首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Syntrophic degradation of normal- and branched-chain fatty acids with 4 to 9 carbons was investigated with a mesophilic syntrophic isobutyrate-butyrate-degrading triculture consisting of the non-spore-forming, syntrophic, fatty acid-degrading, gram-positive rod-shaped strain IB, Methanobacterium formicicum T1N, and Methanosarcina mazei T18. This triculture converted butyrate and isobutyrate to methane and converted valerate and 2-methylbutyrate to propionate and methane. This triculture also degraded caproate, 4-methylvalerate, heptanoate, 2-methylhexanoate, caprylate, and pelargoate. During the syntrophic conversion of isobutyrate and butyrate, a reversible isomerization between butyrate and isobutyrate occurred; isobutyrate and butyrate were isomerized to the other isomeric form to reach nearly equal concentrations and then their concentrations decreased at the same rates. Butyrate was an intermediate of syntrophic isobutyrate degradation. When butyrate was degraded in the presence of propionate, 2-methylbutyrate was synthesized from propionate and isobutyrate formed from butyrate. During the syntrophic degradation of valerate, isobutyrate, butyrate, and 2-methylbutyrate were formed and then degraded. During syntrophic degradation of 2-methylbutyrate, isobutyrate and butyrate were formed and then degraded.  相似文献   

2.
Acyl CoA dehydrogenase and electron-transfer flavoprotein have been isolated and partially purified from mitochondria of the anaerobic nematode, Ascarissuum. Dehydrogenase activity was greatest with 2-methylbutyryl CoA and the relative substrate specificities of the ascarid dehydrogenase(s) differ greatly from their mammalian counterparts. It appears that the ascarid dehydrogenase functions physiologically as a reductase, catalyzing the final step in the synthesis of branched-chain fatty acids. In fact, incubations of A. suum mitochondrial membranes with electron-transfer flavoprotein, 2-methylbutyryl CoA dehydrogenase, 2-methylcrotonyl CoA and NADH resulted in a substantial, rotenone-sensitive, 2-methylbutyrate synthesis. These results suggest that the ascarid electron-transport chain and at least two soluble mitochondrial proteins are involved in the NADH-dependent reduction of 2-methylcrotonyl CoA.  相似文献   

3.
Summary The anaerobic transformation of malate and succinate into propionate was demonstrated in homogenates and mitochondria isolated from the body wall musculature ofArenicola marina, a facultative anaerobic polychaete. Synthesis of propionate from succinate was enhanced by the addition of malate and ADP. In the presence of malate, acetate was formed in addition to propionate. Maximal quantities of both fatty acids were produced by mitochondria incubated with malate, succinate, and ADP. Since the rate of propionate production in this case was about the same as in homogenates when related to fresh weight, it is concluded that the enzymatic system involved is localized exclusively in the mitochondria. The rate of propionate production is correlated with the concentration of succinate, saturation being reached at about 5 mM. In tracer experiments using (methyl-14C)-malonyl-CoA, 2,3-14C-succinate, and 1-14C-propionate as precursors, the pathway of the transformation of succinate into propionate was examined. The results indicate that methylmalonyl-CoA is an intermediary product. It was shown that the synthesis of propionate from succinate is coupled to the formation of ATP. The ratio ATP/propionate was 0.76. Dinitrophenol had only a slight effect on this ratio, although the utilization of succinate was inhibited considerably. It is concluded that in vivo substrate level phosphorylation occurs equimolar to the formation of propionate from succinate.Abbreviations Ap 5 A P1,P5-di(adenosine-5-)pentaphosphate - DNP 2,4-dinitrophenol - mma methylmalonic acid - mm-CoA methylmalonyl-CoA Enzymes EC 6.2.1.1 Acetate thiokinase (AMP) - EC 3.6.1.3 actomyosin ATPase - EC 2.7.4.3 adenylate kinase - EC 2.8.3.1 CoA transferase - EC 2.7.1.1 hexokinase - EC 2.1.3.1 methylmalonyl-CoA carboxyltransferase - EC 5.4.99.1 methylmalonyl-CoA isomerase - EC 5.1.99.1 methylmalonyl-CoA racemase - EC 6.4.1.3 propionyl-CoA carboxylase - EC 1.2.4.1 pyruvate dehydrogenase Supported by Deutsche Forschungsgemeinschaft Gr 456/6  相似文献   

4.
A moderately thermophilic anaerobic bacterium (strain Su883), which decarboxylated succinate to propionate, was isolated from granular methanogenic sludge. The bacterium appeared to ferment a number of amino acids including glutamate, histidine, arginine, ornithine, citrulline, and threonine to propionate, acetate and hydrogen. Propionate was formed via the oxidative decarboxylation of -ketoglutarate to succinyl-CoA. In addition, the strain degraded glucose, fructose, glycerol, pyruvate, serine, alanine, citrate and malate to acetate, carbon dioxide and hydrogen, and branched-chain amino acids to branched-chain fatty acids. With all single substrates solely hydrogen was formed as reduced fermentation product. Mixed cultures of strain Su883 and Methanobacterium thermoautotrophicum H showed a more rapid conversion of substrates and with some substrates a shift from acetate to propionate formation.Strain Su883 is a motile, gram-negative, non-sporeforming, slightly curved rod with a DNA base ratio of 56.5 mol% guanine-plus-cytosine. Selenomonas acidaminovorans Su883 is proposed as type strain for the new species within the genus Selenomonas.  相似文献   

5.
The mechanism of depletion of tricarboxylic acid cycle intermediates by isolated rat heart mitochondria was studied using hydroxymalonate (an inhibitor of malic enzymes) and mercaptopicolinate (an inhibitor of phosphoenolpyruvate carboxykinase) as tools. Hydroxymalonate inhibited the respiration rate of isolated mitochondria in state 3 by 40% when 2 mM malate was the only external substrate, but no inhibition was found with 2 mM malate plus 0.5 mM pyruvate as substrates. In the prescence od bicarbonate, arsenite and ATP, propionate was converted to pyruvate and malate at the rates of 14.0 ± 2.9 and 2.8 ± 1.8 nmol/mg protein in 5 min, respectively. Under these conditions, 0.1 mM mercaptopicolinate did not affect this conversion, but 2 mM hydroxymalonate inhibited pyruvate formation completely and resulted in an accumulation of malate up to 13.2 ± 2.9 nmol/mg protein. No accumulation of phosphoenolpyruvate was found under any condition tested. It is concluded that malic enzymes but not phosphoenolpyruvate carboxykinase, are involved in conversion of propionate to pyruvate in isolated rat heart mitochondria.  相似文献   

6.
The metabolism of pyruvate and lactate by rat adipose tissue was studied. Pyruvate and lactate conversion to fatty acids is strongly concentration-dependent. Lactate can be used to an appreciable extent only by adipose tissue from fasted-refed rats. A number of compounds, including glucose, pyruvate, aspartate, propionate, and butyrate, stimulated lactate conversion to fatty acids. Based on studies of incorporation of lactate-2-(3)H and lactate-2-(14)C into fatty acids it was suggested that the transhydrogenation sequence of the "citrate-malate cycle"(1) was not providing all of the NADPH required for fatty acid synthesis from lactate. An alternative pathway for NADPH formation involving the conversion of isocitrate to alpha-ketoglutarate via cytosolic isocitrate dehydrogenase was proposed. Indirect support for this proposal was provided by the rapid labeling of glutamate from lactate-2-(14)C by adipose tissue incubated in vitro, as well as the demonstration that glutamate can be readily metabolized by adipose tissue via reactions localized largely in the cytosol. Furthermore, isolated adipose tissue mitochondria convert alpha-ketoglutarate to malate, or in the presence of added pyruvate, to citrate. Glutamate itself can not be metabolized by these mitochondria, a finding in keeping with the demonstration of negligible levels of NAD-glutamate dehydrogenase activity in adipose tissue mitochondria. Pyruvate stimulated alpha-ketoglutarate and malate conversion to citrate and reduced their oxidation to CO(2). It is proposed that under conditions of excess generation of NADH malate may act as a shuttle carrying reducing equivalents across the mitochondrial membrane. Malate at low concentrations increased pyruvate conversion $$Word$$ citrate and markedly decreased the formation of CO(2) by isolated adipose tissue mitochondria. Malate also stimulated citrate and isocitrate metabolism by these mitochondria, an effect that could be blocked by 2-n-butylmalonate. This potentially important role of malate in the regulation of carbon flow during lipogenesis is underlined by the observation that 2-n-butylmalonate inhibited fatty acid synthesis from pyruvate, but not from glucose and acetate, and decreased the stimulatory effect of pyruvate on acetate conversion to fatty acids.  相似文献   

7.
Spirochete MA-2, which is anaerobic, ferments glucose, forming acetate as a major product. The spirochete also ferments (but does not utilize as growth substrates) small amounts of l-leucine, l-isoleucine, and l-valine, forming the branched-chain fatty acids isovalerate, 2-methylbutyrate, and isobutyrate, respectively, as end products. Energy generated through the fermentation of these amino acids is utilized to prolong cell survival under conditions of growth substrate starvation. A branched-chain fatty acid kinase and two acetate kinase isozymes were resolved from spirochete MA-2 cell extracts. Kinase activity was followed by measuring the formation of acyl phosphate from fatty acid and ATP. The branched-chain fatty acid kinase was active with isobutyrate, 2-methylbutyrate, isovalerate, butyrate, valerate, or propionate as a substrate but not with acetate as a substrate. The acetate kinase isozymes were active with acetate and propionate as substrates but not with longer-chain fatty acids as substrates. The acetate kinase isozymes and the branched-chain fatty acid kinase differed in nucleoside triphosphate and cation specificities. Each acetate kinase isozyme had an apparent molecular weight of approximately 125,000, whereas the branched-chain fatty acid kinase had a molecular weight of approximately 76,000. These results show that spirochete MA-2 synthesizes a branched-chain fatty acid kinase specific for leucine, isoleucine, and valine fermentation. It is likely that a phosphate branched-chain amino acids is also synthesized by spirochete MA-2. Thus, in spirochete MA-2, physiological mechanisms have evolved which serve specifically to generate maintenance energy from branched-chain amino acids.  相似文献   

8.
Synthesis of phosphoenolpyruvate from propionate in sheep liver   总被引:2,自引:2,他引:0       下载免费PDF全文
1. Utilization of propionate by sheep liver mitochondria was stimulated equally by pyruvate or alpha-oxoglutarate, with formation predominantly of malate. Pyruvate increased conversion of propionate carbon into citrate, whereas alpha-oxoglutarate increased formation of phosphoenolpyruvate. The fraction of metabolized propionate converted into phosphoenolpyruvate was about 17% in the presence or absence of alpha-oxoglutarate and about 7% in the presence of pyruvate. Pyruvate consumption was inhibited by 80% by 5mm-propionate. 2. Compared with rat liver, sheep liver was characterized by very high activities of phosphoenolpyruvate carboxykinase and moderately high activities of aconitase in the mitochondria and by low activities of ;malic' enzyme, pyruvate kinase and lactate dehydrogenase in the cytosol. Activities of phosphoenolpyruvate carboxy-kinase were similar in liver cytosol from rats and sheep. Activities of malate dehydrogenase and NADP-linked isocitrate dehydrogenase in sheep liver were about half those in rat liver. 3. The phosphate-dicarboxylate antiport was active in sheep liver mitochondria, but compared with rat liver mitochondria the citrate-malate antiport showed only low activity and mitochondrial aconitase was relatively inaccessible to external citrate. The rate of swelling of mitochondria induced by phosphate in solutions of ammonium malate was inversely related to the concentration of malate. 4. The results are discussed in relation to gluconeogenesis from propionate in sheep liver. It is proposed that propionate is converted into malate by the mitochondria and the malate is converted into phosphoenolpyruvate by enzymes in the cytosol. In this way sufficient NADH would be generated in the cytosol to convert the phosphoenolpyruvate into glucose.  相似文献   

9.
(1) d(-)-3-Hydroxybutyrate dehydrogenase activity from guinea pig, rat, and bovine heart and from guinea pig liver is inhibited by malonate and tartronate, and more potently by the analogs methylmalonate, bromomalonate, chloromalonate, and mesoxalate. Little or no inhibitory effect was found for aminomalonate, ethylmalonate, dimethylmalonate, succinate, glutarate, oxaloacetate, malate, propionate, pyruvate, d- and l-lactate, n-butyrate, isobutyrate, and cyclopropanecarboxylate. (2) In initial velocity kinetics at pH 8.1 with a soluble enzyme preparation from bovine heart, the inhibition by the active malonate derivatives is competitive with respect to 3-hydroxybutyrate and uncompetitive with respect to acetoacetate, NAD+ or NADH. With d-3-hydroxybutyrate as the variable reactant (Km app = 0.26 mM) the inhibition constant of methylmalonate (Kis) was 0.09 mm. (3) The rate of utilization of d-3-hydroxybutyrate (78 μm) by coupled rat heart mitochondria in the presence of ADP was inhibited 50% by 150 μm methylmalonate. (4) With coupled guinea pig liver mitochondria oxidizing n-octanoate in the absence of added ADP, methylmalonate (1–3 mm) depressed 3-hydroxybutyrate formation substantially more than total ketone production. However, the intramitochondrial NADH (or NADPH) levels were unchanged by the addition of methylmalonate, indicating that the changes in ratios of accumulated 3-hydroxybutyrate and acetoacetate were caused by direct inhibition of 3-hydroxybutyrate dehydrogenase. Methylmalonate had the same effect on 3-hydroxybutyrate/acetoacetate ratios and ketone body formation with pyruvate or acetate as the source of acetyl groups. Similar results were obtained with malonate (10 mm) although the inhibition of total ketone formation from octanoate was more severe.  相似文献   

10.
Fernand G. P  ron  Charles P. W. Tsang 《BBA》1969,180(3):445-458
Pyruvate and pyruvate plus ATP have been shown to support 11β-hydroxylation of 11-deoxycorticosterone into corticosterone in incubated rat adrenal gland mitochondria. Corticosterone production with pyruvate plus ATP was not as great as with malate plus Pi, malate plus ATP or malate plus pyruvate. Respiratory chain inhibitors, trans-aconitate, oxaloacetate, arsenite and the uncoupler 2,4-dinitrophenol, inhibited corticosterone formation. On the other hand, cysteine sulfinate and pyruvate, which led to the removal of excess metabolic oxaloacetate formed from malate oxidation, increased rat adrenal mitochondrial O2 consumption as well as corticosterone production from 11-deoxycorticosterone. Pi and ATP also appeared to act in the same way in that these agents brought about a greater conversion rate of oxaloacetate into pyruvate. Pyruvate, resulting from the oxidation of malate, accumulated in the incubation system only when arsenite was added. Arsenite additions to malate and isocitrate inhibited the conversion of 11-deoxycorticosterone into corticosterone except when the 11β-hydroxylation of 11-deoxycorticosterone was supported with exogenous NADPH in Ca2+-swollen mitochondria. These results as well as the observations that NAD-linked malate dehydrogenase ( -malate: NAD+ oxidoreductase (decarboxylating), EC 1.1.1.39) is at least 10 times as active as the NADP-linked enzyme ( -malate: NADP+ oxidoreductase (decarboxylating), EC 1.1.1.39) in sonicated rat adrenal gland mitochondria, led to the conclusion that under our incubation conditions malate was mainly oxidized via the NAD-linked malate dehydrogenase. The fact that in malate incubations pyruvate did not accumulate because of its further metabolism in rat adrenal gland mitochondria, does not support the possibility that these mitochondria are the source of pyruvate for a “malate shuttle” originally thought to occur in rat adrenal gland7. This shuttle would have depended on the formation of pyruvate from malate in rat adrenal gland mitochondria followed by extrusion of the pyruvate formed intramitochondrially into the cytoplasm of the cell.  相似文献   

11.
Metabolism of pyruvate and malate by isolated fat-cell mitochondria   总被引:7,自引:7,他引:0       下载免费PDF全文
1. Metabolism of pyruvate and malate by isolated fat-cell mitochondria incubated in the presence of ADP and phosphate has been studied by measuring rates of pyruvate uptake, malate utilization or production, citrate production and oxygen consumption. From these measurements calculations of the flow rates through pyruvate carboxylase, pyruvate dehydrogenase and citrate cycle have been made under various conditions. 2. In the presence of bicarbonate, pyruvate was largely converted into citrate and malate and only about 10% was oxidized by the citrate cycle; citrate and malate outputs were linear after lag periods of 6-9min and 3min respectively, and no other end products of pyruvate metabolism were detected. On the further addition of malate or hydroxymalonate, the lag in the rate of citrate output was less marked but no net malate disappearance was detected. If, however, bicarbonate was omitted then net malate uptake was observed. Addition of butyl malonate was found to greatly inhibit the metabolism of pyruvate to citrate and malate in the presence of bicarbonate. 3. These results are in agreement with earlier conclusions that in adipose tissue acetyl units for fatty acid synthesis are transferred to the cytoplasm as citrate and that this transfer requires malate presumably for counter transport. They also support the view that oxaloacetate for citrate synthesis is preferentially formed from pyruvate through pyruvate carboxylase rather than malate through malate dehydrogenase and that the mitochondrial metabolism of citrate in fat-cells is restricted. The possible consequences of these conclusions are discussed. 4. Studies on the effects of additions of adenine nucleotides to pyruvate metabolism by isolated fat-cell mitochondria are consistent with inhibition of pyruvate carboxylase in the presence of ADP and pyruvate dehydrogenase in the presence of ATP.  相似文献   

12.
A defined minimal medium was developed for an axenic strain of Peridinium (Indiana Culture No. LB 1336). Thiamine, biotin, and vitamin B12 did not stimulate growth. Of 15 organic carbon sources tried in light, fructose, galactose, glucose, malate, malonate, and pyruvate enhanced growth but propionate retarded growth. In dark-grown cultures only media with succinate permitted growth above the survival level. Stimulation of growth by organic carbon sources was markedly pH dependent.  相似文献   

13.
We studied the metabolism of [U-14C]isoleucine by intact and homogenized corpora allata (CA) from various insect species to determine how this substrate is converted to precursors of juvenile hormone (JH). CA homogenates of the lepidopterans Manduca sexta, Hyalophora cecropia, and Samia cynthia metabolize [U-14C]isoleucine to several products including 2-keto-3-methyl-valerate, 2-methylbutyrate, CO2, propionate, and acetate. Intact CA of male H. cecropia produce particularly high levels of 2-keto-3-methylvalerate, indicating a highly active branched-chain-amino acid transaminase. In contrast, CA homogenates from the nonlepidopterans Periplaneta americana, Schistocerca nitens, Tenebrio molitor, and Diploptera punctata barely metabolize [U-14C]isoleucine. However, P. americana CA homogenate metabolizes [U-14C]2-keto-3-methylvalerate, the transamination product of [U-14C]isoleucine, more rapidly than does a homogenate of M. sexta CA. Furthermore, intact CA from P. americana incubated with [U-14C]2-keto-3-methylvalerate incorporate low levels of 14C into JH III, but do not metabolize this substrate to JH II or JH I. Intact CA from female Diploptera punctata produce very high levels of JH III, but are also unable to incorporate radiolabel from [U-14C]isoleucine into JH III, which substantiates our findings with other nonlepidopteran CA. The results suggest that CA of nonlepidopteran insects lack an active branched-chain amino acid transaminase and, consequently, are unable to utilize these substrates for JH biosynthesis.  相似文献   

14.
Pathophysiological concentrations of branched chain keto-acids (BCKAs), such as those that occur in maple syrup urine disease, inhibit oxygen consumption in liver homogenates and brain slices and the enzymatic activity of α-ketoglutarate- and pyruvate dehydrogenase complexes. Consistent with previous work, studies in isolated rat liver mitochondria indicate that three BCKAs, α-ketoisocaproate (KIC), α-keto-β-methylvalerate (KMV) and α-ketoisovalerate (KIV), preferentially inhibited State 3 respiration supported by α-ketoglutarate relative to succinate or glutamate/malate (KIC, >100-fold; KMV, >10-fold; KIV, >4-fold). KIC was also the most potent inhibitor (Ki,app 13 ± 2 μM). Surprisingly, sub-inhibitory concentrations of KIC and KMV can markedly stimulate State 3 respiration of mitochondria utilizing α-ketoglutarate and glutamate/malate, but not succinate. The data suggest that physiological concentrations of the BCKAs may modulate mitochondrial respiration. Special issue dedicated to John P. Blass.  相似文献   

15.
Rat lung mitochondrial preparations were incubated in the presence of pyruvate and malate. The principal metabolic products measured were citrate and CO2. Citrate formation from pyruvate was found to be dependent on the presence of malate. Significant citrate was formed in the presence of isocitrate and the rate of citrate formation was increased by the addition of pyruvate. Small amounts of citrate were formed by lung mitochondrial preparations in the presence of 2-oxoglutarate and succinate only after the addition of pyruvate. The level of acetyl-CoA was significantly greater in the presence of pyruvate than in the presence of pyruvate plus malate. The addition of malate to lung mitochondrial preparations increased 14CO2 production from [U-14C]- and [1-14C] pyruvate but decreased its production from [2-14C]- and [3-14C]-pyruvate. However, malate increased the incorporation of [2-14C] pyruvate into malate and citrate. A low level of pyruvate-dependent H14CO8-incorporation into acid-stable products was observed, principally citrate and malate, but this rate did not exceed 5% of the rate of net citrate formation in the presence of malate and pyruvate. The capacity of rat lung mitochondria to form oxaloacetate from pyruvate alone in vitro is very limited, and would appear to cast doubt on a major role of pyruvate carboxylase in citrate formation. It is concluded that the rate of citrate formation from pyruvate is limited by the availability of intramitochondrial oxaloacetate and the rate of citrate efflux across the mitochondrial membrane.  相似文献   

16.
Some Reactions of Isolated Corn Mitochondria Influenced by Juglone   总被引:1,自引:0,他引:1  
The effects of juglone on the uptake of O2 by excised corn roots (Zea mays L., Wf9 cms- T × M14) and isolated corn mitochondria arc reported. The O2 uptake by excised corn roots, as measured by an O2 electrode, was inhibited more than 90% after a one-hour treatment of 500 μM juglone. Lesser inhibitions were observed with 50 μM and 250 μM juglone. In a KC1 reaction medium in the absence of inorganic phosphate (Pi), juglone stimulated the rate of O2 uptake by isolated mitochondria oxidizing NADH, succinate, or malate + pyruvate. In the presence of Pi, juglone concentrations of 3 μM and greater inhibited the state 3 oxidation rates of succinate and malate + pyruvate, lowered respiratory control and ADP/O ratios obtained from the oxidation of NADH, malate + pyruvate, or succinate, and reduced the coupled deposition of calcium phosphate within isolated mitochondria driven, by the oxidation of malate + pyruvate. The inhibition of state 3 O2 uptake by isolated mitochondria, an oxidative state in which electron transfer is coupled to ATP production, is seen to correlate with the inhibition affected by juglone when applied to tissues in vivo.  相似文献   

17.
Channeling of TCA cycle intermediates in cultured Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
B Sumegi  A D Sherry  C R Malloy 《Biochemistry》1990,29(39):9106-9110
Oxidation of [3-13C]propionate was studied in cultured yeast cells, and the distribution of label in the 2- and 3-positions of alanine was detected by 13C NMR. [3-13C]Propionate forms [2-13C]succinyl-CoA in the mitochondria which then enters the citric acid cycle and forms malate through two symmetrical intermediates, succinate and fumarate. If these symmetrical intermediates randomly diffuse from one enzyme to the next in mitochondria as is normally assumed, then 13C labeling in malate C2 and C3 must be equal. However, any direct transfer of metabolites from site to site between succinate thiokinase, succinate dehydrogenase, and fumarase would result in an uneven distribution of 13C in malate C2 and C3 and any molecules derived from malate. Since pyruvate may be derived from malate via the malic enzyme and subsequently converted into alanine by transamination, any 13C asymmetry in alanine C2 and C3 must directly reflect the 13C distribution in the malate pool. During oxidation of [3-13C]propionate, we detect a significant quantity of labeled alanine, where 13C enrichment in C3 is significantly higher than that in C2. Inhibition of succinate dehydrogenase with malonate or creating conditions that increase the chances of a back-reaction (from malate to fumarate) result in a significant decrease in the asymmetric labeling of alanine. Ubiquinone-deficient yeast cells (having only 10% of the oxidative capacity of wild-type cells) could slowly oxidize propionate, but in this case the 13C labeling was equal in the C2 and C3 of alanine, showing that isotope randomization had occurred.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Oxidative phosphorylation analysis, performed on freshly-isolated mitochondria, assesses the integrated function of the electron transport chain (ETC) coupled to ATP synthesis, membrane transport, dehydrogenase activities, and the structural integrity of the mitochondria. In this review, a case study approach is employed to highlight detection of defects in the adenine nucleotide translocator, the pyruvate dehydrogenase complex, fumarase, coenzyme Q function, fatty acid metabolism, and mitochondrial membrane integrity. Our approach uses the substrates glutamate, pyruvate, 2-ketoglutarate (coupled with malonate), malate, and fatty acid substrates (palmitoylcarnitine, octanoylcarnitine, palmitoyl-CoA (with carnitine), octanoyl-CoA (with carnitine), octanoate and acetylcarnitine) in addition to succinate, durohydroquinone and TMPD/ascorbate to uncover metabolic defects that would not be apparent from ETC assays performed on detergent-solubilized mitochondria.  相似文献   

19.
Oxidation of 2-oxoglutarate (in the presence of malonate) by mitochondria isolated from turnip, pea leaf and cauliflower tissue was dramatically inhibited by micromolar concentrations of pyruvate. Pyruvate, however, had little or no effect on 2-OG oxidation when carried out in the absence of malonate. The inhibition was reversed by alpha-cyano-4-hydroxycinnamic acid, indicating pyruvate uptake into the matrix was required for the inhibitory effect. In contrast, pyruvate had no effect on 2-oxoglutarate oxidation by mitochondria isolated from rat heart. The possible significance of the effect in terms of the control of 2-oxoglutarate dehydrogenase activity during the operation of a malate/aspartate shuttle in plant mitochondria is discussed.  相似文献   

20.
Oxidative phosphorylation analysis, performed on freshly-isolated mitochondria, assesses the integrated function of the electron transport chain (ETC) coupled to ATP synthesis, membrane transport, dehydrogenase activities, and the structural integrity of the mitochondria. In this review, a case study approach is employed to highlight detection of defects in the adenine nucleotide translocator, the pyruvate dehydrogenase complex, fumarase, coenzyme Q function, fatty acid metabolism, and mitochondrial membrane integrity. Our approach uses the substrates glutamate, pyruvate, 2-ketoglutarate (coupled with malonate), malate, and fatty acid substrates (palmitoylcarnitine, octanoylcarnitine, palmitoyl-CoA (with carnitine), octanoyl-CoA (with carnitine), octanoate and acetylcarnitine) in addition to succinate, durohydroquinone and TMPD/ascorbate to uncover metabolic defects that would not be apparent from ETC assays performed on detergent-solubilized mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号