首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The hepatitis C viral mRNA initiates translation using an internal ribosome entry site (IRES) located in the 5' noncoding region of the viral genome. At physiological magnesium ion concentrations, the HCV IRES forms a binary complex with the 40S ribosomal subunit, recruits initiation factor eIF3 and the ternary eIF2/GTP/Met-tRNA(i)Met complex, and joins 60S subunits to assemble translation-competent 80S ribosomes. Here we show that in the presence of 5 mM MgCl2, the HCV IRES can initiate translation by an alternative mechanism that does not require known initiation factors. Specifically, the HCV IRES was shown to initiate translation in a reconstituted system consisting only of purified 40S and 60S subunits, elongation factors, and aminoacylated tRNAs at high magnesium concentration. Analyses of assembled complexes supported a mechanism by which preformed 80S ribosomes can assemble directly on the HCV IRES at high cation concentrations. This mechanism is reminiscent of that employed by the divergent IRES elements in the Dicistroviridae, exemplified by the cricket paralysis virus, which mediates initiation of protein synthesis without initiator tRNA.  相似文献   

2.
The use of internal ribosome entry sites (IRESs) is one of the unorthodox mechanisms exploited by viruses to initiate the translation of internal genes. Herein, we report a plant virus exploiting an IRES and its 3'-untranslated region (UTR) to express its internal genes, notably the 3'-proximal viral coat protein gene. Hibiscus chlorotic ringspot virus (HCRSV), a positive-strand non-polyadenylated RNA virus, was demonstrated to harbor a unique 100-nucleotide (nt) IRES, located 124 nt upstream of the coat protein gene, that could function in wheat germ extract, rabbit reticulocyte lysate, and mammalian cells. In comparison with other known IRESs of picornaviruses and eukaryotic mRNAs, this 100-nt IRES is distinctively short and simple. The IRES activity was tested in homologous and heterologous bicistronic constructs, and the expression of the 3'-proximal gene was enhanced when the 3'-UTR was present. When the IRES element was bisected, each half still possessed IRES activity and could initiate internal translation on its own. Site-directed mutagenesis and deletion analyses revealed that the primary sequence within the 5' half was crucial for IRES activity, whereas the primary sequence of the second half and a GNRA motif were non-essential. To our knowledge, this is the first report describing a mechanism whereby an IRES, located in the 3' portion of the virus genome, co-operates with the 3'-UTR to enhance gene expression differentially.  相似文献   

3.
The highly conserved internal ribosome entry site (IRES) of hepatitis C virus (HCV) regulates translation of the viral RNA genome and is essential for the expression of HCV proteins in infected host cells. The structured subdomain IIa of the IRES element is the target site of recently discovered benzimidazole inhibitors that selectively block viral translation through capture of an extended conformation of an RNA internal loop. Here, we describe the development of a FRET-based screening assay for similarly acting HCV translation inhibitors. The assay relies on monitoring fluorescence changes that indicate rearrangement of the RNA target conformation upon ligand binding. Screening of a small pilot set of potential RNA binders identified a benzoxazole scaffold as a ligand that bound selectively to IIa IRES target and was confirmed as an inhibitor of in vitro viral translation. The screening approach outlined here provides an efficient method to discover HCV translation inhibitors that may provide leads for the development of novel antiviral therapies directed at the highly conserved IRES RNA.  相似文献   

4.
5.
Internal ribosome entry site within hepatitis C virus RNA.   总被引:71,自引:21,他引:50       下载免费PDF全文
The mechanism of initiation of translation on hepatitis C virus (HCV) RNA was investigated in vitro. HCV RNA was transcribed from the cDNA that corresponded to nucleotide positions 9 to 1772 of the genome by using phage T7 RNA polymerase. Both capped and uncapped RNAs thus transcribed were active as mRNAs in a cell-free protein synthesis system with lysates prepared from HeLa S3 cells or rabbit reticulocytes, and the translation products were detected by anti-gp35 antibodies. The data indicate that protein synthesis starts at the fourth AUG, which was the initiator AUG at position 333 of the HCV RNA used in this study. Efficiency of translation of the capped methylated RNA appeared to be similar to that of the capped unmethylated RNA. However, a capped methylated RNA showed a much higher activity as mRNA than did the capped unmethylated RNA in rabbit reticulocyte lysates when the RNA lacked a nucleotide sequence upstream of position 267. The results strongly suggest that HCV RNA carries an internal ribosome entry site (IRES). Artificial mono- and dicistronic mRNAs were prepared and used to identify the region that carried the IRES. The results indicate that the sequence between nucleotide positions 101 and 332 in the 5' untranslated region of HCV RNA plays an important role in efficient translation. Our data suggest that the IRES resides in this region of the RNA. Furthermore, an IRES in the group II HCV RNA was found to be more efficient than that in the group I HCV RNA.  相似文献   

6.
We describe the exploration of N1-aryl-substituted benzimidazoles as ligands for the hepatitis C virus (HCV) internal ribosome entry site (IRES) RNA. The design of the compounds was guided by the co-crystal structure of a benzimidazole viral translation inhibitor in complex with the RNA target. Structure-binding activity relationships of aryl-substituted benzimidazole ligands were established that were consistent with the crystal structure of the translation inhibitor complex.  相似文献   

7.
Paek KY  Kim CS  Park SM  Kim JH  Jang SK 《Journal of virology》2008,82(24):12082-12093
Hepatitis C virus (HCV) is one of the major causative agents of virus-related hepatitis, liver cirrhosis, and hepatocellular carcinoma in humans. Translation of the HCV polyprotein is mediated by an internal ribosomal entry site (IRES) in the 5′ nontranslated region of the genome. Here, we report that a cellular protein, hnRNP D, interacts with the 5′ border of HCV IRES (stem-loop II) and promotes translation of HCV mRNA. Overexpression of hnRNP D in mammalian cells enhances HCV IRES-dependent translation, whereas knockdown of hnRNP D with small interfering RNAs (siRNAs) inhibits translation. In addition, sequestration of hnRNP D with an interacting DNA oligomer inhibits the translation of HCV mRNA in an in vitro system. Ribosome profiling experiments reveal that HCV RNA is redistributed from heavy to light polysome fractions upon suppression of the hnRNP D level using specific siRNA. These results collectively suggest that hnRNP D plays an important role in the translation of HCV mRNA through interactions with the IRES. Moreover, knockdown of hnRNP D with siRNA significantly hampers infection by HCV. A potential role of hnRNP D in HCV proliferation is discussed.  相似文献   

8.
Translation of the hepatitis C virus (HCV) polyprotein is initiated at an internal ribosome entry site (IRES) element in the 5' untranslated region of HCV RNA. The HCV IRES element interacts directly with the 40S subunit, and biochemical experiments have implicated RNA elements near the AUG start codon as required for IRES-40S subunit complex formation. The data we present here show that two RNA stem loops, domains IIId and IIIe, are involved in IRES-40S subunit interaction. The structures of the two RNA domains were solved by NMR spectroscopy and reveal structural features that may explain their role in IRES function.  相似文献   

9.
Translation of the hepatitis C genome is mediated by internal ribosome entry on the structurally complex 5' untranslated region of the large viral RNA. Initiation of protein synthesis by this mechanism is independent of the cap-binding factor eIF4E, but activity of the initiator Met-tRNA(f)-binding factor eIF2 is still required. HCV protein synthesis is thus potentially sensitive to the inhibition of eIF2 activity that can result from the phosphorylation of the latter by the interferon-inducible, double-stranded RNA-activated protein kinase PKR. Two virally encoded proteins, NS5A and E2, have been shown to reduce this inhibitory effect of PKR by impairing the activation of the kinase. Here we present evidence for a third viral strategy for PKR inhibition. A region of the viral RNA comprising part of the internal ribosome entry site (IRES) is able to bind to PKR in competition with double-stranded RNA and can prevent autophosphorylation and activation of the kinase in vitro. The HCV IRES itself has no PKR-activating ability. Consistent with these findings, cotransfection experiments employing a bicistronic reporter construct and wild-type PKR indicate that expression of the protein kinase is less inhibitory towards HCV IRES-driven protein synthesis than towards cap-dependent protein synthesis. These data suggest a dual function for the viral IRES, with both a structural role in promoting initiation complex formation and a regulatory role in preventing inhibition of initiation by PKR.  相似文献   

10.
2-Aminobenzoxazoles have been synthesized as ligands for the hepatitis C virus (HCV) internal ribosome entry site (IRES) RNA. The compounds were designed to explore the less basic benzoxazole system as a replacement for the core scaffold in previously discovered benzimidazole viral translation inhibitors. Structure–activity relationships in the target binding of substituted benzoxazole ligands were investigated.  相似文献   

11.
12.
Hepatitis C virus (HCV) contains an internal ribosome entry site (IRES) located in the 5' untranslated region of the genomic RNA that drives cap-independent initiation of translation of the viral message. The approximate secondary structure and minimum functional length of the HCV IRES are known, and extensive mutagenesis has established that nearly all secondary structural domains are critical for activity. However, the presence of an IRES RNA tertiary fold and its functional relevance have not been established. Using chemical and enzymatic probes of the HCV IRES RNA in solution, we show that the IRES adopts a unique three-dimensional structure at physiological salt concentrations in the absence of additional cofactors or the translation apparatus. Folding of the IRES involves cooperative uptake of magnesium and is driven primarily by charge neutralization. This tertiary structure contains at least two independently folded regions which closely correspond to putative binding sites for the 40 S ribosomal subunit and initiation factor 3 (eIF3). Point mutations that inhibit IRES folding also inhibit its function, suggesting that the IRES tertiary structure is essential for translation initiation activity. Chemical and enzymatic probing data and small-angle X-ray scattering (SAXS) experiments in solution show that upon folding, the IRES forms an extended structure in which functionally important loops are exposed. These results suggest that the 40 S ribosomal subunit and eIF3 bind an HCV IRES that is prefolded to spatially organize recognition domains.  相似文献   

13.
A number of RNA-containing viruses such as hepatitis C (HCV) and poliovirus (PV) that infect human beings and cause serious diseases use a common mechanism for synthesis of viral proteins, termed internal ribosome entry site (IRES)-mediated translation. This mode of translation initiation involves entry of 40S ribosome internally to the 5' untranslated region (UTR) of viral RNA. Cap-dependent translation of cellular mRNAs, on the other hand, requires recognition of mRNA 5' cap by the translation machinery. In this review, we discuss two inhibitors that specifically inhibit viral IRES-mediated translation without interfering with cellular cap-dependent translation. We present evidence, which suggest that one of these inhibitors, a small RNA (called IRNA) originally isolated from the yeast Saccharomyces cerevisiae, inhibits viral IRES-mediated translation by sequestering both noncanonical transacting factors and canonical initiation factors required for IRES-mediated translation. The other inhibitor, a small peptide from the lupus autoantigen La (called LAP), appears to block binding of cellular transacting factors to viral IRES elements. These results suggest that it might be possible to target viral IRES-mediated translation for future development of therapeutic agents effective against a number of RNA viruses including HCV that exclusively use cap-independent translation for synthesis of viral proteins.  相似文献   

14.
Translation of hepatitis C virus (HCV) RNA is initiated via the internal ribosome entry site (IRES), located within the 5' untranslated region. Although the secondary structure of this element has been predicted, little information on the tertiary structure is available. Here we report the first structural characterization of the HCV IRES using electron microscopy. In vitro transcribed RNA appeared as particles with characteristic morphology and gold labeling using a specific oligonucleotide confirmed them to be HCV IRES. Dimerization of the IRES by hybridization with tandem repeat oligonucleotides allowed the identification of domain III and an assignment of domains II and IV to distinct regions within the molecule. Using immunogold labeling, the pyrimidine tract binding protein (PTB) was shown to bind to domain III. Structure-function relationships based on the flexible hinge between domains II and III are suggested. Finally, the architecture of the HCV IRES was seen to be markedly different from that of a picornavirus, foot-and-mouth disease virus (FMDV).  相似文献   

15.
The 5'-noncoding region (5'-NCR) of the hepatitis C virus (HCV) RNA genome serves as an internal ribosome entry site (IRES) and mediates translation initiation in a cap-independent manner. Previously, we reported the interaction between La antigen and the HCV IRES, which appeared to occur in the context of initiator AUG. It was further shown that HCV IRES-mediated translation was stimulated in the presence of human La antigen. In this study, we have defined the cis- and trans-acting elements responsible for La-5'-NCR interactions and established the dependence of the HCV IRES efficiency on cellular La antigen. During the La-IRES interaction, initiator AUG but not the neighboring codons was found to be the direct target of La binding. The C terminus effector domain-dependent modulation of La binding to the HCV IRES is demonstrated by deletion and substitution mutagenesis of the protein. An RNA systematic evolution of ligands by exponential enrichment (SELEX), generated against La protein that selectively binds La in HeLa lysates and competes for the protein binding to the 5'-NCR, was used to demonstrate the requirement of La for the HCV IRES function in the context of mono- and dicistronic mRNAs. Sequestration of La antigen by the RNA SELEX in HeLa translation lysates blocked the HCV and poliovirus IRES-mediated translation in vitro. The functional requirement of La protein for the HCV IRES activity was further established in a liver-derived cell line and in an add-back experiment in which the inhibited IRES was rescued by recombinant human La. These results strongly argue for the novel role of La protein during selection of the initiator AUG and its participation during internal initiation of translation of the HCV RNA genome.  相似文献   

16.
Avian encephalomyelitis virus (AEV) is a picornavirus that causes disease in poultry worldwide, and flocks must be vaccinated for protection. AEV is currently classified within the hepatovirus genus, since its proteins are most closely related to those of hepatitis A virus (HAV). We now provide evidence that the 494-nucleotide-long 5' untranslated region of the AEV genome contains an internal ribosome entry site (IRES) element that functions efficiently in vitro and in mammalian cells. Unlike the HAV IRES, the AEV IRES is relatively short and functions in the presence of cleaved eIF4G and it is also resistant to an inhibitor of eIF4A. These properties are reminiscent of the recently discovered class of IRES elements within certain other picornaviruses, such as porcine teschovirus 1 (PTV-1). Like the PTV-1 IRES, the AEV IRES shows significant similarity to the hepatitis C virus (HCV) IRES in sequence, function, and predicted secondary structure. Furthermore, mutational analysis of the predicted pseudoknot structure at the 3' end of the AEV IRES lends support to the secondary structure we present. AEV is therefore another example of a picornavirus harboring an HCV-like IRES element within its genome, and thus, its classification within the hepatovirus genus may need to be reassessed in light of these findings.  相似文献   

17.
Translation of hepatitis C virus (HCV) RNA is initiated by internal entry of ribosomes into the 5' noncoding region (NCR). This process depends on genomic elements within the 5' NCR called the internal ribosome entry site (IRES) and may involve host factors. The alpha-branch structure (nucleotides 47 to 67) of the HCV IRES is considered a cis-acting element critical for translation initiation because it is indispensable for translation in vitro (S. Fukushi, K. Katayama, C. Kurihara, N. Ishiyama, F. B. Hoshino, T. Ando, and A. Oya, Biochem. Biophys. Res. Commun. 199:425-432, 1994). In order to further characterize the function of the alpha-branch, we determined whether sequence exchange within the alpha-branch had any effect on translation initiation. An in vitro translation study revealed that the stem sequences of this region played an important role in efficient IRES function. In addition to several HeLa cell proteins, which had a binding affinity for the 5' NCR, a novel 25-kDa protein that specifically interacted with the HCV IRES was discovered. The binding affinity of the 25-kDa protein for the 5' NCR was correlated with the efficiency of translation initiation of HCV RNA, indicating a critical role for the 25-kDa protein in HCV translation.  相似文献   

18.
Here, we show that Escherichia coli Ribonuclease III cleaves specifically the RNA genome of hepatitis C virus (HCV) within the first 570 nt with similar efficiency within two sequences which are ~400 bases apart in the linear HCV map. Demonstrations include determination of the specificity of the cleavage sites at positions C27 and U33 in the first (5′) motif and G439 in the second (3′) motif, complete competition inhibition of 5′ and 3′ HCV RNA cleavages by added double-stranded RNA in a 1:6 to 1:8 weight ratio, respectively, 50% reverse competition inhibition of the RNase III T7 R1.1 mRNA substrate cleavage by HCV RNA at 1:1 molar ratio, and determination of the 5′ phosphate and 3′ hydroxyl end groups of the newly generated termini after cleavage. By comparing the activity and specificity of the commercial RNase III enzyme, used in this study, with the natural E.coli RNase III enzyme, on the natural bacteriophage T7 R1.1 mRNA substrate, we demonstrated that the HCV cuts fall into the category of specific, secondary RNase III cleavages. This reaction identifies regions of unusual RNA structure, and we further showed that blocking or deletion of one of the two RNase III-sensitive sequence motifs impeded cleavage at the other, providing direct evidence that both sequence motifs, besides being far apart in the linear RNA sequence, occur in a single RNA structural motif, which encloses the HCV internal ribosome entry site in a large RNA loop.  相似文献   

19.
20.
Polypyrimidine tract-binding protein (PTB) has been previously shown to physically interact with the hepatitis C virus (HCV) RNA genome at its 5'- and 3'-noncoding regions. Using high affinity SELEX RNA molecules, we present evidence for the functional requirement of PTB during HCV internal ribosome entry site (IRES)-controlled translation initiation. This study was carried out in rabbit reticulocyte translation lysates in which the HCV IRES-driven reporter RNA was introduced along with the PTB-specific SELEX RNA molecules. The SELEX RNAs specifically inhibited the HCV IRES function in the context of mono- and dicistronic mRNAs. The cap-dependent translation of a reporter (chloramphenicol acetyltransferase) RNA or naturally capped brome mosaic virus RNA, however, was not affected by the presence of SELEX during in vitro translation assays. The SELEX-mediated inhibition of the HCV IRES is shown to be relieved by the addition of recombinant human PTB in an add-back experiment. The in vivo requirement of PTB was further confirmed by cotransfection of Huh7 cells with reporter RNA and PTB-specific SELEX RNA. The HCV IRES activity was inhibited by the SELEX RNA in these cells, but not by an unrelated control RNA. Together, these results demonstrate the functional requirement of cellular PTB in HCV translation and further support the feasible use of SELEX RNA strategy in demonstrating the functional relevance of cellular protein(s) in complex biological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号