共查询到20条相似文献,搜索用时 0 毫秒
1.
Carmen Estrada James Bready Judith Berliner Pasquale A. Cancilla 《Journal of neurochemistry》1990,54(5):1467-1473
A passage of choline from blood to brain and vice versa has been demonstrated in vivo. Because of the presence of the blood-brain barrier, such passage takes place necessarily through endothelial cells. To get a better understanding of this phenomenon, the choline transport properties of cerebral capillary endothelial cells have been studied in vitro. Bovine endothelial cells in culture were able to incorporate [3H]choline by a carrier-mediated mechanism. Nonlinear regression analysis of the uptake curves suggested the presence of two transport components in cells preincubated in the absence of choline. One component showed a Km of 7.59 +/- 0.8 microM and a maximum capacity of 142.7 +/- 9.4 pmol/2 min/mg of protein, and the other one was not saturable within the concentration range used (1-100 microM). When cells were preincubated in the presence of choline, a single saturable component was observed with a Km of 18.5 +/- 0.6 microM and a maximum capacity of 452.4 +/- 42 pmol/2 min/mg of protein. [3H]Choline uptake by endothelial cells was temperature dependent and was inhibited by the choline analogs hemicholinium-3, deanol, and AF64A. The presence of ouabain or 2,4-dinitrophenol did not affect the [3H]choline transport capacity of endothelial cells. Replacement of sodium by lithium and cell depolarization by potassium partially inhibited choline uptake. When cells had been preincubated without choline, recently transported [3H]choline was readily phosphorylated and incorporated into cytidine-5'-diphosphocholine and phospholipids; however, under steady-state conditions most (63%) accumulated [3H]choline was not metabolized within 1 h.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
In order to elucidate the regulation of the levels of free choline in the brain, we investigated the influence of chronic and acute choline administration on choline levels in blood, CSF, and brain of the rat and on net movements of choline into and out of the brain as calculated from the arteriovenous differences of choline across the brain. Dietary choline supplementation led to an increase in plasma choline levels of 50% and to an increase in the net release of choline from the brain as compared to a matched group of animals which were kept on a standard diet and exhibited identical arterial plasma levels. Moreover, the choline concentration in the CSF and brain tissue was doubled. In the same rats, the injection of 60 mg/kg choline chloride did not lead to an additional increase of the brain choline levels, whereas in control animals choline injection caused a significant increase; however, this increase in no case surpassed the levels caused by chronic choline supplementation. The net uptake of choline after acute choline administration was strongly reduced in the high-choline group (from 418 to 158 nmol/g). Both diet groups metabolized the bulk (greater than 96%) of newly taken up choline rapidly. The results indicate that choline supplementation markedly attenuates the rise of free choline in the brain that is observed after acute choline administration. The rapid metabolic choline clearance was not reduced by dietary choline load. We conclude that the brain is protected from excess choline by rapid metabolism, as well as by adaptive, diet-induced changes of the net uptake and release of choline. 相似文献
3.
R. D. Veldsema-Currie J. van Marle M. W. E. Langemeijer A. Lind J. van Weeren-Kramer 《Journal of neurochemistry》1984,43(4):1032-1038
Abstract: When hemidiaphragms are stimulated via the phrenic nerve in the presence of 10 μM radioactive choline (Ch), the rate of radioactive Ch uptake in the end-plate-rich area (EPA) is greater than that in the endplate-poor muscle (M). Ch uptake in the EPA is temperature-dependent, with a Q10 of 2.9 and an activation energy of 19.5 kcal/mol. It is inhibited in a Na+-depleted medium, in the absence of Ca2+, and by 10–20 μM hemicholinium-3 (HC-3) and it is not inhibited by α-bungarotoxin even when the muscle is completely paralyzed. In the absence of stimulation the rate of uptake in the EPA is slightly, but not significantly, greater than in M. Using autoradiography, we find an enhanced amount of isotope in the nerve terminals and their immediate vicinities compared with the muscle fibres, in both stimulated and unstimulated hemidiaphragms. There is no enhanced uptake of isotope into the nerve terminals in stimulated tissues in the presence of 26 μM HC-3. The uptake of isotope into the muscle is not altered by any of these treatments. There is a positive correlation between the initial rate of radioactive Ch uptake in the EPA and the amount of isotope in the nerve terminals (the mean corrected grain density above the nerve terminals). Without correcting for the large amount of diffusion that occurs, the ratio of the grain density above the synapses to that above the muscle fibres is 1.66 in tissue stimulated at 1 Hz, 1.04 in stimulated tissues in the presence of 26 μM HC-3, and 1.31 in unstimulated tissues. Thus the increase in the rate of radioactive Ch uptake in the EPA of diaphragms caused by stimulation is probably due to an enhanced uptake of isotope into the nerve terminals and not into the muscle fibres. This rate is directly proportional to the stimulation frequency (up to 2 Hz), and the slope of the line is equal to 0.84 pmol radioactive Ch/impulse/whole diaphragm. 相似文献
4.
The concentrations of free choline in blood plasma from a peripheral artery and from the transverse sinus, in the CSF, and in total brain homogenate, have been measured in untreated rats and in rats after acute intraperitoneal administration of choline chloride. In untreated rats, the arteriovenous difference of brain choline was related to the arterial choline level. At low arterial blood levels (less than 10 microM) as observed under fasting conditions, the arteriovenous difference was negative (about -2 microM), indicating a net release of choline from the brain of about 1.6 nmol/g/min. In rats with spontaneously high arterial blood levels (greater than 15 microM), the arteriovenous difference was positive, implying a marked net uptake of choline by the brain (3.1 nmol/g/min). The CSF choline concentration, which reflects changes in the extracellular choline concentration, also increased with increasing plasma levels and closely paralleled the gradually rising net uptake. Acute administration of 6, 20, or 60 mg of choline chloride/kg caused, in a dose-dependent manner, a sharp rise of the arterial blood levels and the CSF choline, and reversed the arteriovenous difference of choline to markedly positive values. The total free choline in the brain rose only initially and to a quantitatively negligible extent. Thus, the amount of choline taken up by the brain within 30 min was stored almost completely in a metabolized form and was sufficient to sustain the release of choline from the brain as long as the plasma level remained low. We conclude that the extracellular choline concentration of the brain closely parallels fluctuations in the plasma level of choline.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
5.
The technique of photoaffinity labelling with [4-3H]cytochalasin B was applied to osmotically lysed cerebral microvessels isolated from sheep brain. Cytochalasin B was photo-incorporated into a membrane protein of average apparent Mr 53,000. Incorporation of cytochalasin B was inhibited by D-glucose, but not by L-glucose, which strongly suggests that the labelled protein is, or is a component of, the glucose transporter of the blood-brain barrier. Investigation of noncovalent [4-3H]cytochalasin B binding to cerebral microvessels by equilibrium dialysis indicated the presence of a single set of high-affinity binding sites with an association constant of 9.8 +/- 1.7 (SE) microM-1. This noncovalent binding was inhibited by D-glucose, with a Ki of 23 mM. These results provide preliminary identification of the glucose transporter of the ovine blood-brain barrier, and reveal both structural and functional similarities to the glucose transport protein of the human erythrocyte. 相似文献
6.
Basal forebrain cholinergic neurons (BFCNs) degenerate in aging and Alzheimer’s disease. It has been proposed that estrogen
can affect the survival and function of BFCNs. This study characterized primary rat BFCN cultures and investigated the effect
of estrogen on high-affinity choline uptake (HACU). BFCNs were identified by immunoreactivity to the vesicular acetylcholine
transporter (VAChT) and represented up to 5% of total cells. HACU was measured in living BFCN cultures and differentiated
from low-affinity choline uptake by hemicholinium-3 (HC-3) inhibition. A HC-3 concentration curve showed that 0.3 μM HC-3,
but not higher concentrations that inhibit LACU, could distinguish the two transport activities. 17-β-Estradiol treatment
increased HACU in some culture preparations that contained non-neuronal cells. Elimination of dividing cells using antimitotic
treatments resulted in a lack of estrogen effects on HACU. These results suggest that estrogen may have indirect effects on
BFCNs that are mediated through non-neuronal cells. 相似文献
7.
The role of second messengers in the regulation of protein phosphorylation was studied in microvessels isolated from rat cerebral cortex. The phosphoproteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the kinetics of 32P incorporation into specific protein substrates were evaluated by computer-aided x-ray film densitometry. With the use of this method, Ca2+-calmodulin (CAM)-, Ca2+/phospholipid (PK C)-, cyclic GMP (cGMP)-, and cyclic AMP (cAMP)-dependent protein kinases were detected. CAM-dependent protein kinase proved to be the major phosphorylating enzyme in the microvascular fraction of the rat cerebral cortex; the activity of cGMP-dependent protein kinase was much higher than that of the cAMP-dependent one. Autophosphorylation of both the alpha- and beta-subunits of CAM-dependent protein kinase and the proteolytic fragment of the PK C enzyme was also detected. The kinetics of phosphorylation of the individual polypeptides indicate the presence in the cerebral endothelium of phosphoprotein phosphatases. The phosphorylation of proteins in the cerebral capillaries was more or less reversible; the addition of second messengers initiated a very rapid increase in 32P incorporation, followed by a slow decrease. Because the intracellular signal transducers like Ca2+ and cyclic nucleotides are frequently regulated by different vasoactive substances in the endothelial cells, the modified phosphorylation evoked by these second messengers may be related in vivo to certain changes in the transport processes of the blood-brain barrier. 相似文献
8.
Patrizia Cardelli-Cangiano Carlo Cangiano J. Howard James Bengt Jeppsson William Brenner Josef E. Fischer 《Journal of neurochemistry》1981,36(2):627-632
Abstract: The uptake of amino acids by microvessels isolated from brains of rats was studied. Previous studies have demonstrated alterations in blood-brain amino acid transport after portacaval shunt in rats. In order to elucidate whether such changes in the blood-brain barrier were located in the microvessels, brain microvessels were isolated from both rats with portacaval shunt and controls. Brain microvessels from rats 2 weeks after shunt operations took up significantly greater amounts of 14 C-labeled neutral amino acids, but not of glutamic acid. lysine, or α-methylaminoisobutyric acid than microvessels from sham-operated controls. Measurement of uptake kinetics showed a higher V max for phenylalanine and leucine uptake and a lower V max for lysine uptake in microvessels from shunted rats compared with control, whereas the respective K m 's of uptake were similar in both preparations. The results suggest that changes in brain microvessel transport activity account for altered brain neutral amino acid concentrations after portacaval shunt and that such changes can be studied in vitro in isolated microvessels. 相似文献
9.
10.
In physiological conditions, there is a net transport of choline from brain to blood, despite the fact that the choline concentration is higher in plasma than in CSF. Because of the blood-brain barrier characteristics, such passage against the concentration gradient takes place necessarily through endothelial cells. To get a better understanding of this phenomenon, [3H]choline uptake properties have been analyzed in capillaries isolated from bovine brain. [3H]Choline uptake was linear with time for up to 1 h. Nonlinear regression analysis of the uptake rates at different substrate concentrations gave the best fit to a system of two components, one of which was saturable (Km = 17.8 +/- 4.8 microM; Vmax = 11.3 +/- 3.4 pmol/min/mg of protein) and the other of which was nonsaturable at concentrations up to 200 microM. The [3H]choline transport was significantly reduced in the absence of sodium and after incubation with 10(-4) M ouabain for 30 min. Ouabain also inhibited choline uptake in purified cerebral endothelial cells, but not in the endothelium isolated from bovine aorta. Accordingly, cerebral endothelial cells were able to concentrate [3H]choline, with this effect being abolished by ouabain, whereas in aortic endothelial cells the [3H]choline intracellular concentration was never higher than that of the incubation medium. These results suggest that the blood-brain barrier endothelium is specifically provided with an energy-dependent choline transport system, which may explain the choline efflux from the brain and the maintenance of a low choline concentration in the cerebral extracellular space. 相似文献
11.
P. Cardelli-Cangiano A. Fiori C. Cangiano F. Barberini P. Allegra V. Peresempio R. Strom 《Journal of neurochemistry》1987,49(6):1667-1675
On treatment with collagenase, brain microvessels, together with several protein components, lose some enzymatic activities such as alkaline phosphatase and gamma-glutamyltranspeptidase, whereas no change occurs in the activities of 5'-nucleotidase and glutamine synthetase. The energy-requiring "A-system" of polar neutral amino acid transport is also severely inactivated, whereas the L-system for the facilitated exchange of branched chain and aromatic amino acids is preserved. In the collagenase-digested microvessels, this leads to loss of the transtimulation effect of glutamine on the transport of large neutral amino acids, because such transtimulation is due to a cooperation between the A- and L-systems. By contrast, NH4+ maintains (and even enhances) its ability to stimulate the L-system of amino acid transport, presumably through glutamine synthesis within the endothelial cells. 相似文献
12.
Transport of Lead-203 at the Blood-Brain Barrier During Short Cerebrovascular Perfusion with Saline in the Rat 总被引:2,自引:2,他引:2
Lead transport at the blood-brain barrier has been studied by short (less than 1.5 min) vascular perfusion of one cerebral hemisphere of the rat with a buffered physiological salt solution at pH 7.4 without calcium, magnesium, or bicarbonate and containing 203 Pb-labelled lead chloride. In the absence of complexing agents, 203Pb uptake was rapid, giving a space of 9.7 ml/100 g of wet frontal cortex at 1 min. Lead-203 influx was linear with lead concentration up to 4 microM. Five percent albumin, 200 microM cysteine, or 1 mM EDTA almost abolished 203Pb uptake. Lead-203 entry into brain was uninfluenced by varying the calcium concentration or by magnesium or the calcium blocker methoxyverapamil. Similarly, 1 mM bicarbonate or 50 microM 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid was without effect. Increasing the potassium concentration reduced 203Pb uptake. Vanadate at 2 mM, 2 microM carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (a metabolic uncoupler), or 2 microM stannic chloride all markedly enhanced lead entry into brain, as did a more alkaline pH (7.80). In conclusion, there is a mechanism allowing rapid passive transport of 203Pb at the brain endothelium, perhaps as PbOH+. Lead uptake into brain via this system is probably made less important by active transport of lead back into the capillary lumen by the calcium-ATP-dependent pump. 相似文献
13.
Dissociated rat septal nucleus cells cultured in defined medium exhibited twofold increases in the maximal rates of sodium-dependent, high-affinity choline uptake and acetylcholine formation when grown in the presence of phosphoethanolamine. The effect was concentration-dependent (EC50 = 15 microM) and appeared to be associated with in vitro maturation of cholinergic neurons rather than with enhanced survival. Choline acetyltransferase, acetylcholinesterase, and choline kinase activities were unaffected by this treatment. The effect of phosphoethanolamine was specific for cholinergic neurons, because treatment with this compound did not alter the kinetic constants for high-affinity neuronal uptake of gamma-aminobutyric acid or dopamine. The action appeared to be mediated primarily through activation of the sodium-dependent, high-affinity transport mechanism for choline as opposed to alterations in the storage and release of acetylcholine. 相似文献
14.
Sodium Transport in Capillaries Isolated from Rat Brain 总被引:8,自引:12,他引:8
A. Lorris Betz 《Journal of neurochemistry》1983,41(4):1150-1157
Abstract: Brain capillary endothelial cells form a bloodbrain barrier (BBB) that appears to play a role in fluid and ion homeostasis in brain. One important transport system that may be involved in this regulatory function is the Na+,K+-ATPase that was previously demonstrated to be present in isolated brain capillaries. The goal of the present study was to identify additional Na+ transport systems in brain capillaries that might contribute to BBB function. Microvessels were isolated from rat brains and 22Na + uptake by and efflux from the cells were studied. Total 22Na + uptake was increased and the rate of 22Na + efflux was decreased by ouabain, confirming the presence of Na+,K+-ATPase in capillary cells. After inhibition of Na+,K+-ATPase activity, another saturable Na + transport mechanism became apparent. Capillary uptake of 22Na + was stimulated by an elevated concentration of Na +or H+ inside the cells and inhibited by extracellular Na+, H+, Li+, and NH4+. Amiloride inhibited 22Na + uptake with a Ki between 10?5 and 10?6M but there was no effect of 1 mM furosemide on 22Na+ uptake by the isolated microvessels. These results indicate the presence in brain capillaries of a transport system capable of mediating Na +/ Na + and Na +/H + exchange. As a similar transport system does not appear to be present on the luminal membrane of the brain capillary endothelial cell, it is proposed that Na +/H + exchange occurs primarily across the antiluminal membrane. 相似文献
15.
Abstract: The Na+ and K+ concentrations in isolated Torpedo marmorata synaptosomes were determined. Synaptosomes made according to the method of Israël et al. have high internal Na+ (290 MM) and low internal K+ (30 mM) concentrations. Modification of the homogenisation media permitted the isolation of synaptosomes which could maintain transmembrane ion gradients (internal Na+ , 96 mM; K+ , 81 mM); 0.1 mM-ouabain abolished these gradients. The trans-membrane Na+ gradient started to dissipate after 15 min at 20°C. Inclusion of ATP in the homogenisation medium enabled the synaptosomes to maintain the Na+ gradient for about 90 min. The presence of these transmembrane ion gradients stimulated choline uptake sevenfold. It is concluded that (a) by selecting the isolation media, Torpedo synaptosomes can be prepared with transmembrane ion gradients; (b) these gradients are ouabain-sensitive and stimulate choline uptake: (c) the synaptosomes require additional ATP to maintain the ion gradients. 相似文献
16.
To know the mechanism underlying ischemic brain edema, a time-course analysis of the eicosanoid synthetic capacity of brain microvessels was carried out using unilateral, middle cerebral artery (MCA)-occluded rats. Concomitant with the development of brain edema the synthetic capacity of all products, including cyclooxygenase and lipoxygenase products, increased significantly. Next the effects of 15-hydroperoxyarachidonic acid (15-HPAA) on the synthetic capacity of microvessels were examined. The drug caused a generalized increase of each product, the profile of which was similar to that obtained with ischemic hemispheres, although the ratios of each product differed somewhat among them. The enhanced synthesis of eicosanoids by 15-HPAA was markedly suppressed by radical scavengers such as alpha-tocopherol, hydroquinone, and 1,2-bis(nicotineamide)-propane. Furthermore, the evolution of brain edema was virtually suppressed by the systemic administration of 1,2-bis(nicotineamide)-propane. The above result suggests that the enzyme activity of the arachidonic acid (AA) cascade of microvessels is stimulated by its own products. Such a mechanism will form a vicious cycle that accelerates the accumulation of free radicals within microvessels and thus may play a role in the progressing disruption of the blood-brain barrier (BBB) following ischemia. 相似文献
17.
Gerald H. Sterling Peter H. Doukas†‡ Fiori J. Ricciardi Jr. ‡ Diane W. Biedrzycka John J. O'Neill† 《Journal of neurochemistry》1986,46(4):1170-1175
Choline uptake into cholinergic neurons for acetylcholine (ACh) synthesis is by a specific, high-affinity, sodium- and temperature-dependent transport mechanism (HAChU). To assess the role of choline availability in regulation of ACh synthesis, the structure-activity relationships of several hemicholinium (HC) and quinuclidinyl analogs were evaluated in a dose response manner. As confirms previous studies, the HCs, e.g., HC-3, acetylsecohemicholinium, and HC-15 are potent inhibitors of HAChU, HC-3 being the most potent (I50 = 6.1 X 10(-8) M). In the present study, the most potent quinuclidinyl derivative was the N-methyl-3-quinuclidinone (I50 = 5.6 X 10(-7) M). This compound had approximately 100-fold greater inhibitory activity than the corresponding racemic alcohol, suggesting that the 3-hydroxyl functional group is not absolutely essential for activity. Increasing the size of the N-functional group from a methyl to an allyl in the alcohol led to a 10-fold increase in activity. However, removal of the quaternizing N-methyl group yielding the tertiary amine, 3-quinuclidinol hydrochloride, greatly reduced its capacity to inhibit HAChU. Of the 2-benzylidene-3-quinuclidinone derivatives studied, only the m-chloro derivative significantly reduced HAChU. 相似文献
18.
Protein Phosphorylation and Calcium Uptake into Rat Forebrain Synaptosomes: Modulation by the σ Ligand, 1,3-Ditolylguanidine 总被引:1,自引:0,他引:1
Paul J. Brent Lynn Herd Heather Saunders Alistair T. R. Sim Peter R. Dunkley 《Journal of neurochemistry》1997,68(5):2201-2211
Abstract: The σ ligand 1,3-di- O -tolylguanidine (DTG) increased basal dynamin and decreased depolarization-stimulated phosphorylation of the synaptosomal protein synapsin Ib without having direct effects on protein kinases or protein phosphatases. DTG dose-dependently decreased the basal cytosolic free Ca2+ concentration ([Ca2+ ]i ) and blocked the depolarization-dependent increases in [Ca2+ ]i . These effects were inhibited by the σ antagonists rimcazole and BMY14802. The nitric oxide donors sodium nitroprusside (SNP) and 8-( p -chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate decreased basal [Ca2+ ]i and the KCl-evoked rise in [Ca2+ ]i to an extent similar to DTG. SNP, but not DTG, produced a rise in cyclic GMP levels, suggesting that the effect of DTG on [Ca2+ ]i was not mediated via downstream regulation of cyclic GMP levels. DTG increased 45 Ca2+ uptake and efflux under basal conditions and inhibited the 45 Ca2+ uptake induced by depolarization with KCl. The KCl-evoked rise in [Ca2+ ]i was inhibited by ω-conotoxin (ω-CgTx)-GVIA and -MVIIC but not nifedipine and ω-agatoxin-IVA. The effect of DTG on decreasing the KCl-evoked rise in [Ca2+ ]i was additive with ω-CgTx-MVIIC but not with ω-CgTx-GVIA. These data suggest that DTG was producing some of its effects on synapsin I and dynamin phosphorylation and intrasynaptosomal Ca2+ levels via inhibition of N-type Ca2+ channels. 相似文献
19.
Zinc is essential for the normal development and function of the CNS, although little is known about brain zinc homeostasis. Therefore, in this investigation we have studied 65Zn uptake by brain from blood and have measured the blood-brain barrier permeability to 65Zn in the anaesthetised rat in vivo. Adult male Wistar rats within the weight range 500-600 g were used. 65ZnCl2 and 125I-albumin, the latter serving as a vascular marker, were injected intravenously in a bolus of normal saline. Sequential arterial blood samples were taken during experiments that lasted between 5 min and 5 h, after which the whole brain was removed, dissected, and analysed for radioisotope activity. Data have been analysed by graphical analysis, which suggests that after 30 min of circulation, 65Zn uptake by brain from blood is unidirectional with an influx rate constant, Kin, of approximately 5 X 10(-4) ml/min/g. At circulation times of less than 30 min, 65Zn fluxes between blood and brain are bidirectional, where influx has a K value of greater than 5 X 10(-4) ml/min/g. In addition to the blood space, the brain appears to contain a rapidly exchanging compartment(s) for 65Zn of approximately 4 ml/100 g, which is not CSF. 相似文献
20.
[3H]Hemicholinium-3 (HC-3) was used to label sodium-dependent, high-affinity choline uptake sites in regions of rat brain. Autoradiography revealed a high density of [3H]HC-3 binding sites in brain regions with a high density of cholinergic terminals, such as the interpeduncular nucleus, caudate-putamen, and olfactory tubercle. This distribution of [3H]HC-3 binding sites was in close agreement with the amounts of choline acetyltransferase in specific nuclei and subregions of rat brain. Destruction of presynaptic cholinergic projections in the cerebral cortex and the basal ganglia by injection of excitotoxins reduced [3H]HC-3 binding by 40-50%. These data indicate that sodium-dependent [3H]HC-3 binding sites are related to the choline transport system present in cholinergic neurons. 相似文献