首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins with a weak sequence similarity to tubulin and FtsZ are expressed from large plasmids of Bacillus anthracis and Bacillus thuringiensis and are probably involved in plasmid segregation. Previously designated RepX and TubZ, we designate them here as TubZ-Ba and TubZ-Bt. We have expressed and purified the proteins for in vitro studies. TubZ-Ba and TubZ-Bt share only 21% amino acid identity, but they have remarkably similar biochemical properties. They both assemble into two-stranded filaments and larger bundles above a critical concentration, and they hydrolyze GTP at a very high rate, approximately 20 GTP min(-1) TubZ(-1). Assembly is also supported by GTPgammaS. A tiny amount of GTPgammaS stabilizes polymers assembled in GTP and inhibits the GTPase by a mechanism involving cooperativity. The nucleotide in the polymers is almost 100% GDP, which is similar to microtubules but very different from the 20-30% GDP in FtsZ polymers. This suggests that the TubZ polymers have a capping mechanism that may be related to the GTP cap that produces dynamic instability of microtubules.  相似文献   

2.
Guanine nucleotide-dependent assembly of FtsZ into filaments.   总被引:41,自引:19,他引:22       下载免费PDF全文
FtsZ is an essential cell division protein that is localized to the leading edge of the bacterial septum in a cytokinetic ring. It contains the tubulin signature motif and is a GTP binding protein with a GTPase activity. Further comparison of FtsZ with eukaryotic tubulins revealed some additional sequence similarities, perhaps indicating a similar GTP binding site. Examination of FtsZ incubated in vitro by electron microscopy revealed a guanine nucleotide-dependent assembly into protein filaments, supporting the hypothesis that the FtsZ ring is formed through self-assembly. FtsZ3, which is unable to bind GTP, does not polymerize, whereas FtsZ2, which binds GTP but is deficient in GTP hydrolysis, is capable of polymerization.  相似文献   

3.
The prokaryotic tubulin homologue FtsZ plays a key role in bacterial cell division. Selective inhibitors of the GTP-dependent polymerization of FtsZ are expected to result in a new class of antibacterial agents. One of the challenges is to identify compounds which do not affect the function of tubulin and various other GTPases in eukaryotic cells. We have designed a novel inhibitor of FtsZ polymerization based on the structure of the natural substrate GTP. The inhibitory activity of 8-bromoguanosine 5'-triphosphate (BrGTP) was characterized by a coupled assay, which allows simultaneous detection of the extent of polymerization (via light scattering) and GTPase activity (via release of inorganic phosphate). We found that BrGTP acts as a competitive inhibitor of both FtsZ polymerization and GTPase activity with a Ki for GTPase activity of 31.8 +/- 4.1 microM. The observation that BrGTP seems not to inhibit tubulin assembly suggests a structural difference of the GTP-binding pockets of FtsZ and tubulin.  相似文献   

4.
The cell division protein FtsZ is a GTPase structurally related to tubulin and, like tubulin, it assembles in vitro into filaments, sheets and other structures. To study the roles that GTP binding and hydrolysis play in the dynamics of FtsZ polymerization, the nucleotide contents of FtsZ were measured under different polymerizing conditions using a nitrocellulose filter-binding assay, whereas polymerization of the protein was followed in parallel by light scattering. Unpolymerized FtsZ bound 1 mol of GTP mol(-1) protein monomer. At pH 7.5 and in the presence of Mg(2+) and K(+), there was a strong GTPase activity; most of the bound nucleotide was GTP during the first few minutes but, later, the amount of GTP decreased in parallel with depolymerization, whereas the total nucleotide contents remained invariant. These results show that the long FtsZ polymers formed in solution contain mostly GTP. Incorporation of nucleotides into the protein was very fast either when the label was introduced at the onset of the reaction or subsequently during polymerization. Molecular modelling of an FtsZ dimer showed the presence of a cleft between the two subunits maintaining the nucleotide binding site open to the medium. These results show that the FtsZ polymers are highly dynamic structures that quickly exchange the bound nucleotide, and this exchange can occur in all the subunits.  相似文献   

5.
Dynamic assembly of FtsZ regulated by GTP hydrolysis.   总被引:30,自引:5,他引:25       下载免费PDF全文
FtsZ forms a cytokinetic ring, designated the Z ring, that directs cytokinesis in prokaryotes. It has limited sequence similarity to eukaryotic tubulins and, like tubulin, it has GTPase activity and the ability to assemble into various structures including protofilaments, bundles and minirings. By using both electron microscopy and sedimentation, we demonstrate that FtsZ from Escherichia coli undergoes a strictly GTP-dependent polymerization and the polymers disappear as the GTP is consumed. Thus, FtsZ polymerization, like that of tubulin, is dynamic and regulated by GTP hydrolysis. These results provide the basis for the dynamics of the Z ring and favor a model in which the Z ring is formed by a nucleation event.  相似文献   

6.
Löwe J  Amos LA 《The EMBO journal》1999,18(9):2364-2371
The 40 kDa protein FtsZ is a major septum-forming component of bacterial cell division. Early during cytokinesis at midcell, FtsZ forms a cytokinetic ring that constricts as septation progresses. FtsZ has a high propensity to polymerize in vitro into various structures, including sheets and filaments, in a GTP-dependent manner. Together with limited sequence homology, the occurrence of the tubulin signature motif in FtsZ and a similar three-dimensional structure, this leads to the conclusion that FtsZ is the bacterial tubulin homologue. We have polymerized FtsZ1 from Methanococcus jannaschii in the presence of millimolar concentrations of Ca2+ ions to produce two-dimensional crystals of plane group P2221. Most of the protein precipitates and forms filaments approximately 23.0 nm in diameter. A three-dimensional reconstruction of tilted micrographs of FtsZ sheets in negative stain between 0 and 60 degrees shows protofilaments of FtsZ running along the sheet axis. Pairs of parallel FtsZ protofilaments associate in an antiparallel fashion to form a two-dimensional sheet. The antiparallel arrangement is believed to generate flat sheets instead of the curved filaments seen in other FtsZ polymers. Together with the subunit spacing along the protofilament axis, a fitting of the FtsZ crystal structure into the reconstruction suggests a protofilamant structure very similar to that of tubulin protofilaments.  相似文献   

7.
Plasmid pXO1 encodes the tripartite anthrax toxin, which is the major virulence factor of Bacillus anthracis. In spite of the important role of pXO1 in anthrax pathogenesis, very little is known about its replication and maintenance in B. anthracis. We cloned a 5-kb region of the pXO1 plasmid into an Escherichia coli vector and showed that this plasmid can replicate when introduced into B. anthracis. Mutational analysis showed that open reading frame 45 (repX) of pXO1 was required for the replication of the miniplasmid in B. anthracis. Interestingly, repX showed limited homology to bacterial FtsZ proteins that are involved in cell division. A mutation in the predicted GTP binding domain of RepX abolished its replication activity. Genes almost identical to repX are contained on several megaplasmids in members of the Bacillus cereus group, including a B. cereus strain that causes an anthrax-like disease. Our results identify a novel group of FtsZ-related initiator proteins that are required for the replication of virulence plasmids in B. anthracis and possibly in related organisms. Such replication proteins may provide novel drug targets for the elimination of plasmids encoding the anthrax toxin and other virulence factors.  相似文献   

8.
Experimental conditions that simulate the crowded bacterial cytoplasmic environment have been used to study the assembly of the essential cell division protein FtsZ from Escherichia coli. In solutions containing a suitable concentration of physiological osmolytes, macromolecular crowding promotes the GTP-dependent assembly of FtsZ into dynamic two-dimensional polymers that disassemble upon GTP depletion. Atomic force microscopy reveals that these FtsZ polymers adopt the shape of ribbons that are one subunit thick. When compared with the FtsZ filaments observed in vitro in the absence of crowding, the ribbons show a lag in the GTPase activity and a decrease in the GTPase rate and in the rate of GTP exchange within the polymer. We propose that, in the crowded bacterial cytoplasm under assembly-promoting conditions, the FtsZ filaments tend to align forming dynamic ribbon polymers. In vivo these ribbons would fit into the Z-ring even in the absence of other interactions. Therefore, the presence of mechanisms to prevent the spontaneous assembly of the Z-ring in non-dividing cells must be invoked.  相似文献   

9.
Akhtar P  Khan SA 《Plasmid》2012,67(2):111-117
The large pXO1 plasmid (181.6kb) of Bacillus anthracis encodes the anthrax toxin proteins. Previous studies have shown that two separate regions of pXO1 can support replication of pXO1 miniplasmids when introduced into plasmid-less strains of this organism. No information is currently available on the ability of the above two replicons, termed RepX and ORFs 14/16 replicons, to support replication of the full-length pXO1 plasmid. We generated mutants of the full-length pXO1 plasmid in which either the RepX or the ORFs 14/16 replicon was inactivated by TargeTron insertional mutagenesis. Plasmid pXO1 derivatives containing only the RepX or the ORFs 14/16 replicon were able to replicate when introduced into a plasmid-less B. anthracis strain. Plasmid copy number analysis showed that the ORFs 14/16 replicon is more efficient than the RepX replicon. Our studies demonstrate that both the RepX and ORFs 14/16 replicons can independently support the replication of the full-length pXO1 plasmid.  相似文献   

10.
The Mycobacterium tuberculosis FtsZ (FtsZ(TB)), unlike other eubacterial FtsZ proteins, shows slow GTP-dependent polymerization and weak GTP hydrolysis activities [E.L. White, L.J. Ross, R.C. Reynolds, L.E. Seitz, G.D. Moore, D.W. Borhani, Slow polymerization of Mycobacterium tuberculosis FtsZ, J. Bacteriol. 182 (2000) 4028-4034]. In an attempt to understand the biological significance of these findings, we created mutations in the GTP-binding (FtsZ(G103S)) and GTP hydrolysis (FtsZ(D210G)) domains of FtsZ and characterized the activities of the mutant proteins in vitro and in vivo. We show that FtsZ(G103S) is defective for binding to GTP and polymerization activities, and exhibited reduced GTPase activity whereas FtsZ(D210G) protein is proficient in binding to GTP, showing reduced polymerization activity but did not show any measurable GTPase activity. Visualization of FtsZ-GFP structures in ftsZ merodiploid strains by fluorescent microscopy revealed that FtsZ(D210G) is proficient in associating with Z-ring structures whereas FtsZ(G103S) is not. Finally, we show that Mycobacterium smegmatis ftsZ mutant strains producing corresponding mutant FtsZ proteins are non-viable indicating that mutant FtsZ proteins cannot function as the sole source for FtsZ, a result distinctly different from that reported for Escherichia coli. Together, our results indicate that optimal GTPase and polymerization activities of FtsZ are required to sustain cell division in mycobacteria and that the same conserved mutations in different bacterial species have distinct phenotypes.  相似文献   

11.
The essential cell division protein, FtsZ, from Mycobacterium tuberculosis has been expressed in Escherichia coli and purified. The recombinant protein has GTPase activity typical of tubulin and other FtsZs. FtsZ polymerization was studied using 90 degrees light scattering. The mycobacterial protein reaches maximum polymerization much more slowly ( approximately 10 min) than E. coli FtsZ. Depolymerization also occurs slowly, taking 1 h or longer under most conditions. Polymerization requires both Mg(2+) and GTP. The minimum concentration of FtsZ needed for polymerization is 3 microM. Electron microscopy shows that polymerized M. tuberculosis FtsZ consists of strands that associate to form ordered aggregates of parallel protofilaments. Ethyl 6-amino-2, 3-dihydro-4-phenyl-1H-pyrido[4,3-b][1,4]diazepin-8-ylcarbamate+ ++ (SRI 7614), an inhibitor of tubulin polymerization synthesized at Southern Research Institute, inhibits M. tuberculosis FtsZ polymerization, inhibits GTP hydrolysis, and reduces the number and sizes of FtsZ polymers.  相似文献   

12.
FtsZ, a tubulin homologue, forms a cytokinetic ring at the site of cell division in prokaryotes. The ring is thought to consist of polymers that assemble in a strictly GTP-dependent way. GTP, but not guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma-S), has been shown to induce polymerization of FtsZ, whereas in vitro Ca2+ is known to inhibit the GTP hydrolysis activity of FtsZ. We have studied FtsZ dynamics at limiting GTP concentrations in the presence of 10 mM Ca2+. GTP and its non-hydrolysable analogue GTP-gamma-S bind FtsZ with similar affinity, whereas the non-hydrolysable analogue guanylyl-imidodiphosphate (GMP-PNP) is a poor substrate. Preformed FtsZ polymers can be stabilized by GTP-gamma-S and are destabilized by GDP. As more than 95% of the nucleotide associated with the FtsZ polymer is in the GDP form, it is concluded that GTP hydrolysis by itself does not trigger FtsZ polymer disassembly. Strikingly, GTP-gamma-S exchanges only a small portion of the FtsZ polymer-bound GDP. These data suggest that FtsZ polymers are stabilized by a small fraction of GTP-containing FtsZ subunits. These subunits may be located either throughout the polymer or at the polymer ends, forming a GTP cap similar to tubulin.  相似文献   

13.
Essential cell division protein FtsZ is an assembling GTPase which directs the cytokinetic ring formation in dividing bacterial cells. FtsZ shares the structural fold of eukaryotic tubulin and assembles forming tubulin-like protofilaments, but does not form microtubules. Two puzzling problems in FtsZ assembly are the nature of protofilament association and a possible mechanism for nucleated self-assembly of single-stranded protofilaments above a critical FtsZ concentration. We assembled two-dimensional arrays of FtsZ on carbon supports, studied linear polymers of FtsZ with cryo-electron microscopy of vitrified unsupported solutions, and formulated possible polymerization models. Nucleated self-assembly of FtsZ from Escherichia coli with GTP and magnesium produces flexible filaments 4-6 nm-wide, only compatible with a single protofilament. This agrees with previous scanning transmission electron microscopy results and is supported by recent cryo-electron tomography studies of two bacterial cells. Observations of double-stranded FtsZ filaments in negative stain may come from protofilament accretion on the carbon support. Preferential protofilament cyclization does not apply to FtsZ assembly. The apparently cooperative polymerization of a single protofilament with identical intermonomer contacts is explained by the switching of one inactive monomer into the active structure preceding association of the next, creating a dimer nucleus. FtsZ behaves as a cooperative linear assembly machine.  相似文献   

14.
The essential prokaryotic cell division protein FtsZ is a tubulin homologue that forms a ring at the division site. FtsZ forms polymers in a GTP-dependent manner. Recent biochemical evidence has shown that FtsZ forms multimeric structures in vitro and in vivo and functions as a self-activating GTPase. Structural analysis of FtsZ points to an important role for the highly conserved tubulin-like loop 7 (T7-loop) in the self-activation of GTP hydrolysis. The T7-loop was postulated to form the active site together with the nucleotide-binding site on an adjacent FtsZ monomer. To characterize the role of the T7-loop of Escherichia coli FtsZ, we have mutagenized residues M206, N207, D209, D212, and R214. All the mutant proteins, except the R214 mutant, are severely affected in polymerization and GTP hydrolysis. Charged residues D209 and D212 cannot be substituted with a glutamate residue. All mutants interact with wild-type FtsZ in vitro, indicating that the T7-loop mutations do not abolish FtsZ self-association. Strikingly, in mixtures of wild-type and mutant proteins, most mutants are capable of inhibiting wild-type GTP hydrolysis. We conclude that the T7-loop is part of the active site for GTP hydrolysis, formed by the association of two FtsZ monomers.  相似文献   

15.
The cell division protein FtsZ assembles in vitro by a mechanism of cooperative association dependent on GTP, monovalent cations, and Mg2+. We have analyzed the GTPase activity and assembly dynamics of Streptococcus pneumoniae FtsZ (SpnFtsZ). SpnFtsZ assembled in an apparently cooperative process, with a higher critical concentration than values reported for other FtsZ proteins. It sedimented in the presence of GTP as a high molecular mass polymer with a well defined size and tended to form double-stranded filaments in electron microscope preparations. GTPase activity depended on K+ and Mg2+ and was inhibited by Na+. GTP hydrolysis exhibited a delay that included a lag phase followed by a GTP hydrolysis activation step, until reaction reached the GTPase rate. The lag phase was not found in polymer assembly, suggesting a transition from an initial non-GTP-hydrolyzing polymer that switches to a GTP-hydrolyzing polymer, supporting models that explain FtsZ polymer cooperativity.  相似文献   

16.
黄海艳  陈耀东 《微生物学通报》2017,44(11):2741-2747
自从1992年确定细菌分裂的关键蛋白Fts Z属于微管蛋白家族以来,越来越多的细菌细胞骨架蛋白被发现。原核生物中的微管同源蛋白主要有Fts Z、Cet Z、Tub Z和Btub A/B等。它们与微管蛋白具有相似的三级结构,可以结合鸟嘌呤-5′-三磷酸(Guanosine triphosphate,GTP)自聚合成不同的线状原丝纤维结构:单线状原丝纤维、双螺旋纤维结构或聚集成束状结构,在细菌细胞分裂、维持细胞形态、质粒分离等诸多重要生理功能中起着重要作用。  相似文献   

17.
FtsZ is a prokaryotic homolog of tubulin and is a key molecule in bacterial cell division. FtsZ with bound GTP polymerizes into tubulin-like protofilaments. Upon polymerization, the T7 loop of one subunit is inserted into the nucleotide-binding pocket of the second subunit, which results in GTP hydrolysis. Thus, the T7 loop is important for both polymerization and hydrolysis in the tubulin/FtsZ family. Although x-ray crystallography revealed both straight and curved conformations of tubulin, only a curved structure was known for FtsZ. Recently, however, FtsZ from Staphylococcus aureus has been shown to have a very different conformation from the canonical FtsZ structure. The present study was performed to investigate the structure of FtsZ from Staphylococcus aureus by mutagenesis experiments; the effects of amino acid changes in the T7 loop on the structure as well as on GTPase activity were studied. These analyses indicated that FtsZ changes its conformation suitable for polymerization and GTP hydrolysis by movement between N- and C-subdomains via intermolecular interactions between bound nucleotide and residues in the T7 loop.  相似文献   

18.
FtsZ, the prokaryotic homologue of tubulin, is an essential cell division protein. In the cell, it localizes at the center, forming a ring that constricts during division. In vitro, it binds and hydrolyzes GTP and polymerizes in a GTP-dependent manner. We have used atomic force microscopy to study the structure and dynamics of FtsZ polymer assembly on a mica surface under buffer solution. The polymers were highly dynamic and flexible, and they continuously rearranged over the surface. End-to-end joining of filaments and depolymerization from internal zones were observed, suggesting that fragmentation and reannealing may contribute significantly to the dynamics of FtsZ assembly. The shape evolution of the restructured polymers manifested a strong inherent tendency to curve. Polymers formed in the presence of non-hydrolyzable nucleotide analogues or in the presence of GDP and AlF(3) were structurally similar but showed a slower dynamic behavior. These results provide experimental evidence supporting the model of single-strand polymerization plus cyclization recently proposed to explain the hydrodynamic behavior of the polymers in solution.  相似文献   

19.
FtsZ, the prokaryotic ortholog of tubulin, assembles into polymers in the bacterial division ring. The interfaces between monomers contain a GTP molecule, but the relationship between polymerization and GTPase activity is not unequivocally proven. A set of short FtsZ polymers were modelled and the formation of active GTPase structures was monitored using molecular dynamics. Only the interfaces nearest the polymer ends exhibited an adequate geometry for GTP hydrolysis. Simulated conversion of interfaces from close-to-end to internal position and vice versa resulted in their spontaneous rearrangement between active and inactive conformations. This predicted behavior of FtsZ polymer ends was supported by in vitro experiments.  相似文献   

20.
We recently identified a minireplicon of pBtoxis from Bacillus thuringiensis subsp. israelensis that contained an operon encoding two novel proteins (ORF156 and ORF157), both of which are required for replication. ORF157 contains a helix-turn-helix motif and shares no homology with known plasmid replication proteins (Rep), and ORF156 contains the signature motif present in FtsZ/tubulin proteins, the latter of which are known to function in cell division and chromosome segregation. Here we show that the minimal sequence composed of four 12-bp imperfect direct repeats (iterons) in the pBtoxis minireplicon was sufficient to replicate a reporter plasmid in B. thuringiensis subsp. israelensis when ORF156 and ORF157 functions were provided in trans. To further investigate the roles of ORF156 and ORF157 in pBtoxis replication, six-histidine-tagged recombinant rORF156 and rORF157 proteins were purified from Escherichia coli and used in electrophoretic mobility shift assays. Our results demonstrated that rORF157, but not rORF156, binds specifically to the pBtoxis iterons, suggesting that ORF157 functions as a Rep protein. Although rORF156 did not bind to the iteron sequence, we showed that it bound to rORF157-DNA complexes. In addition, we showed that rORF156 has GTPase activity characteristic of the FtsZ/tubulin superfamily of proteins. Taken together, these results suggest that the iterons compose the minimal replication origin (ori) of pBtoxis and that ORF157 and ORF156 are involved in the initiation of pBtoxis replication and possibly in the segregation and partitioning of this plasmid to daughter cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号