substantially enriched in the prolamellar body fraction.
The specific activity of light dependent protochlorophyllide oxidoreductase in the prolamellar body fraction was found to be 2 nmol chlorophyllide formed [(mg protein)−1 min−1]. The molecular weight of the enzyme polypeptide was determined as 38 000 dalton with sodium dodecylsulphate-polyacrylamide gel electrophoresis.  相似文献   

12.
Barley (Hordeum vulgare L.) etioplasts were isolated, and the pigments were extracted with acetone. The extract was analyzed by HPLC. Only protochlorophyllide a and no protochlorophyllide b was detected (limit of detection < 1% of protochlorophyllide a). Protochlorophyllide b was synthesized starting from chlorophyll b and incubated with etioplast membranes and NADPH. In the light, photoconversion to chlorophyllide b was observed, apparently catalyzed by NADPH :protochlorophyllide oxidoreductase. In darkness, reduction of the analogue zinc protopheophorbide b to zinc 7-hydroxy-protopheophorbide a was observed, apparently catalyzed by chlorophyll b reductase. We conclude that protochlorophyllide b does not occur in detectable amounts in etioplasts, and even traces of it as the free pigment are metabolically unstable. Thus the direct experimental evidence contradicts the idea by Reinbothe et al. (Nature 397 (1999) 80-84) of a protochlorophyllide b-containing light-harvesting complex in barley etioplasts.  相似文献   

13.
A chloroplast-encoded gene, designated chlB, has been isolated from Chlamydomonas reinhardtii, its nucleotide sequence determined, and its role in the light-independent reduction of protochlorophyllide to chlorophyllide demonstrated by gene disruption experiments. The C. reinhardtii chlB gene is similar to open reading frame 563 (orf563) of C. moewusii, and its encoded protein is a homolog of the Rhodobacter capsulatus bchB gene product that encodes one of the polypeptide components of bacterial light-independent protochlorophyllide reduction. To determine whether the chlB gene product has a similar role in light-independent protochlorophyllide reduction in this alga, a series of plasmids were constructed in which the aadA gene conferring spectinomycin resistance was inserted at three different sites within the chlB gene. The mutated chlB genes were introduced into the Chlamydomonas chloroplast genome using particle gun-mediated transformation, and homoplasmic transformants containing the disrupted chlB genes were selected on the basis of conversion to antibiotic resistance. Individual transformed strains containing chlB disruptions were grown in the dark or light, and 17 of the 18 strains examined were found to have a "yellow-in-the-dark" phenotype and to accumulate the chlorophyll biosynthetic precursor protochlorophyllide. RNA gel blot analysis of chlB gene expression in wild-type cells indicated that the gene was transcribed at low levels in both dark- and light-grown cells. The results of these studies support the involvement of the chlB gene product in light-independent protochlorophyllide reduction, and they demonstrate that, similar to its eubacterial predecessors, this green alga requires at least three components (i.e., chlN, chlL, and chlB) for light-independent protochlorophyllide reduction.  相似文献   

14.
15.
Recently, some evidence for the occurence of a light-independent protochlorophyllide-reducing enzyme in greening barley plants has been presented. In the present work this problem was reinvestigated. -[14C] Aminolevulinic acid was fed to isolated barley shoots from plants which had been preilluminated for various lengths of time. Porphyrins which had been synthesized during the dark incubation were analyzed by high-performance liquid chromatography. There was no evidence for a light-independent synthesis of chlorophyll(ide). The 14C-labelled precursor was incorporated almost exclusively into protochlorophyllide. The reduction of labelled protochlorophyllide to chlorophyllide was strictly light-dependent. These results are not consistent with the existence of a light-independent protochlorophyllide-reductase in barley as proposed previously.Abbreviation HPLC high-performance liquid chromatography  相似文献   

16.
Dark-grown seedlings of Picea abies (L) Karst. are able to accumulate the highest amounts of chlorophyll (Chl) and its precursor protochlorophyllide (Pchlide) in all Pinaceae, but calli derived from 14-d-old green cotyledons of P. abies are completely white during the cultivation in the dark. Pchlide reduction is catalysed in the dark by light-independent protochlorophyllide oxidoreductase (DPOR). This enzyme complex consists of three protein subunits ChlL, ChlN and ChlB, encoded by three plastid genes chlL, chlN and chlB. Using semiquantitative RT-PCR, we observed very low expression of chlLNB genes in dark-grown calli. It seems, that chlLNB expression and thus Chl accumulation could be modulated by light in P. abies calli cultures. This hypothesis is supported by the fact, that we observed low contents of glutamyl-tRNA reductase and Flu-like protein, which probably affected Chl biosynthetic pathway at the step of 5-aminolevulinic acid formation. ChlB subunit was not detected in dark-grown P. abies calli cultures. Our results indicated limited ability to synthesize Chl in callus during cultivation in the dark.  相似文献   

17.
The Chlamydomonas reinhardtii chloroplast gene chlL (frxC) is shown to be involved in the light-independent conversion of protochlorophyllide to chlorophyllide. The polypeptide encoded by chlL contains a striking 53% amino acid sequence identity with the bacteriochlorophyll (bch) biosynthesis bchL gene product in the photosynthetic bacterium Rhodobacter capsulatus. In a previous analysis, we demonstrated that bchL was involved in light-independent protochlorophyllide reduction, thereby implicating chlL in light-independent protochlorophyllide reduction in photosynthetic eukaryotes. To perform a functional/mutational analysis of chlL, we utilized particle gun-mediated transformation to disrupt the structural sequence of chlL at its endogenous locus in the chloroplast genome of Chlamydomonas. Transformants for which the multicopy chloroplast genome was homoplasmic for the disrupted chlL allele exhibit a "yellow-in-the-dark" phenotype that we demonstrated to be a result of the dark accumulation of protochlorophyllide. The presence of a chlL homolog in distantly related bacteria and nonflowering land plants, which are thought to be capable of synthesizing chlorophyll in the dark, was also demonstrated by cross-hybridization analysis. In contrast, we observed no cross-hybridization of a probe of chlL to DNA samples from representative angiosperms that require light for chlorophyll synthesis, in support of our conclusion that chlL is involved in light-independent chlorophyll biosynthesis. The role of chlL in protochlorophyllide reduction as well as recent evidence that both light-independent and light-dependent protochlorophyllide reductases may be of bacterial origin are discussed.  相似文献   

18.
Plastid genes encoding light-independent protochlorophyllide oxidoreductase (LIPOR) subunits were isolated from cryptophyte algae, the first example of such genes in plastids of secondary endosymbiotic origin. The presence of functional and nonfunctional copies of LIPOR genes in cryptophytes suggests that light-independent chlorophyll biosynthesis is a nonessential pathway in these organisms.  相似文献   

19.
We cloned a 6.0-kb HindIII fragment from the cyanobacteriumPlectonema boryanum using the chloroplast chlB (ORF513) geneof the liverwort (Marchantia polymorpha) as a probe. An openreading frame (ORF508) encoding a polypeptide of 508 amino acidresidues was found within the nucleotide sequence of the 4,437-bpHindIII-EcoRV subfragment. The deduced amino acid sequence ofORF508 shows very high similarity to that encoded by the liverwortchlB gene (72.7%). A mutant, YFB14, in which ORF508 was inactivatedby the insertion of a kanamycin-resistance cartridge, was unableto synthesize chlorophyll, accumulating protochlorophyllidein darkness while synthesizing chlorophyll normally in the light.Thus, the chlB gene is the third gene that is essential forthe light-independent reduction of protochlorophyllide. Theother two genes are chlL and chlN, and the results suggest thatthe light-independent protochlorophyllide reductase consistsof at least three subunits, which are encoded by chlL, chlNand chlB. Using an antiserum prepared against a ChlB-6xHis fusionprotein expressed in Escherichia coli, we detected a proteinwith an apparent molecular weight of 58,000 in the membranefraction of the cyanobacterium. These results indicate thateither the cytoplasmic or thylakoid membranes could be the siteof the light-independent reduction of protochlorophyllide. (Received November 16, 1995; Accepted February 7, 1996)  相似文献   

20.
Chlorophyll biosynthesis is catalyzed by two multi subunit enzymes; a light-dependent and a light-independent protochlorophyllide oxidoreductase. The light-independent enzyme consists of three subunits (ChlL, ChlN and ChlB) in photosynthetic bacteria and plastids in which the chlB gene encodes the major subunit that catalyzes the reduction of protochlorophyllide to chlorophyllide. We report here stable integration of the chlB gene from Pinus thunbergii into the chloroplast genome of tobacco. Using helium-driven biolistic gun, transplastomic clones were developed in vitro. The stable integration and homoplasmy for transgenes was confirmed by using PCR and Southern blotting techniques. Nodal cuttings of the homoplasmic transgenic and untransformed wild type shoots were cultured on MS medium in the dark. As expected, shoots developed from the cuttings of the wild type plants in the dark showed etiolated growth with no roots whereas shoots from the cuttings of the transgenic plants developed early and more roots. Upon shifting from dark to light in growth room, leaves of the transgenic shoots showed early development of chlorophyll pigments compared to the wild type shoots. Further, photosynthetically indistinguishable transgenic shoots also showed significant difference in root development from untransformed wild type shoots when cuttings were grown in the light. Therefore, it may be concluded that the chlB gene is involved, directly or indirectly, in the root development of tobacco. Further, the gene promotes early development of chlorophyll pigments, upon illumination from dark, in addition to its role in the light-independent chlorophyll formation when expressed together with subunits L&N in other organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号