首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A large, alternate form of type XII collagen has been identified in cultures of the human epidermoid cell line WISH. This form, designated XIIA, is comprised of alpha chains that are approximately 90 kDa larger than the 220-kDa alpha chain previously characterized in extracts of fetal chicken and bovine tissues. Results from both collagenase digestion and rotary shadow analysis of partially purified material show that the increase is due to a larger NC3 domain. While both the large (XIIA) and the small (XIIB) forms of type XII collagen are identified in pulse-chase radiolabeling of fetal bovine skin explant culture, they are not related in a precursor-product fashion. Inhibition studies with alpha, alpha'-dipyridyl indicate that proper folding of the collagen helix is required for complete assembly and secretion of type XIIA in WISH cell culture. The 310-kDa alpha 1A chain is likely to represent the bovine equivalent of a second translation product, estimated to be 340 kDa, predicted from analysis of one complete chick cDNA sequence. Additionally, the amino-terminal amino acid sequence of the 220-kDa bovine alpha 1B chain was determined. This sequence is very near a potential alternate splice site predicted from analysis of chicken type XII cDNA.  相似文献   

2.
Previously undescribed disulfide-bonded collagenous pepsin-derived fragments have been isolated from fetal calf tendon and skin. One fragment, 10.5 kDa after reduction, was shown to be similar but distinct to the COL1 domain of the recently characterized type XII collagen (64% primary structure identity). The similarity includes important features such as size, location of the cysteine residues, and nature and position of an imperfection of the triple helix. From fetal calf skin, two approximately 34-kDa disulfide-bonded trimeric fragments were isolated in the unreduced form. Amino acid sequencing showed that one fragment contained solely the COL1 domain of type XII collagen while the other one only contained the COL1 domain of the new chain. Like type XII collagen, the new chain is therefore part of a homotrimeric molecule and should thus be considered as a distinct collagen type. We propose to call the molecule from which this fragment is derived, type XIV collagen, with a chain composition (alpha 1 (XIV]3. The presence of a domain similar to the COL1 domain of collagens types IX and XII suggests that type XIV collagen belongs to the group of fibril-associated collagens with interrupted triple helices (FACIT). Two other fragments, 13.5 and 17 kDa after reduction, were also purified. They were shown to contain the same triple helical domain with different pepsin cleavage sites at the amino terminus. Several tryptic peptides were sequenced, and the derived sequences could be aligned with the COL2 domain of type XII collagen or with flanking sequences in the NC2 and NC3 domains (61% sequence identity). These fragments are very likely to be also derived from type XIV collagen.  相似文献   

3.
Type IX collagen functions in covalent cross-linkage to type II collagen in cartilage (Eyre, D. R., Apone, S., Wu, J. J., Ericsson, L. H., and Walsh, K. A. (1987) FEBS Lett. 220, 337-341). To understand this molecular relationship better, an analysis of all cross-linking sites labeled by [3H]borohydride was undertaken using the protein prepared from fetal bovine cartilage. Sequence analysis of tryptic peptides containing the 3H-labeled cross-links showed that each of the chains of type IX collagen, alpha 1(IX), alpha 2(IX), and alpha 3(IX), contained a site of cross-linking at the amino terminus of the COL2 triple-helix to which the alpha 1(II)N-telopeptide could bond. The alpha 3(IX)COL2 domain alone also had an attachment site for the alpha 1(II)C-telopeptide. The distance between the alpha 1(II)N-telopeptide and alpha 1(II)C-telopeptide interaction sites, 137 residues, is equal to the length of the hole zone (0.6D) in a type II collagen fibril. This implies an antiparallel type II to type IX cross-linking relationship. Peptide analysis also revealed an unknown amino acid sequence linked to the COL2 cross-linking domains in both the alpha 1(IX) and alpha 3(IX) chains. Using antibodies to this novel peptide, its origin in the collagen alpha 3(IX)NC1 domain was established. In summary, the results confirm extensive covalent cross-linking between type IX and type II collagen molecules and reveal the existence of type IX-type IX bonding. These data provide a molecular basis for the proposed function of type IX collagen as a critical contributor to the mechanical stability and resistance to swelling of the collagen type II fibril framework of cartilage.  相似文献   

4.
Extracellular matrix molecules are generally categorized as collagens, elastin, proteoglycans, or other noncollagenous structural/cell interaction proteins. Many of these extracellular proteins contain distinctive repetitive modules, which can sometimes be found in other proteins. We describe the complete primary structure of an alpha 1 chain of type XII collagen from chick embryonic fibroblasts. This large, structurally chimeric molecule identified by cDNA analysis combines previously unrelated molecular domains into a single large protein 3,124 residues long (approximately 340 kD). The deduced chicken type XII collagen sequence starts at the amino terminus with one unit of the type III motif of fibronectin, which is followed by one unit homologous to the von Willebrand factor A domain, then one more fibronectin type III module, a second A domain from von Willebrand factor, 6 units of type III motif and a third A domain, 10 consecutive units of type III motif and a fourth A domain, a domain homologous to the NC4 domain peptide of type IX collagen, and finally two short collagenous regions previously described as part of the partially sequenced collagen type XII molecule; an Arg-Gly-Asp potential cell adhesive recognition sequence is present in a hydrophilic region at the terminus of one collagenous domain. Antibodies raised to type XII collagen synthesized in a bacterial expression system recognized not only previously reported bands (220 kD et cetera) in tendons, but also bands with apparently different molecular sizes in fibroblasts and 4-d embryos. The antibodies stained a wide variety of extracellular matrices in embryos in patterns distinct from those of fibronectin or interstitial collagens. They prominently stained extracellular matrix associated with certain neuronal tissues, such as axons from dorsal root ganglia and neural tube. These studies identify a novel chimeric type of molecule that contains both adhesion molecule and collagen motifs in one protein. Its structure blurs current classification schemes for extracellular proteins and underscores the potentially large diversity possible in these molecules.  相似文献   

5.
The tissue distribution of type II and type IX collagen in 17-d-old chicken embryo was studied by immunofluorescence using polyclonal antibodies against type II collagen and a peptic fragment of type IX collagen (HMW), respectively. Both proteins were found only in cartilage where they were co-distributed. They occurred uniformly throughout the extracellular matrix, i.e., without distinction between pericellular, territorial, and interterritorial matrices. Tissues that undergo endochondral bone formation contained type IX collagen, whereas periosteal and membranous bones were negative. The thin collagenous fibrils in cartilage consisted of type II collagen as determined by immunoelectron microscopy. Type IX collagen was associated with the fibrils but essentially was restricted to intersections of the fibrils. These observations suggested that type IX collagen contributes to the stabilization of the network of thin fibers of the extracellular matrix of cartilage by interactions of its triple helical domains with several fibrils at or close to their intersections.  相似文献   

6.
Carbonic anhydrases IX and CAXII (CAIX/CAXII) are transmembrane zinc metalloproteins that catalyze a very basic but crucial physiological reaction: the conversion of carbon dioxide into bicarbonate with a release of the proton. CA, especially CAIX and CAXII isoforms gained the attention of many researchers interested in anticancer drug design due to pivotal functions of enzymes in the cancer cell metastasis and response to hypoxia, and their expression restricted to malignant cells. This offers an opportunity to develop new targeted therapies with fewer side effects. Continuous efforts led to the discovery of a series of diverse compounds with the most abundant sulphonamide derivatives. Here we review current knowledge considering small molecule and antibody-based targeting of CAIX/CAXII in cancer.  相似文献   

7.
From a study to understand the mechanism of covalent interaction between collagen types II and IX, we present experimental evidence for a previously unrecognized molecular site of cross-linking. The location relative to previously defined cross-linking sites predicts a specific manner of interaction and folding of collagen IX on the surface of nascent collagen II fibrils. The initial evidence came from Western blot analysis of type IX collagen extracted by pepsin from fetal human cartilage, which showed a molecular species that had properties indicating an adduct between the alpha1(II) chain and the C-terminal domain (COL1) of type IX collagen. A similar component was isolated from bovine cartilage in sufficient quantity to confirm this identity by N-terminal sequence analysis. Using an antibody that recognized the putative cross-linking sequence at the C terminus of the alpha1(IX) chain, cross-linked peptides were isolated by immunoaffinity chromatography from proteolytic digests of human cartilage collagen. They were characterized by immunochemistry, N-terminal sequence analysis, and mass spectrometry. The results establish a link between a lysine near the C terminus (in the NC1 domain) of alpha1(IX) and the known cross-linking lysine at residue 930 of the alpha1(II) triple helix. This cross-link is speculated to form early in the process of interaction between collagen IX molecules and collagen II polymers. A model of molecular folding and further cross-linking is predicted that can spatially accommodate the formation of all six known cross-linking interactions to the collagen IX molecule on a fibril surface. Of particular biological significance, this model can accommodate potential interfibrillar as well as intrafibrillar links between the collagen IX molecules themselves, so providing a mechanism whereby collagen IX could stabilize a collagen fibril network.  相似文献   

8.
9.
10.
We have cloned a novel cDNA belonging to the Ig superfamily that shows 44% similarity to the junctional adhesion molecule (JAM) and maps to chromosome 21q21.2. The open reading frame of JAM2 predicts a 34-kDa type I integral membrane protein that features two Ig-like folds and three N-linked glycosylation sites in the extracellular domain. A single protein kinase C phosphorylation consensus site and a PDZ-binding motif are present in the short intracellular tail. Heterologous expression of JAM2 in Chinese hamster ovary cells defined a 48-kDa protein that localizes predominantly to the intercellular borders. Northern blot analysis showed that JAM2 is preferentially expressed in the heart. JAM2 homotypic interactions were demonstrated by the ability of JAM2-Fc to capture JAM2-expressing Chinese hamster ovary cells. We further showed that JAM2, but not JAM1, is capable of adhering to the HSB and HPB-ALL lymphocyte cell lines. Neutralizing mouse anti-JAM2 polyclonal antibodies provided evidence against homotypic interactions in this assay. Biotinylation of HSB cell membranes revealed a 43-kDa counter-receptor that precipitates specifically with JAM2-Fc. These characteristics of JAM2 led us to hypothesize a role for this novel protein in adhesion events associated with cardiac inflammatory conditions.  相似文献   

11.
We report for the first time Antibody-Drug-Conjugates (ADCs) containing human (h) Carbonic Anhydrase (CA; EC 4.2.1.1) directed Monoclonal Antibodies (MAbs) linked to low molecular weight inhibitors of the same enzymes by means of hydrophilic peptide spacers. In agreement with the incorporated CA directed MAb fragments, in vitro inhibition data of the obtained ADCs showed sub-nanomolar KI values for the tumour associated CAs IX and XII which were up to 10-fold more potent when compared to the corresponding unconjugated MAbs. In addition, the introduction of the CA inhibitor (CAI) benzenesulfonamide allowed the ADCs to potently inhibit the housekeeping tumoral off-target human CA II isoform. Such results are supporting the definition of an unprecedented reported class of ADCs able to hit simultaneously multiple hCAs physiologically cooperative in maintaining altered cellular metabolic pathways, and therefore ideal for the treatment of chronic diseases such as cancers and inflammation diseases.  相似文献   

12.
A major site of pyridinoline cross-linking in bovine type IX collagen was traced to a tryptic peptide derived from one of the molecule's HMW chains. This peptide gave two amino acid sequences (in 2/1 ratio) consistent with it being a three-chained structure. The major sequence matched exactly that of the C-telopeptide of type II collagen from the same tissue. A second HMW chain that contained pyridinoline cross-links also gave two amino-terminal sequences, one from its own amino terminus, the other matching exactly the N-telopeptide cross-linking sequence of type II collagen. We conclude that type IX collagen molecules are covalently cross-linked in cartilage to molecules of type II collagen, probably at fibril surfaces.  相似文献   

13.
Platelet interaction with type III collagen is mediated by several platelet receptors that recognize specific sequences in collagen. We previously described an octapeptide KP*GEP*GPK within the alpha(1)III-CB4 fragment that binds to platelets and specifically inhibits platelet aggregation induced by type III collagen. In this study, we demonstrated that the octapeptide prevented platelet contact and spreading on type III collagen and subendothelium under static and flow conditions. Platelets adhered to the immobilized octapeptide, and anti-bodies directed against other platelet collagen receptors (glycoprotein (GP) Ia/IIa, GP IV, p65, p47) did not impair this adhesion. The platelet octapeptide receptor was identified by ligand blotting as a protein doublet with molecular masses of 68 and 72 kDa and does not correspond to any other already known platelet collagen receptors (GP Ia, GP IV GP VI, and p65). Our results indicate that a specific type III collagen receptor, expressed on the platelet surface, is involved in the first stages of platelet type III collagen interaction.  相似文献   

14.
Using a BRCA1 cDNA probe in Southern analysis, we detected a sequence of 348 bp on 4q28 that is homologous to the 3' end of BRCA1. A 28-kb sequence contig has been assembled spanning the homologous region, which we designated BRCA1-h. An open reading frame was identified encoding a sequence of 82 amino acids; 22 of the last 23 amino acids are identical to the last 23 residues of BRCA1. BLAST-searches, RT-PCR and RACE-experiments have been unable to provide evidence that BRCA1-h is part of an expressed gene.  相似文献   

15.
A 10 kDa collagenous peptide, derived from a 30 kDa disulfide bonded fragment, was purified from bovine periodontal ligament. Amino acid sequence analysis of tryptic peptides demonstrated a 92.8% homology with the chicken alpha 1(XII) cDNA derived sequence, demonstrating for the first time the presence of type XII collagen in a mammalian species and in an adult tissue.  相似文献   

16.
A guide to the Burr type XII distributions   总被引:3,自引:0,他引:3  
RODRIGUEZ  ROBERT N. 《Biometrika》1977,64(1):129-134
  相似文献   

17.
A large family of genes that share homology with CLAVATA3.   总被引:5,自引:0,他引:5  
  相似文献   

18.
We report here the complete cDNA sequence of F11 130 kd polypeptide, a chick neural cell surface-associated glycoprotein implicated in neurite fasciculation and elongation. The predicted protein sequence of 1010 amino acids includes an amino-terminal signal peptide and a carboxy-terminal hydrophobic stretch, which is compatible with the consensus motif for covalent attachment of glycosyl-phosphatidylinositol. Accordingly, F11 lacks an intracellular domain, which is consistent with evidence obtained from protease protection experiments on isolated microsomes. In addition, the molecule comprises six domains related to the immunoglobulin domain type C and four resembling fibronectin repeat type III. Both types of repeats resemble those present in neural cell adhesion molecules L1 and N-CAM. The possible identity of F11 with the chick neural glycoprotein contactin is discussed.  相似文献   

19.
Type IX collagen from chick embryonic cartilage is a proteoglycan bearing a single chondroitin sulfate chain covalently linked to the alpha 2(IX) polypeptide chain. We have isolated type IX collagen metabolically labeled with [3H]proline using an antibody to type IX collagen and have found that the molecule is synthesized in two forms, a collagen form (COLIX) and a proteoglycan form (PGIX). In cultured chondrocytes, the two forms of type IX collagen showed a different ability to be deposited in the matrix. We have suggested the possibility that both forms may arise from an alternative substitution of a chondroitin sulfate chain to the NC3 domain of the alpha 2(IX) chain. Based on the reported amino acid sequence at the NC3 domain of alpha 2(IX), we have synthesized undecapeptides containing the sequence around the glycosaminoglycan attachment site of the alpha 2(IX) chain. Antibody against the peptide, which was raised in rabbit, only recognized COLIX and made it possible to distinguish COLIX from PGIX. Evidence shows that this could be due to a difference in antigenicity of the NC3 domain of the alpha 2(IX) chain between COLIX and PGIX caused by the substitution of a chondroitin sulfate chain to the serine residue in this domain. Therefore, this antibody may be useful as a probe for studies on the functions of glycosaminoglycan substitution in type IX collagen.  相似文献   

20.
The expression and distribution of the long form of Type XII collagen were investigated histochemically during chicken corneal development using a monoclonal antibody (P3D11) raised against the N-terminal domain of chicken Type XII collagen. Specificity of the antibody was confirmed by immunoprecipitation before and after bacterial collagenase digestion. Immunofluorescent microscopic studies showed that during chicken cornea formation, the long form of Type XII collagen is initially detected on Day 3 embryo (stage 19) in the sub-epithelial matrix of the corneal periphery and in the matrix around the optic cup. On Day 5 embryo (stage 27) the long form was expressed in the primary stroma. Thereafter, as the secondary stroma was formed, the long form localized in the sub-epithelial and sub-endothelial matrices and in the anterior region of the limbus (corneoscleral junction) before the formation of Descemet's and Bowman's membranes. After hatching, the immunoreactivity decreased predominantly in the sub-epithelial and sub-endothelial matrices but remained at the anterior region of the limbus. Immunoelectron microscopic examination demonstrated that the long form localizes in the Descemet's and Bowman's membranes and along the collagen fibrils in the stroma with a periodic repeat. Based on the distribution of the long form of Type XII collagen in the sub-epithelial and sub-endothelial matrices and limbus, it was suggested that the long form of Type XII collagen is involved in formation of the Descemet's and Bowman's membranes and in stabilization of the limbus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号