首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
A continuous rat epidermal cell line (rat epidermal keratinocyte; REK) formed a morphologically well-organized epidermis in the absence of feeder cells when grown for 3 weeks on a collagen gel in culture inserts at an air-liquid interface, and developed a permeability barrier resembling that of human skin. By 2 weeks, an orthokeratinized epidermis evolved with the suprabasal layers exhibiting the differentiation markers keratin 10, involucrin, and filaggrin. Granular cells with keratohyalin granules and lamellar bodies, and corneocytes with cornified envelopes and tightly packed keratin filaments were present. Morphologically, vitamin C supplementation of the culture further enhanced the normal wavy pattern of the stratum corneum, the number of keratohyalin granules present, and the quantity and organization of intercellular lipid lamellae in the interstices of the stratum corneum. The morphological enhancements observed with vitamin C correlated with improved epidermal barrier function, as indicated by reduction of the permeation rates of tritiated corticosterone and mannitol, and transepidermal water loss, with values close to those of human skin. Moreover, filaggrin mRNA was increased by vitamin C, and western blots confirmed higher levels of profilaggrin and filaggrin, suggesting that vitamin C also influences keratinocyte differentiation in aspects other than the synthesis and organization of barrier lipids. The unique REK cell line in organotypic culture thus provides an easily maintained and reproducible model for studies on epidermal differentiation and transepidermal permeation.  相似文献   

2.
Growth and differentiation of keratinocytes in a serum-free medium (keratinocyte growth medium or KGM) was studied and compared to that under conditions in which serum and feeder cell layers were used. Cells were grown in KGM containing 0.1 mM calcium (KGM/low calcium), KGM containing 1.2 mM calcium (KGM/normal calcium), or Dulbecco's modified Eagles medium containing 5% fetal calf serum and 1.8 mM calcium in presence of mitomycin treated 3T3 M cells (DMEM/5% FCS). Plating efficiency and rate of growth were similar in the three media till confluence. In postconfluent cultures, protein and DNA content of cells attached to the plate in KGM/low-calcium dishes decreased as an increased number of cells were shed into the medium. Cell shedding was much less evident in the presence of normal calcium. Cells grown in KGM/low calcium had a higher rate of cell proliferation (3H-thymidine incorporation into cellular DNA) than cells grown in normal calcium. Transglutaminase activity, involucrin content, and cornified envelope formation were greatest in cells grown in KGM/normal calcium, intermediate in cells grown in DMEM/5% FCS, and least in cells grown in KGM/low calcium. Keratin profiles from cells grown in KGM/low calcium showed a lower percentage of high molecular weight bands compared to the keratin profiles from cells grown in the presence of normal calcium. Keratinocytes in KGM/low calcium grew as a monolayer of cuboidal cells with few features of differentiation, whereas cells grown in KGM/normal calcium stratified into multilayered islands (3-5 layers) surmounted by 2-4 layers of enucleated cells with thickened cornified envelopes. Cells grown in KGM/normal calcium also contained tonofilaments and lamellar bodies unlike cells grown in KGM/low calcium. Cells grown in DMEM/5% FCS also formed stratified layers comparable to cells grown in KGM/normal calcium but lacked cornified cells, keratohyalin granules, tonofilament bundles, and lamellar bodies. These studies indicate the usefulness of serum-free conditions for the culture of human keratinocytes and confirm the importance of extracellular calcium in keratinocyte differentiation.  相似文献   

3.
Epidermis reconstructed on de-epidermized dermis was used to investigate the effects of growth factors and culture temperature on epidermal morphogenesis and the expression of cornified envelope precursors. Cultures grown at 33°C or 37°C in the absence or presence of transforming growth factor alpha (TGFα), keratinocyte growth factor (KGF), basic fibroblast growth factor (bFGF), or insulin-like growth factor (IGF) show a similar morphology to that of native epidermis. Loricrin and SPRR2 are expressed in the stratum granulosum and SPRR3 is absent. Cultures grown in epidermal growth factor (EGF)-supplemented medium at 37°C have a normal morphology, whereas cultures grown at 33°C have a disorganized basal layer, no stratum granulosum, and nuclei are present in the stratum corneum. Loricrin is absent, and SPRR2 and SPRR3 expression extend into the spinous layers. Irrespective of the culture condition used, involucrin is aberrantly expressed in all suprabasal layers. EGF stimulated keratinocyte proliferation and migration to a greater degree than TGFα. Epidermis reconstructed on fibroblast-populated collagen gels at 33°C led to the same disturbances in keratinocyte differentiation as seen in cultures grown on de-epidermized dermis at 33°C in the presence of EGF, whereas parallel cultures grown at 37°C have a similar morphology to that of native epidermis.  相似文献   

4.
Summary A new culture vessel for the growth of cells on biological substrata and under organotypic conditions is described. This device, named Combi-ring-dish (CRD), is composed of four concentric rings designed to take up one or several substrata on which cells can be grown either immersed in culture medium or exposed to air and fed from underneath. Using the CRD, outer root sheath cells, isolated from plucked human hair follicles and plated on growth-arrested 3T3 feeder layers, were grown on native collagen lattices populated with living human fibroblasts. After reaching confluence, the immersed cultures were recombined (in vitro) with pieces of freeze-killed dermis and grown further, exposed to air. Thus by mimicking epidermal growth conditions, differentiation was dramatically improved, compared to control cultures on plastic substratum. Virtually all morphologic features of interfollicular epidermis developed. This seems a suitable model to investigate the differentiation potential of human hair follicle cells.  相似文献   

5.
The aim of this study was to determine the role of ECM components of bone in regulating the differentiation and function of cells of the osteoblast lineage. Rat UMR 201 cells, phenotypically preosteoblast, were plated onto plastic tissue culture dishes or dishes coated with gelled type I collagen or reconstituted basement membrane (matrigel). Acute cell attachment assays showed that cells adhered to substrates in the following order: collagen > matrigel ? plastic. Proliferation rate up to 96 hr were similar on each substrate. However, if cells were treated with 10?6 M retinoic acid (RA), proliferation rates were reduced compared with control for cells grown on collagen and matrigel but not on plastic. Morphological changes were matrix-specific; in subconfluent cultures, long thin processes were seen with cells grown on collagen and a pattern of interconnecting cell processes formed when cells were plated on matrigel. Striking differences were observed in the constitutive or RA-induced gene expression of cells grown on the different substrates. When cells plated on collagen were treated with RA, induction of mRNA for alkaline phosphatase (ALP) as well as ALP enzyme activity were much less than with cells grown on plastic. In contrast, RA treatment induced osteopontin (OP) mRNA expression more strongly in cells plated on collagen compared with plastic within 24 hr and this was maintained for 72 hr. RA treatment produced a two fold increase of pro-α 1(I) collagen mRNA in cells grown on plastic and matrigel but not in cells grown on collagen. Growth on collagen produced changes in the way UMR 201 cells responded to RA from which they did not fully recover in subsequent 48-hr growth periods on plastic. These results indicate that ECM components regulate the function of and are capable of modulating RA-induced differentiation of preosteoblasts. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Summary Cell suspensions of human keratinocytes seeded onto cell culture inserts may undergo terminal differentiation in the absence of fibroblasts. Among the parameters that control these morphogenic events, exposure to air and the composition of the culture medium were investigated. In the latter case, three media were considered DMEM:Ham’s F12, MCDB 153, and keratinocyte SFM medium at equivalent calcium (1.5 mM) and fetal calf serum (5%) concentrations. Immunochemical methods and transmission electron microscopy show that cells cultured in DMEM:Ham’s F12 medium, and then raised at the air-liquid interface, form a basal layer plus suprabasal cell layers corresponding to thestratum spinosum, stratum granulosum, andstratum corneum. The suprabasal keratinocyte layers show morphologies that resemble intact skin in which cells are connected by desmosomes and contain intermediate filaments and keratohyalin-filaggrin granules. When the cultures are kept submerged, the keratinocytes show occasional keratohyalin granules and are connected by fewer desmosomes. Additionally, no properstratum corneum is formed. In keratinocyte SFM medium and MCDB 153, cultures raised at the air-liquid interface are not able to form an epithelium of normal architecture and do not express terminal differentiation markers. Differentiation is initiated, however, since desmosomes and bundles of keratin filaments appear; on the other hand, filaggrin is not expressed even after 28 d in culture. Membrane-bound transglutaminase is expressed throughout the entire suprabasal compartment in MCDB153 and DMEM:Ham’s F12 media but never appears in keratinocyte SFM medium. These studies show the relative independence of epidermal differentiation program to the composition (including the calcium concentration) of the media contacting the dermis and filling the extracellular space. Conversely, differentiation appears to depend on elements of basal medium and/or components synthesized by keratinocytes under the influence of the culture medium.  相似文献   

7.
Cellular growth and collagen biosynthesis were compared in dermal calf fibroblasts cultured on plastic or on a reconstituted basement membrane gel, termed matrigel. This matrix, extracted from Engelbreth-Holm-Swarm tumors, consists mainly of laminin, entactin, type IV collagen, and heparan sulfate proteoglycan. The multiplication rate of fibroblasts grown on matrigel was stimulated compared to that of monolayered cells cultured on plastic, and these cells formed multilayers after 4 days. Protein and collagen biosynthesis was reduced in fibroblasts cultured on matrigel. A higher proportion of the newly synthesized collagen (40%) was incorporated to the extracellular matrix in cultures grown on matrigel than in those grown on plastic (14%). Type III collagen was the preferential collagen type deposited on matrigel, and the ratio of type III:type I collagens secreted in the medium was also slightly higher in cultures grown on matrigel. Partially processed collagen was more abundant in fibroblasts grown on matrigel than in cells cultured on plastic. Finally, cells grown on matrigel exhibited a higher catabolic activity than cells grown on plastic. In this experimental model, the reconstituted basement-membrane matrix seems to influence the activities of fibroblasts significantly.  相似文献   

8.
The morphology of human embryonic and fetal skin growth in organ culture at the air-medium interface was examined, and the labeling indices of the epidermal cells in such cultures were determined. The two-layered epidermis of embryonic specimens increased to five or six cell layers after 21 days in culture, and the periderm in such cultures changed from a flat cell type to one with many blebs. The organelles in the epidermal cells remained unchanged. Fetal epidermis, however, differentiated when grown in this organ culture system from three layers (basal, intermediate, and periderm) to an adult-type epidermis with basal, spinous, granular, and cornified cell layers. Keratohyalin granules, lamellar granules, and bundles of keratin filaments, organelles associated with epidermal cell differentiation, were observed in the suprabasal cells of such cultures. The periderm in these fetal cultures formed blebs early but was sloughed with the stratum corneum in older cultures. The rate of differentiation of the fetal epidermis in organ culture was related to the initial age of the specimen cultured, with the older specimens differentiating at a faster rate than the younger specimens. Labeling indices (LIs) of embryonic and fetal epidermis and periderm were determined. The LI for embryonic basal cells was 8.5% and for periderm was 8%. The fetal LIs were 7% for basal cells, 1% for intermediate cells, and 3% for periderm. The ability to maintain viable pieces of skin in organ culture affords a model for studying normal and abnormal human epidermal differentiation from fetal biopsies and for investigating proliferative diseases.  相似文献   

9.
Aortic smooth muscle cells (SMC) grown on conventional plastic culture dishes have morphological and functional properties of dedifferentiated cells in sub-culture. We examined the influence of collagen gels on the cell shape and arrangement. The cells grown on collagen gels showed a multilayered growth with formation of nodules. When the edge of the collagen gels was detached from the culture dish, the shape and arrangement of cells on the edge differed from that of the central, still attached region. The cells grown on floating collagen gels exhibited a spindle-like shape and were arranged in concentric circles. These findings suggest that the physical property of the substrate influences the cell shape and arrangement.  相似文献   

10.
Summary We previously demonstrated that human tracheobronchial epithelial (TBE) cells synthesize mucin and form mucous granules in culture when they are maintained on a collagen gel (CG) substratum, but not on a plastic tissue culture surface or a thin collagen-coated surface (Wu et al., Am. J. Respir. Cell Mol. Biol., 3:467–478; 1990). This observation led us to examine the effects of CG thickness on cell growth and differentiation in primary human/monkey TBE cell cultures. Using the same CG preparation, culture dishes with different thicknesses of CG substratum were prepared. In general, equivalent degrees of cell attachment and proliferation were observed in all cultures maintained on a collagen gel, independent of the thicknesses of CG substratum. However, a greater degree of mucin synthesis and secretion by the cells was observed as the thickness of the CG substratum was increased. Cultures maintained on a thick collagen gel (1 mm) exhibited greater apical membrane complexity, more pseudostratification, and more mucous granules than did cultures maintained on a thin CG substratum. The optimal culture surface for airway mucous cell differentiation contains more than 1-mm thickness of collagen gel substratum.  相似文献   

11.
In order to better understand how outer root sheath (ORS) cells are able to reepithelialize superficial skin wounds, the level of epidermal differentiation achieved by isolated ORS cells in vitro was determined. Using postmitotic human dermal fibroblasts (HDF) as efficient feeder cells, large numbers of ORS cells from individual follicles were generated. Passaged ORS cells were grown exposed to air on HDF-populated collagen gels in the CRD device (Noser and Limat, In vitro 23, 541-545, 1987) which allows histiotypic tissue organization. In such recombinant organotypic cultures, ORS cells developed distinct epidermal strata comparable to interfollicular keratinocytes (NEK). Ultrastructurally, desmosomes and intermediate filaments increased in number toward the epithelial surface and small keratohyalin (KH) granules (but no large irregular KH granules as in NEK) were abundant, adjacent to an electrondense stratum corneum. Also, synthesis of epidermal suprabasal keratins (K1 and 10;2D gels) was lower in ORS cultures, but clearly visible suprabasally by immunofluorescence along with other epidermal markers (involucrin, filaggrin, surface glycoprotein gp80, pemphigus vulgaris antigen). Basement membrane components (laminin, type IV collagen, bullous pemphigoid antigen) were detectable in both ORS and NEK in these assays. Thus, phenotypic expression was largely comparable, but, whereas terminal differentiation (keratinization) was progressing in NEK cultures limiting their lifespan, this seemed to be better controlled in ORS cultures and viable cell layers persisted resulting in longer survival time.  相似文献   

12.
Alveolar type II epithelial cells rapidly lose characteristics of differentiated function when cultured on plastic dishes. We have attempted to circumvent this problem by culturing type II cells under conditions that might better reproduce their environment in vivo. Cell-matrix interactions were studied by culturing isolated adult rat type II cells on Engelbreth-Holm-Swarm (EHS) tumor basement membrane. Aggregates of type II cells formed on the surface of the matrix during 4 days in culture. Microscopic examination of these aggregates revealed cuboidal cells that retained more characteristics of differentiated type II cells than did cells cultured on plastic. Type II cells cultured on EHS matrix incorporated a higher percentage of acetate into phosphatidylcholine (PC) than did cells on plastic, and a higher percentage of this PC was saturated. Phosphatidylglycerol (PG) synthesis by these cells was no different from that seen in cells on plastic. The effects of cell-cell interactions and cell shape were evaluated by culturing type II cells on feeder layers that in turn were grown on collagen gels. The feeder layer cells included fetal rat lung fibroblasts, adult rat lung fibroblasts, fetal rat skin fibroblasts, bovine aortic endothelial cells, and rat mammary tumor epithelial cells. One-half of the gels remained attached to the culture dish and one-half of the gels were detached after 24 h and allowed to float free in the medium. Type II cells grown in association with any of the attached feeder layers became flattened and lost their differentiated phenotype. These cells incorporated no greater percentage of acetate into PC than did cells on plastic. Saturated PC synthesis was modestly increased. PG synthesis declined in parallel with that seen in cells cultured on plastic. Type II cells cultured on feeder layers that were detached assumed their native cuboidal shape and also exhibited many morphological characteristics of differentiated function. These cells incorporated a significantly greater percentage of acetate into PC compared to cells on either plastic or attached feeder layers. Saturated PC synthesis also increased markedly. These cells, however, incorporated no greater percentage of acetate into PG than did cells on plastic or attached feeder layers. These data suggest an important role for cell shape and cell-matrix interactions and maintenance of type II cell differentiation. The effects of cell-cell interactions, while beneficial, appear to be non-specific.  相似文献   

13.
Bovine adrenal medulla capillary endothelial cells were isolated and cloned, and their morphological behaviors in vitro were examined. In the culture of primary or early passage, one type of colony formed intracellular lumina both on the dish and in the three dimensional collagen gel. Another type proliferated well and showed morphology ranging from slender-shape to cobblestone shape, and were easily cloned. Cloned cells which showed slender-shapes formed tubular network on plastic dish after addition of PMA, OAG or vanadate, and these cells also formed multicellular tubules in the three dimensional collagen gel. However, the formation of diaphragmed fenestrae by these slender-shape clones was rare. One clone which showed cobblestone shape formed diaphragmed fenestrae, when cultured on collagen gel for more than one month. Isolated colonies or clones showed heterogeneity of cell shape, angiogenic behaviors and fenestrae formation.  相似文献   

14.
1. A tissue culture method was devised in which suspensions of osteoblasts, obtained directly from frontal bones of fowl embryos, were grown in a fluid, fibrin-free medium. 2. Maximum growth of the tissue, as measured by dry weight, with the formation of collagen protein, based on the estimation of hydroxyproline, was obtained in periods of up to 6 days. 3. Appreciable amounts of protein-bound hydroxyproline were formed during the first 24 hour growth period, but electron microscopy of portions of the same cultures failed to demonstrate the presence of any typical collagen fibrils. 4. The subsequent formation of many characteristic collagen fibrils was not associated with a significant rise in the mean hydroxyproline content of the tissue. 5. The cytoplasmic granules of the osteoblasts stained intensely with the P.A.S. technique when the collagen fibrils were being formed. 6. It is suggested that collagen-forming cells synthesise and secrete a hydroxyproline-rich precursor of protein or large peptide nature, which subsequently becomes directly transformed into typical collagen fibrils.  相似文献   

15.
1. A tissue culture method was devised in which suspensions of osteoblasts, obtained directly from frontal bones of fowl embryos, were grown in a fluid, fibrin-free medium. 2. Maximum growth of the tissue, as measured by dry weight, with the formation of collagen protein, based on the estimation of hydroxyproline, was obtained in periods of up to 6 days. 3. Appreciable amounts of protein-bound hydroxyproline were formed during the first 24 hour growth period, but electron microscopy of portions of the same cultures failed to demonstrate the presence of any typical collagen fibrils. 4. The subsequent formation of many characteristic collagen fibrils was not associated with a significant rise in the mean hydroxyproline content of the tissue. 5. The cytoplasmic granules of the osteoblasts stained intensely with the P.A.S. technique when the collagen fibrils were being formed. 6. It is suggested that collagen-forming cells synthesise and secrete a hydroxyproline-rich precursor of protein or large peptide nature, which subsequently becomes directly transformed into typical collagen fibrils.  相似文献   

16.
Summary The effects of mesenchyme and substratum on epidermal differentiation and formation of a basement membrane (BM) were analyzed in vitro and in vivo. Primary epidermal cell cultures (PEC) from neonatal mice were grown: (1) on plastic culture dishes; (2) on lifted collagen gels, either alone or (3) in recombination with mesenchyme; (4) after reimplantation in vivo either directly on mesenchyme or (5) on collagen interposed between keratinocytes and mesenchyme. Differentiation of the epithelium and formation of a BM were examined by electron microscopy, and expression of BM constituents (type IV collagen, laminin, fibronectin, bullous pemphigoid antigen, and heparan sulfate proteoglycan) by indirect immunofluorescence. PEC on plastic or on collagen gels showed poor differentiation, a structured BM was not visible, and the expression and deposition of BM constituents was incomplete. Upon reimplantation in vivo, differentiation was normalized, expression of BM components complete and a structured BM reformed. This effect does not depend on immediate contact of epidermal cells with mesenchyme. When PEC on collagen gel were similarly associated with dermal mesenchyme in vitro, epidermal differentiation and expression of BM components were almost normalized, but a structured BM was absent. These findings demonstrate that formation of the BM in epidermis is a function of keratinocytes and, like differentiation is subject to mesenchymal control. A structural BM is not a prerequisite but rather an additional criterion of normal epidermal differentiation. Send offprint requests to: Norbert E. Fusenig, M.D., Division of Differentiation and Carcinogenesis in vitro, Institute of Biochemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-6900 Heidelberg, Federal Republic of GermanyPart of the work was performed when I.C. Mackenzie was guest scientist at the DKFZSupported by the Deutsche Forschungsgemeinschaft (Fu 91/2)  相似文献   

17.
The chalazal area is confirmed as the site of initial water entry into prickly sida (Sida spinosa L.) seeds. Very early during imbibition of water, a kidney-shaped area of the seed coat separates from underlying cells forming a blister. This blister may also be induced in dry seeds (both afterripened and nonafterripened) when pressure is applied to the chalazal area. Blisters form more readily on afterripened seeds than on nonafterripened seeds, however, and the event is correlated with an increase in seed coat permeability to water. Immediately beneath the palisade layer of the blister lies a single layer of subpalisade cells. This layer is observed only in the region of blister formation. As the blister separates, the end walls of the subpalisade cells remain attached to the floor of the palisade layer. The subpalisade cells are thereby broken open, and their contents disgorged into the blister lumen. Evidence indicates that this separation of the palisade and subpalisade layers in the chalazal area initiates imbibition of water by prickly sida seeds.  相似文献   

18.
Previous works suggest the involvement of mast cells in the epithelialization of chronic wounds. Since heparin is a major mediator stored in the secretory granules of mast cells, the purpose of this work was to elucidate the function of heparin in epithelialization using in vitro culture models. For this, low- and high-calcium media in monolayer and epithelium cultures of keratinocytes were used. Also, an assay based on keratinocyte adherence onto plastic surface was used as well. Heparin (0.02-200 microg/ml) inhibited keratinocyte growth in a non-cytotoxic and dose-dependent manner in low- and high-calcium media, Keratinocyte-SFM and DMEM, in the absence of growth factors and serum. Also, heparin inhibited the growth of keratinocyte epithelium in the presence of 10% fetal calf serum and DMEM. Instead, in the presence of Keratinocyte-SFM and growth factors, heparin at 2 microg/ml inhibited the growth by 18% but at higher heparin concentrations the inhibition was reversed to baseline. TNF-alpha is another preformed mediator in mast cell granules and it inhibited keratinocyte growth in monolayer and epithelium cultures. Interestingly, heparin at 2-20 microg/ml augmented or even potentiated this growth-inhibitory effect of TNF-alpha. The association of TNF-alpha with heparin was shown by demonstrating that TNF-alpha bound tightly to heparin-Sepharose chromatographic material. However, heparin could not augment TNF-alpha-induced cell cycle arrest at G0/G1 phase or intercellular adhesion molecule-1 expression in keratinocytes. In the cell adherence assay, heparin at 2 microg/ml inhibited significantly by 12-13% or 33% the adherence of keratinocytes onto the plastic surface coated with fibronectin or collagen, respectively, but this inhibition was reversed back to baseline at 20 or 200 microg/ml heparin. Also, heparin affected the cell membrane rather than the protein coat on the plastic surface. In conclusion, heparin not only inhibits or modulates keratinocyte growth and adherence but it also binds and potentiates the growth-inhibitory function of TNF-alpha.  相似文献   

19.
20.
TGF-beta at concentrations in the range from 0.1 to 10 ng/ml gave significant growth inhibition of nonmalignant human mammary epithelial cells (HMEC) but not of malignant HMEC grown in monolayer cultures in serum-free medium. However, no growth inhibition of the nonmalignant cells was observed when the cells were cultivated within a type-I collagen gel matrix either adhering to a plastic substratum or floating on the medium. Within floating collagen gels, both nonmalignant and malignant HMEC formed a cell mass having radial extensions, and TGF-beta at 1 or 10 ng/ml prevented the formation of extensions only in the nonmalignant HMEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号