首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manufacturers of supplements containing magnesium lactate dihydrate and calcium lactate monohydrate claim improved athletic performance. Although energy can be produced through the lactate shuttle system, there is limited evidence to suggest that substantial quantities are available for human movement during exercise. The purpose of this study was to evaluate the effectiveness of lactate as a performance-enhancing substance. Nine recreational to competitive cyclists (VO2max = 52.46 ± 11.8) completed 3 simulated 20-km time trials conducted on a Velotron. The first trial was used as a familiarization trial, and the last 2 trials were counterbalanced ergogenic aid/placebo trials. To eliminate the possibility of bias, the study was conducted double blind. Dependent measures (time, mean power, heart rate [HR], and ratings of perceived exertion) for the 3 trials were compared using repeated measures analysis of variance (p = 0.05). There were no significant differences between placebo and ergogenic aid in measures of time (38.78 ± 5.87 minutes vs. 39.07 ± 6.00 minutes; p = 0.212), mean power (236.40 ± 74.8 W vs. 232.81 ± 76.12 W; p = 0.342), and HR (167.36 ± 10.11 minutes vs. 163.70 ± 13.07 minutes; p = 0.092). Ratings of perceived exertion for the placebo trial were significantly higher in relation to the ergogenic aid trial (15.97 ± 0.72 vs. 15.70 ± 0.85; p = 0.039). Although not significant, times during the placebo trials were faster in relation to the ergogenic aid trials. Ratings of perceived exertion were significantly higher in the placebo trials, which could reflect the trend toward faster times. Supplementation of magnesium lactate dihydrate and calcium lactate monohydrate does not appear to significantly improve times during a simulated 20-km time trial and therefore should not be recommended for use as an ergogenic aid.  相似文献   

2.
3.
This study compared the muscle activities, cardiorespiratory responses, and ratings of perceived exertion (RPE) of nine older individuals while walking in water with those obtained while walking on dry land. Electromyography, stride frequency (SF), stride length (SL), oxygen uptake (V O(2)), heart rate (HR), RPE (for breathing and legs, RPE-Br and RPE-Legs, respectively), and blood lactate concentration (BLa) were measured. There were no significant differences in the V O(2), HR, RPE-Br, RPE-Legs or BLa while walking in water and on dry land (moderate and fast speeds). Both in water and on dry land, the V O(2)-HR, V O(2)-walking speed, and HR-walking speed relationships were significantly correlated. The SF and SL while walking in water were significantly lower than on dry land. The %MVCs while walking in water were all significantly lower than on dry land within each speed condition. Conversely, the V O(2), HR, RPE-Br and RPE-Legs, BLa, SL, and %MVC (the rectus femoris, vastus medialis, biceps femoris, and gastrocnemius) while walking in water were significantly higher than on dry land at the same speeds. In conclusion, walking in water elicits higher muscle activities, higher cardiorespiratory responses, and increased perceived exertion levels in older adults than walking on dry land at the same speed.  相似文献   

4.
We assessed the effects of naloxone, an opioid antagonist, on exercise capacity in 13 men and 5 women (mean age = 30.1 yr, range = 21-35 yr) during a 25 W/min incremental cycle ergometer test to exhaustion on different days during familiarization trial and then after 30 mg (iv bolus) of naloxone or placebo (Pl) in a double-blind, crossover design. Minute ventilation (Ve), O(2) consumption (Vo(2)), CO(2) production, and heart rate (HR) were monitored. Perceived exertion rating (0-10 scale) and venous samples for lactate were obtained each minute. Lactate and ventilatory thresholds were derived from lactate and gas-exchange data. Blood pressure was obtained before exercise, 5 min postinfusion, at maximum exercise, and 5 min postexercise. There were no control-Pl differences. The naloxone trial demonstrated decreased exercise time (96% Pl; P < 0.01), total cumulative work (96% Pl; P < 0.002), peak Vo(2) (94% Pl; P < 0.02), and HR (96% Pl; P < 0.01). Other variables were unchanged. HR and Ve were the same at the final common workload, but perceived exertion was higher (8.1 +/- 0.5 vs. 7.1 +/- 0.5) after naloxone than Pl (P < 0.01). The threshold for effort perception amplification occurred at approximately 60 +/- 4% of Pl peak Vo(2). Thus we conclude that peak work capacity was limited by perceived exertion, which can be attenuated by endogenous opioids rather than by physiological limits.  相似文献   

5.
The purpose of this investigation was to relate the heart rate and lactate response during simulated cycling time trials to incremental laboratory tests. Subjects (N = 10) were tested for .V(O2)max (56.1 +/- 2.4 ml.kg(-1).min(-1) ) and lactate threshold during incremental tests to exhaustion. Power output and heart rate (HR) at threshold was assessed by 3 methods: lactate deflection point (LaT), onset of blood lactate accumulation (OBLA), and the point on the lactate curve at maximal distance from a line connecting starting and finishing power output (Dmax). Power output determined at these thresholds was 282.1 +/-4.2, 302.5 +/-1.3, and 296.0 +/- 1.8 W, respectively, whereas HR was determined to be 88.6 +/- 0.01, 92.2 +/- 0.01, and 91.0 +/- 0.01% of maximum, respectively. Power output and HR were significantly lower for LaT than for the other 2 methods (p < 0.05). On separate visits, cyclists were instructed to perform maximum efforts for 30 and 60 minutes (30TT and 60TT). Lactate, HR, perceived exertion (RPE), and metabolic variables were measured during the time trials. During the 30TT, participants sustained a significantly higher lactate level (5.29 +/- 0.3 vs. 3.43 +/- 0.3 mmol.L(-1), p < 0.001), percentage of maximum HR (%HRmax) (90.3 +/- 0.02 vs. 84.6 +/- 0.01, p = 0.009), and overall RPE (15.5 +/- 0.5 vs. 14.4 +/- 0.5, p = 0.009), than during the 60TT. .V(O2) was not significantly different between the time trials; however, .V(CO2) (p = 0.008), ventilation (p = 0.004), and respiratory exchange ratio (p = 0.02) were significantly higher during the 30TT. Correlations were found between HR at LaT (r = 0.78), OBLA (r = 0.78), and Dmax (r = 0.71) for the 60TT, but not for the 30TT. These data suggest that despite a large variability in blood lactate during time trial efforts of 30 and 60 minutes (from 1.8 to 10.8 mmol.L(-1)), HR was consistently 90% of maximum for the 30TT and 85% for the 60TT. HR during the 30TT was approximated by HR corresponding to OBLA and Dmax, whereas HR during 60TT was approximated by LaT.  相似文献   

6.
To compare some psychophysiological responses to arm exercise with those to leg exercise, an experiment was carried out on electronically braked bicycle ergometers, one being adapted for arm exercise. Eight healthy males took part in the experiment with stepwise increases in exercise intensity every 4 min: 40-70-100-150-200 W in cycling and 20-35-50-70-100 W in arm cranking. Towards the end of each 4 min period, ratings of perceived exertion were obtained on the RPE scale and on a new category ratio (CR) scale:heart rate (HR) and blood lactate accumulation (BL) were also measured. The responses obtained were about twice as high or more for arm cranking than for cycling. The biggest difference was found for BL and the smallest for HR and RPE. The incremental functions were similar in both activities, with approximately linear increases in HR and RPE and positively accelerating functions for CR (exponents about 1.9) and BL (exponents 2.5 and 3.3 respectively). When perceived exertion (according to the CR scale) was set as the dependent variable and a simple combination of HR and BL was used as the independent variable, a linear relationship was obtained for both kinds of exercise, as has previously been found in cycling, running, and walking. The results thus give support for the following generalization: For exercise of a steady state type with increasing loads the incremental curve for perceived exertion can be predicted from a simple combination of HR and BL.  相似文献   

7.
To determine effects on metabolic responses, subjects were exposed to four environmental conditions for 90 min at rest followed by 30 min of exercise: breathing room air with an ambient temperature of 25 degrees C (NN); breathing room air with an ambient temperature of 8 degrees C (NC); hypoxia (induced by breathing 12% O2 in N2) with a neutral temperature (HN); and hypoxia in the cold (HC). Hypoxia increased heart rate (HR), systolic blood pressure (SBP), pulmonary ventilation (VE), respiratory exchange ratio (R), blood lactate, and perceived exertion during exercise while depressing rectal temperature (Tre) and O2 uptake (VO2). Cold exposure elevated SBP, diastolic blood pressure (DBP), VE, VO2, blood glucose, and blood glycerol but decreased HR, Tre, and R. Shivering and DBP were higher and Tre was lower in HC compared with NC. HR, SBP, VE, R, and lactate tended to be higher in HC compared with NC, whereas VO2 and blood glycerol tended to be depressed. These results suggest that cold exposure during hypoxia results in an increased reliance on shivering for thermogenesis at rest whereas, during exercise, heat loss is accelerated.  相似文献   

8.
The aim of this study was to assess the relationship between power output, lactate, skin temperature, and quadriceps muscle activity during brief repeated exercise with increasing intensity. Eighteen regional level soccer players (age 24.5 ± 3.8 years) were selected after a test of maximal exercise capacity to participate in 2 force velocity (Fv) exercise tests separated by 3 days. The tests were done to examine the reliability of variables measured in the selected subjects during this type of task. During each Fv exercise test, data on power output, heart rate (HR), skin temperature, blood lactate accumulation, the root mean square (RMS), and the mean power frequency (MPF) of the surface electromyography of the superficial quadriceps muscle were collected. Results showed a significant correlation between power output and HR, skin temperature, blood lactate accumulation, and RMS. However, no association was observed with MPF that informs on the level of fatigue and power output. Thus, the result of this study may suggest that the Fv exercise test is not a fatigability test.  相似文献   

9.
The purpose of this study was to evaluate the differential perceived exertion measured using a new set of Visual Analogue Scales (VAS) during pedaling and running. The subjects were eleven healthy males. They performed an incremental maximal test and then three 4-min stages of exercise, for both pedaling and running. During the tests, VO2, V(CO2), V(E), f, and HR were monitored continuously. Bla and perceptual variables including VAS consisting of four scales (VAS 1-VAS 4) and Borg's RPE were measured at the end of each stage. Although the VO2 (%VO2max)) and HR for both pedaling and running were not significantly different, Bla in pedaling was significantly higher than that in running. A significant interaction (mode, stage) was also obtained. The VAS 1 of pedaling was significantly higher than that of running. A significant interaction in VAS 1 (mode, stage) was obtained. The VAS 2 of pedaling was significantly higher than that of running. The subjects indicated that local pain became stronger than central pain in pedaling, but they were almost equal in running. In both pedaling and running, leg pain became stronger than arm pain (VAS 3). VAS 4 showed that during running, breathing difficulty and heart pain were almost equal in perceived intensity. However, during pedaling, breathing difficulty became greater than heart pain. Thus, a new four-part visual analogue scale was found to be useful for monitoring exercise intensity. In addition, the new VAS gave us more information in relation to the differential perceived exertion reflected in the different physiological responses obtained by different exercise modes.  相似文献   

10.
The time-course of heart rate, blood lactate, and ventilatory gas exchange was studied during an incremental exercise test on cycloergometer in order to ascertain whether heart rate deflection occurred at the same load as the second lactate S[La]2) and ventilatory (SV2) thresholds. Twelve moderately trained subjects, 22 to 30 years old, participated in the study. The initial power setting was 30 W for 3 min with successive increases of 30 W every min except at the end of the test where the increase was reduced to 20 and 10 W.min-1. Ventilatory flow (VE), oxygen uptake (VO2), carbon dioxide production (VCO2, ventilatory equivalents of O2 (EO2 = VE/VO2) and CO2 (ECO2 = VE/VCO2), and heart rate (HR) were determined during the last 20 s of every min. Venous blood samples were drawn at the end of each stage of effort and analyzed enzymatically for lactate concentration ([La]). The HR deflection, S[La]2, and SV2 were represented graphically by two investigators using a double blind procedure. Following the method proposed by Conconi et al. 1982, the deflection in HR was considered to begin at the point beyond which the increase in work intensity exceeded the increase in HR and the linearity of the work rate/HR relationship was lost. S[La]2 corresponded to the second breaking point of the lactate time-course curve (onset of blood lactate accumulation) and SV2 was identified at the second breaking point in the increase in VE and ventilatory equivalent for O2 uptake accompanied by a concomitant increase in ventilatory equivalent for CO2 output. We observed that the deflection point in HR was present only in 7 subjects. The work load, VO2, HR, and [La] levels at which heart rate departed from linearity did not differ significantly from those determined with S[La]2 ans SV2. The VO2 and HR values at HR deflection point were significantly correlated with those measured at S[La]2 and SV2. It is concluded that deflection in heart rate does not always occur, and when it does, it coincides with the second lactate and ventilatory gas exchange thresholds. It can thus be used for the determination of optimal intensity for individualized aerobic training.  相似文献   

11.
The aim of this study was to design a simple field test to measure the anaerobic endurance fitness of rugby league players, which is an important fitness quality in the game of rugby league. Twelve amateur football players with a mean (+/-SD) age of 21.5 years (+/-2.2) volunteered to participate in the study. The subjects completed 1 trial of the Wingate 60-second (W60) cycle test and 2 trials of the new Triple-120 meter shuttle (T120S) test. All trials were completed 4 days apart. The validity of the T120S was determined by comparing physiological responses (heart rate and blood lactate) and rating of perceived exertion to the all-out W60 cycle test. The results indicate there is a significant relationship between maximum heart rate (r = 0.63 and 0.71) for the 2 trials of the T120S and the W60 cycle test. There was no significant relationship between the 2 trials and the W60 cycle test for post 3 minute lactate (r = 0.112 and 0.101) and rating of perceived exertion (r = 0.94 and 0.161). However, the T120S test elicited greater mean values for these measures than the W60 cycle test. The results indicate that the T120S is a valid test of anaerobic endurance and represents a sports specific test of this quality that may provide useful information for players and coaches involved in the sport of rugby league.  相似文献   

12.
The objective of this study was to examine the effect of sodium bicarbonate (NaHCO3-) ingestion on performance and perceptual responses in a laboratory-simulated bicycle motocross (BMX) qualification series. Nine elite BMX riders volunteered to participate in this study. After familiarization, subjects undertook two trials involving repeated sprints (3 x Wingate tests [WTs] separated by 30 minutes of recovery; WT1, WT2, WT3). Ninety minutes before each trial, subjects ingested either NaHCO3- or placebo in a counterbalanced, randomly assigned, double-blind manner. Each trial was separated by 4 days. Performance variables of peak power, mean power, time to peak power, and fatigue index were calculated for each sprint. Ratings of perceived exertion were obtained after each sprint, and ratings of perceived readiness were obtained before each sprint. No significant differences were observed in performance variables between successive sprints or between trials. For the NaHCO3- trial, peak blood lactate during recovery was greater after WT2 (p < 0.05) and tended to be greater after WT3 (p = 0.07), and ratings of perceived exertion were not influenced. However, improved ratings of perceived readiness were observed before WT2 and WT3 (p < 0.05). In conclusion, NaHCO3- ingestion had no effect on performance and RPE during a series of three WT simulating a BMX qualification series, possibly because of the short duration of each effort and the long recovery time used between the three WTs. On the contrary, NaHCO3- ingestion improved perceived readiness before each WT.  相似文献   

13.
An interesting aspect, when comparing athletes, is the effect of specialized training upon both physiological performance and perceptual responses. To study this, four groups (with six individuals each) served as subjects. Two of these consisted of highly specialized individuals (racing cyclists and marathon runners) and the other two of non-specialized individuals (sedentary and all-round trained). Cycling on a cycle ergometer and running on a treadmill were chosen as modes of exercise. Variables measured included heart rate, blood lactate and perceived exertion, rated on two different scales. Results show a linear increase of both heart rate and perceived exertion (rated on the RPE scale) in all four groups, although at different absolute levels. Blood lactate accumulation, during cycling and running, differentiates very clearly between the groups. When heart rate and perceived exertion were plotted against each other, the difference at the same subjective rating (RPE 15) between cycling and running amounted to about 15-20 beats.min-1 in the non-specialized groups. The cyclists exhibited almost no difference at all as compared to 40 beats.min-1 for the runners. It can be concluded that specialized training changes both the physiological as well as the psychological response to exercise.  相似文献   

14.
This study examined the effects of delayed-onset muscle soreness (DOMS) on selected physiological responses to submaximal exercise. Seven male and four female subjects (Ss) aged 21-37 years completed two submaximal running sessions at an individualized pace corresponding to a blood lactate concentration (bLa) of approximately 2.5 mmol x L(-1). Following the first session (T1), Ss performed a series of lower extremity resistance exercises designed to induce DOMS. Subjects were then retested (T2) 24-30 hours later, during which time all Ss experienced DOMS. Oxygen uptake, heart rate (HR), respiratory exchange ratio, rating of perceived exertion (RPE), and bLa were measured every 6 minutes. Significant trial effects (p < 0.05) were observed for HR and RPE. HR was significantly higher during T1 at minutes 6 and 12 (p < 0.05), and RPE values were significantly higher at T2 during all recording periods (p < 0.05). Results from this study suggest that DOMS does not affect submaximal oxygen uptake. However, DOMS does appear to affect one's perception of effort.  相似文献   

15.
The purpose of this study was to investigate the covariance between perceived exertion (recorded using Borg's category-ratio scale CR-10) and the relative oxygen uptake, and lactate and ammonia concentrations in blood from a peripheral vein. Ratings of perceived exertion (RPE) at 25%, 50%, 75% and 90% maximal oxygen uptake and lactate and ammonia concentrations were compared in well-trained women distance runners (n = 22) and untrained women (n = 10). Ammonia concentrations in peripheral venous blood were significantly correlated with RPE (P less than 0.05), both in the trained and untrained women. Differences between the trained and untrained subjects occurred when the ammonia concentration increased to 148 mumol.l-1 in both groups investigated; similarly, the mean RPE correlated significantly with the lactate concentration (P less than 0.05), both in the trained and untrained women and there was a difference in RPE between groups when lactate concentration in the blood had risen to 4.4 mmol.l-1. It would seem that the correlation of blood ammonia and lactate concentrations with RPE during exercise could be a useful indicator of the development of fatigue.  相似文献   

16.
The purpose of this study was to describe the physiological and aerodynamic characteristics and the preparation for a successful attempt to break the 1-h cycling world record. An elite professional road cyclist (30 yr, 188 cm, 81 kg) performed an incremental laboratory test to assess maximal power output (W(max)) and power output (W(OBLA)), estimated speed (V(OBLA)), and heart rate (HR(OBLA)) at the onset of blood lactate accumulation (OBLA). He also completed an incremental velodrome (cycling track) test (VT1), during which V(OBLAVT1) and HR(OBLAVT1) were measured and W(OBLAVT1) was estimated. W(max) was 572 W, W(OBLA) 505 W, V(OBLA) 52.88 km/h, and HR(OBLA) 183 beats/min. V(OBLAVT1), HR(OBLAVT1), and W(OBLAVT1) were 52.7 km/h, 180 beats/min, and 500.6 W, respectively. Drag coefficient and shape coefficient, measured in a wind tunnel, were 0. 244 and 0.65 m(2), respectively. The cyclist set a world record of 53,040 m, with an estimated average power output of 509.5 W. Based on direct laboratory data of the power vs. oxygen uptake relationship for this cyclist, this is slightly higher than the 497. 25 W corresponding to his oxygen uptake at OBLA (5.65 l/min). In conclusion, 1) the 1-h cycling world record is the result of the interaction between physiological and aerodynamic characteristics; and 2) performance in this event can be predicted using mathematical models that integrate the principal performance-determining variables.  相似文献   

17.
The purpose of this study was to investigate the pacing pattern and associated physiological effects in competitive cyclists who performed a 30-minute maximal cycling test. Measurements included oxygen uptake (V O2), heart rate (HR), blood lactate concentration (BLC), rating of perceived exertion (RPE), and work rate in watts. Twelve well-trained amateur cyclists (seven men and five women) whose mean age was 32.4 +/- 8.6 years participated in this study. They performed a 30-minute self-paced maximal cycling test using their own performance road bike attached to a CompuTrainer Pro, which allowed the assessment of work rate (W). During the test, work rate, V O2, and HR were measured every 30 seconds. Subjects' BLC and RPE were obtained every 5 minutes. Results indicate that no significant differences existed across three 10-minute periods for work rate, HR, or V O2. However, RPE at 30 minutes was significantly greater than RPE at 10 and 20 minutes (both p < 0.05). The RPE at 20 minutes was also greater than the RPE at 10 minutes (p < 0.01). Work rate remained relatively constant, with minimal fluctuations occurring throughout the test except for a surge during the final 30 seconds of the test. The associated V O2 was fairly constant over time, whereas HR rose linearly and gradually. It was concluded that pacing in a 30-minute maximal exercise bout performed in the laboratory in experienced cyclists varies minimally until the last 30 seconds. Knowledge of pacing strategy and the linked physiological responses may be helpful to exercise scientists in optimizing performance in the endurance athlete.  相似文献   

18.
The purpose of the study was to determine whether the perception of exertion is affected by alcohol during physical performance and whether altered self-rating of exertion is the result of an altered perception per se or of an altered physical capacity to perform work. Ten healthy men participated. Each subject was his own control and received an alcohol dose corresponding to 1 g.kg-1 body mass in 40% solution in the experimental session. The exercise test was performed on a cycle ergometer with an initial intensity of 50 W which was increased stepwise by 50 W at 4-min intervals up to near-maximal. The rating of perceived exertion (RPE) did not differ between alcohol and control sessions. Alcohol induced a significant increase in heart rate during exercise at 50 W (delta x = 8 beats.min-1) and at 100 W (delta x = 10 beats.min-1), while the change at higher intensities was insignificant. The systolic blood pressure and the blood lactate concentration were not significantly changed by alcohol. It is concluded that a moderate dose of alcohol does not alter RPE during physical exercise either per se or secondarily to an altered physical capacity to perform work.  相似文献   

19.
Thirteen male subjects performed a running test on the treadmill consisting of four standard exercise intensities [65%, 75%, 85%, 95% maximal O2 uptake (VO2 max)] presented in ascending, descending or random order. At the end of each exercise intensity, O2 consumption, heart rate (fc), venous blood lactate concentration [( Ia]b) and perceived exertion were assessed. This last variable was determined according to the Borg nonlinear CR-20 scale. The same variables were also determined during exercise at a standard intensity (65% or 95% VO2 max) performed before and after a Finnish sauna bath. Ratings of perceived exertion showed a good test-retest reliability (r = 0.77); they were the same when the exercise intensity was expressed in relative (%VO2 max) or absolute (speed) terms, and were independent of the order of presentation of the exercise. The latter had no effect on fc either but it did, however, influence [Ia]b, which was significantly higher in the descending, as compared to the ascending or random modes of presentation. The sauna bath increased fc at a given exercise intensity, but left perceived exertion and [Ia]b unchanged. It was concluded that at least under the present experimental conditions, fc and venous [Ia]b do not play a major role as determinants of perceived exertion.  相似文献   

20.
The purpose of this investigation was to evaluate the effect of passive smoke inhalation on submaximal and maximal exercise performance. Eight female subjects ran on a motor driven treadmill for 20 min at 70% VO2max followed by an incremental change in grade until maximal work capacity was obtained. Each subject completed the exercise trial with and without the presence of residual cigarette smoke. Compared to the smokeless trials, the passive inhalation of smoke significantly reduced maximal oxygen uptake by 0.25 l X min-1 and time to exhaustion by 2.1 min. The presence of sidestream smoke also elevated maximal R value (1.01 vs 0.93), maximal blood lactate (6.8 vs 5.5 mM), and ratings of perceived exertion (17.4 vs 16.5 units). Passive inhalation of smoke during submaximal exercise significantly elevated the CO2 output (1.68 vs 1.58 l X min-1), R values (0.91 vs 0.86), heart rate (178 vs 172 bts X min-1) and rating of perceived exertion (13.8 vs 11.8 units). These findings suggest that passive inhalation of sidestream smoke adversely affects exercise performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号