首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This report examines in detail the metabolism of the cyclin protein B1 during meiotic maturation and following the activation of mature mouse oocytes using immunoprecipitation of the radiolabelled protein. The net synthesis of cyclin B increases progressively during meiotic maturation, reaching its maximum levels at least 1 h before oocytes exit into metaphase of meiosis II (MII). This increase correlates with the rise in cdc2 kinase activity reported previously and suggests an association between the length of the first meiotic M phase (MI) and the net synthesis of cyclin B, that seems to regulate the time required for the cdc2 kinase to reach its maximum activity. Moreover, no marked degradation of cyclin B was observed before the MI to MII transition and that which occurs does so independently of the presence of microtubules, which are essential for cyclin degradation during metaphase II arrest and exit of oocytes into interphase of the first mitotic cell cycle. Cyclin B is degraded rapidly during the transitions MI to MII, MII to the first mitotic interphase and MII to an abortive third metaphase state (MIII). However, whilst its degradation was incomplete during the MI to MII transition, virtually no cyclin B protein was detected following both the MII to interphase and MII to MIII transitions. Thus, the decision of oocytes to exit into MIII, or interphase is not controlled at the level of cyclin B degradation. Lastly, in aging, non-activated oocytes, the net synthesis of cyclin B declines. Whereas, in activated eggs cultured in parallel although the rate of net synthesis declines initially, it is effectively ‘rescued’ being two-fold greater than in non-activated oocytes of an equivalent age. This gradual fall in the net synthesis of cyclin B observed in aging oocytes may contribute to the increasing ease with which they become activated, compared to recently ovulated oocytes.  相似文献   

2.
Changes in MPF and MAPK activities during meiotic maturation of goat oocytes were investigated. Detection of MPF activity occurred concomitantly with GVBD, increased at MI, decreased during anaphase-telophase I transition, and increased thereafter in MII oocytes. The appearance of MAPK activity was delayed compared to MPF activity. MAPK activity increased after GVBD and persisted during the MI-MII transition. Whether MAPK was implicated in goat oocyte meiotic competence was also investigated by using oocytes from different follicle size categories that arrest at specific stages of the maturation process (GV, GVBD, MI, and MII). Results indicate that the ability of goat oocytes to resume meiosis is not directly related to the presence of Erk2. The ability to phosphorylate MAPK is acquired by the oocyte during follicular growth after the ability to resume meiosis. GVBD-arrested oocytes exhibited a high level of MPF activity after 27 hr of culture. However, 28% of oocytes from this group contained inactive MAPK, and 72% exhibited high MAPK activity. In addition, 29% of GVBD-arrested oocytes contained a residual interphasic network without recruitment of microtubules around the condensed chromosomes; 71% of GVBD-arrested oocytes displayed recruitment of microtubules near the condensed chromosomes and contained asters of microtubules distributed throughout the cytoplasm. These results indicate that oocytes arrested at GVBD were not exactly at the same point in the meiotic cell cycle progression, and suggest that MAPK could be implicated in the regulation of microtubule organization. The data presented here suggest that in goat oocytes, MAPK is not implicated in the early events of meiosis resumption, but rather in post-GVBD events such as spindle formation and MII arrest. © 1996 Wiley-Liss Inc.  相似文献   

3.
Checkpoint kinase 1 (Chk1) plays key roles in all currently defined cell cycle checkpoints, but its functions in mouse oocyte meiosis remain unclear. In this study, we report the expression, localization and functions of Chk1 in mouse oocyte meiosis. Chk1 was expressed from germinal vesicle (GV) to metaphase II (MII) stages and localized to the spindle from pro-metaphase I (pro-MI) to MII stages in mouse oocytes. Chk1 depletion facilitated the G2/M transition while Chk1 overexpression inhibited the G2/M transition as indicated by germinal vesicle breakdown (GVBD), through regulation of Cdh1 and Cyclin B1. Chk1 depletion did not affect meiotic cell cycle progression after GVBD, but its overexpression after GVBD activated the spindle assembly checkpoint and prevented homologous chromosome segregation, thus arresting oocytes at pro-MI or metaphase I (MI) stages. These results suggest that Chk1 is indispensable for prophase I arrest and functions in G2/M checkpoint regulation in meiotic oocytes. Moreover, Chk1 overexpression affects meiotic spindle assembly checkpoint regulation and thus chromosome segregation.  相似文献   

4.
The Src family kinase (SFK) is important in normal cell cycle control. However, its role in meiotic maturation in mammalian has not been examined. We used confocal microscope immunofluorescence to examine the in vitro dynamics of the subcellular distribution of SFK during the mouse oocyte meiotic maturation and further evaluated the functions of SFK via biochemical analysis using a specific SFK pharmacological inhibitor, PP(2). Our results showed that nonphospho-SFK was absent in oocyte upon its release from follicle. Nonphospho-SFK appeared in cytoplasm 0.5 hr after the release of oocyte and translocated to germinal vesicle (GV) before germinal vesicle breakdown (GVBD). After GVBD, nonphospho-SFK colocated with condensed chromosomes. In occyte at metaphase I (MI) and telophase I, nonphospho-SFK accumulated in the cortex and the cleavage furrow respectively besides its existence in cytoplasm in both stages. In oocyte at metaphase II (MII), nonphospho-SFK concentrated at the aligned chromosomes. In contrast, phospho-SFK was absent in oocyte until 1 hr after its release from the follicle. Phospho-SFK accumulated in the GV, the cortex, and cytoplasm immediately prior to GVBD. After GVBD, phospho-SFK evenly distributed in oocyte. In oocyte at MII, phospho-SFK localized throughout the cytoplasm and under the egg member. When the SFK activity was inhibited, the oocyte failed to initiate GVBD, could not go into MII, and could not extrude the first polar body. Our results demonstrated that SFK is required for meiotic maturation in mouse oocyte.  相似文献   

5.
The regulation of MAP kinase phosphorylation by cAMP and protein kinase C (PKC) modulators during pig oocyte maturation was studied by Western immunoblotting. We showed that both forskolin and IBMX inhibited MAP kinase phosphorylation and meiosis resumption in a dose-dependent manner, and this inhibitory effect was overcome by the protein phosphatase inhibitor, okadaic acid. Pharmacological PKC activator phorbol myristate acetate or physiological PKC activator diC8 also delayed MAP kinase phosphorylation and meiosis resumption, and their effect was abrogated by PKC inhibitors, staurosporine, and calphostin C. The results suggest that meiotic resumption is inhibited by elevation of cAMP or delayed by activation of PKC probably via down-regulation of MAP kinase activation, which is mediated by protein phosphatase, during pig oocyte maturation.  相似文献   

6.
7.
p34cdc2 protein kinase is a universal regulator of M-phase in eukaryotic cell cycle. To investigate the regulation of meiotic and mitotic cell cycle in mammals, we examined the changes in phosphorylation states of p34cdc2 and its histone H1 kinase activity in mouse oocytes and embryos. We showed that p34cdc2 has three different migrating bands (referred to as upper, middle and lower bands) on SDS-PAGE followed by immunoblotting with anti-PSTAIR antibody, and that the upper and middle bands are phosphorylated forms since these two bands shifted to the lower one by alkaline phosphatase treatment. In meiotic cell cycle, only germinal vesicle (GV) stage oocytes had the three forms. The phosphorylated forms decreased gradually in oocytes up to 2 h after isolation from follicles, and thereafter the phosphorylation states did not change significantly until metaphase II. However, the histone H1 kinase activity oscillated, being activated at the first and second metaphase in meiosis and inactivated at the time of the first polar body extrusion. These results suggest that changes in phosphorylation states of p34cdc2 triggered its activation at the first metaphase, but not inactivation and reactivation at the first and second metaphase, respectively. In mitotic cell cycle, phosphorylated forms appeared at 4 h after insemination, increased greatly just before metaphase, and were dephosphorylated in metaphase. Histone H1 kinase activity was high only at metaphase. This kinase activation is probably triggered by dephosphorylation of p34cdc2.  相似文献   

8.
The effects of the pesticide carbendazim (MBC) on the in vitro meiotic maturation of mouse oocytes were evaluated using conventional and confocal fluorescence microscopy. The response of oocytes exposed to 0, 3, 10, or 30 μM MBC during meiotic maturation was analyzed with respect to chromosome organization, meiotic spindle microtubules, and cortical actin using fluorescent labels for each of these structures. Continuous exposure to MBC during the resumption of meiosis resulted in a dose-dependent inhibition of meiotic cell cycle progression at metaphase of meiosis-1. Drug exposure at the metaphase-anaphase transition of meiosis-1 did not interfere with cell cycle progression to metaphase-2 except at high concentrations (30 μM). At the level of spindle microtubule organization, MBC caused a loss of nonacetylated microtubules and a decrease in spindle size at 3 or 10 μM concentrations. Thirty μM MBC prevented spindle assembly when added at the beginning of meiotic maturation or caused spindle pole disruption and fragmentation when added to preformed spindles. Spindle disruption involved a loss of phosphoprotein epitopes, as monitored by MPM-2 staining, and resulted in the appearance of dispersed chromosomes that retained a metaphase-plate location on spindle fragments associated with the oocyte cortex. Polar body extrusion was impaired by MBC, and abnormal polar bodies were observed in most treated oocytes. The results suggest that MBC disrupts cell cycle progression in mouse oocytes by altering meiotic spindle microtubule stability and spindle pole integrity. Mol. Reprod. Dev. 46:351–362, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Regulation of the meiotic cell cycle in oocytes   总被引:20,自引:0,他引:20  
The mitotic and meiotic cell cycle share many regulators, but there are also important differences between the two processes. The meiotic maturation of Xenopus oocytes has proved useful for understanding the regulation of Cdc2-cyclin-B, a key activator of G2/M progression. New insights have been made recently into the signalling mechanisms that induce G2-arrested oocytes to resume and complete the meiotic cell cycle.  相似文献   

10.
We have identified a maize homologue of yeast MAD2, an essential component in the spindle checkpoint pathway that ensures metaphase is complete before anaphase begins. Combined immunolocalization of MAD2 and a recently cloned maize CENPC homologue indicates that MAD2 localizes to an outer domain of the prometaphase kinetochore. MAD2 staining was primarily observed on mitotic kinetochores that lacked attached microtubules; i.e., at prometaphase or when the microtubules were depolymerized with oryzalin. In contrast, the loss of MAD2 staining in meiosis was not correlated with initial microtubule attachment but was correlated with a measure of tension: the distance between homologous or sister kinetochores (in meiosis I and II, respectively). Further, the tension-sensitive 3F3/2 phosphoepitope colocalized, and was lost concomitantly, with MAD2 staining at the meiotic kinetochore. The mechanism of spindle assembly (discussed here with respect to maize mitosis and meiosis) is likely to affect the relative contributions of attachment and tension. We support the idea that MAD2 is attachment-sensitive and that tension stabilizes microtubule attachments.  相似文献   

11.
We have characterized plk1 in mouse oocytes during meiotic maturation and after parthenogenetic activation until entry into the first mitotic division. Plk1 protein expression remains unchanged during maturation. However, two different isoforms can be identified by SDS-PAGE. A fast migrating form, present in the germinal vesicle, seems characteristic of interphase. A slower form appears as early as 30 min before germinal vesicle breakdown (GVBD), is maximal at GVBD, and is maintained throughout meiotic maturation. This form gradually disappears after exit from meiosis. The slow form corresponds to a phosphorylation since it disappears after alkaline phosphatase treatment. Plk1 activation, therefore, takes place before GVBD and MAPK activation since plk1 kinase activity correlates with its slow migrating phosphorylated form. However, plk1 phosphorylation is inhibited after treatment with two specific p34(cdc2) inhibitors, roscovitine and butyrolactone, suggesting plk1 involvement in the MPF autoamplification loop. During meiosis plk1 undergoes a cellular redistribution consistent with its putative targets. At the germinal vesicle stage, plk1 is found diffusely distributed in the cytoplasm and enriched in the nucleus and during prometaphase is localized to the spindle poles. At anaphase it relocates to the equatorial plate and is restricted to the postmitotic bridge at telophase. After parthenogenetic activation, plk1 becomes dephosphorylated and its activity drops progressively. Upon entry into the first mitotic M-phase at nuclear envelope breakdown plk1 is phosphorylated and there is an increase in its kinase activity. At the two-cell stage, the fast migrating form with weak kinase activity is present. In this work we show that plk1 is present in mouse oocytes during meiotic maturation and the first mitotic division. The variation of plk1 activity and subcellular localization during this period suggest its implication in the organization and progression of M-phase.  相似文献   

12.
Meiotic failure in oocytes is the major determinant of human zygote-originated reproductive diseases, the successful accomplishment of meiosis largely relay on the normal functions of many female fertility factors. Elmod2 is a member of the Elmod family with the strongest GAP (GTPase-activating protein) activity; although it was identified as a possible maternal protein, its actual physiologic role in mammalian oocytes has not been elucidated. Herein we reported that among Elmod family proteins, Elmod2 is the most abundant in mouse oocytes, and that inhibition of Elmod2 by specific siRNA caused severe meiotic delay and abnormal chromosomal segregation during anaphase. Elmod2 knockdown also significantly decreased the rate of oocyte maturation (to MII, with first polar body extrusion), and significantly greater numbers of Elmod2-knockdown MII oocytes were aneuploid. Correspondingly, Elmod2 knockdown dramatically decreased fertilization rate. To investigate the mechanism(s) involved, we found that Elmod2 knockdown caused significantly more abnormal mitochondrial aggregation and diminished cellular ATP levels; and we also found that Elmod2 co-localized and interacted with Arl2, a GTPase that is known to maintain mitochondrial dynamics and ATP levels in oocytes. In summary, we found that Elmod2 is the GAP essential to meiosis progression of mouse oocytes, most likely by regulating mitochondrial dynamics.  相似文献   

13.
Regulation of the cyclic activity of asparaginase (obtained as a purified protein complex) by a reversible auto-phosphorylation process has been previously reported in the fungus Leptosphaeria michotii (West) Sacc. In the present study, the protein complex was purified in the presence of either a mixture of 3 protein phosphatase inhibitors (fluoride, vanadate and molybdate) or EGTA, during the cycle of asparaginase activity, and the protein kinase and protein phosphatase activities characterized. (I) At the phase of increasing asparaginase activity, a Ca2+/calmodulin-dependent kinase activity was identified by (a) its inhibition by calmidazolium, reversed by calmodulin, and its inhibition by EGTA, but not by poly(Glu/Tyr 4:1)n. dichloro-(ribofuranosyl)-benzimidazole or polylysine (b) an increasing level of calmodulin bound to the complex, as estimated by enzyme-linked immunosorbent assay (ELISA). (2) At the phase of decreasing asparaginase activity, the Ca2+-calmodulin-dependent kinase activity disappeared and a little calmodulin remained associated with the complex: phosphorylation of the complex was increased several-fold by 1 nM okadaic acid and 25 nM inhibitor-2, and was not affected by EGTA, indicating a protein phosphatase-2A-like activity. (3) When asparaginase activity was low, a little calmodulin was bound to the complex. The kinase could phosphorylate casein and phosvitin. was inhibited by poly(Glu/Tyr 4:1)n. dichloro-(ribofuranosyl)-benzimidazole and heparin, stimulated by polylysine and not affected by calmidazolium or EGTA, just as a casein kinase 2. A Ca2+-dependent but calmodulin-independent protein phosphatase activity, not affected by okadaic acid and inhibitor-2. was then identified. We postulate the presence in the complex, of (a) only one protein kinase and one protein phosphatase, whose properties could change during the cycle of asparaginase activity: (b) two Ca2+/-binding proteins: first calmodulin, which could bind to Ca2+ and the casein kinase-2 form to give a Ca2+/calmodulin-dependent kinase, which could become Ca2+/calmodulin-independent following an auto-phosphorylation process: second a protein homologous to calmodulin, able to bind to the protein phosphatase-2A catalytic subunit to give a protein phosphatase-2B catalytic subunit.  相似文献   

14.
Histone acetylation is an important epigenetic modification implicated in the regulation of chromatin structure and, subsequently, gene expression. Global histone deacetylation was reported in mouse oocytes during meiosis but not mitosis. The regulation of this meiosis-specific deacetylation has not been elucidated. Here, we demonstrate that p34(cdc2) kinase activity and protein synthesis are responsible for the activation of histone deacetylases and the inhibition of histone acetyltransferases (HATs), respectively, resulting in deacetylation of histone H4 at lysine-12 (H4K12) during mouse oocyte meiosis. Temporal changes in the acetylation state of H4K12 were examined immunocytochemically during meiotic maturation using an antibody specific for acetylated H4K12. H4K12 was deacetylated during the first meiosis, temporarily acetylated around the time of the first polar body (PB1) extrusion, and then deacetylated again during the second meiosis. Because these changes coincided with the known oscillation pattern of p34(cdc2) kinase activity, we investigated the involvement of the kinase in H4K12 deacetylation. Roscovitine, an inhibitor of cyclin-dependent kinase activity, prevented H4K12 deacetylation during both the first and second meiosis, suggesting that p34(cdc2) kinase activity is required for deacetylation during meiosis. In addition, cycloheximide, a protein synthesis inhibitor, also prevented deacetylation. After PB1 extrusion, at which time H4K12 had been deacetylated, H4K12 was re-acetylated in the condensed chromosomes by treatment with cycloheximide but not with roscovitine. These results demonstrate that HATs are present but inactivated by newly synthesized protein(s) that is (are) not involved in p34(cdc2) kinase activity. Our results suggest that p34(cdc2) kinase activity induces the deacetylation of H4K12 and that the deacetylated state is maintained by newly synthesized protein(s) that inhibits HAT activity during meiosis.  相似文献   

15.
The cis-Golgi matrix protein GM130 is phosphorylated in mitosis on serine 25. Phosphorylation inhibits binding to p115, a vesicle-tethering protein, and has been implicated as an important step in the mitotic Golgi fragmentation process. We have generated an antibody that specifically recognizes GM130 phosphorylated on serine 25, and used this antibody to study the temporal regulation of phosphorylation in vivo. GM130 is phosphorylated in prophase as the Golgi complex starts to break down, and remains phosphorylated during further breakdown and partitioning of the Golgi fragments in metaphase and anaphase. In telophase, GM130 is dephosphorylated as the Golgi fragments start to reassemble. The timing of phosphorylation and dephosphorylation correlates with the dissociation and reassociation of p115 with Golgi membranes. GM130 phosphorylation and p115 dissociation appear specific to mitosis, since they are not induced by several drugs that trigger nonmitotic Golgi fragmentation. The phosphatase responsible for dephosphorylation of mitotic GM130 was identified as PP2A. The active species was identified as heterotrimeric phosphatase containing the Balpha regulatory subunit, suggesting a role for this isoform in the reassembly of mitotic Golgi membranes at the end of mitosis.  相似文献   

16.
17.
In the eggs and embryos of sea urchins, the activity of protein phosphatase type 2A (PP2A) increased during the developmental period between fertilization and the morula stage, decreased after the prehatching blastula stage and increased again after hatching. The PP2A activity changed keeping pace with alteration to the activities of cAMP-dependent protein kinase (A kinase), Ca2+/calmodulin-dependent protein kinase (CaM kinase) and casein kinase. Probably, PP2A contributes to the quick turning off of cellular signals because of protein phosphorylation. The activity of protein phosphatase type 1 (PP1) was not detectable up to the morula stage and appreciably increased thereafter. In the isolated nucleus fraction, specific activities of PP1 and PP2A were higher than in whole embryos at all stages in early development. Exponential increase in the number of nuclei because of egg cleavage probably makes PP1 activity detectable in whole embryos after the morula stage. In isolated nuclei, the activities of PP1 and PP2A appreciably decreased after hatching, whereas the activities of A kinase, Ca2+/phospholipid-dependent protein kinase (C kinase) and CaM kinase, as well as casein kinase, became higher. In nuclei, cellular signals caused by protein phosphorylation after hatching do not seem to be turned off by these protein kinases so quickly as before hatching. The PP1 and PP2A in nuclei also seem to contribute to the elimination of signal noise.  相似文献   

18.
Cyclic adenosine monophosphate (cAMP) has been implicated as an important regulator of meiotic maturation in mammalian oocytes. A decrease in cAMP, brought about by the action of cAMP phosphodiesterase (PDE), is thought to initiate germinal vesicle breakdown (GVB) by the inactivation of cAMP-dependent protein kinase. However, the product of PDE activity, 5'-AMP, is a potent activator of an important regulatory enzyme, AMP-activated protein kinase (AMPK). The aim of this study was to evaluate a possible role for AMPK in meiotic induction, using oocytes obtained from eCG-primed, immature mice. Alpha-1 and -2 isoforms of the catalytic subunit of AMPK were detected in both oocytes and cumulus cells. When 5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside (AICA riboside), an activator of AMPK, was tested on denuded oocytes (DO) and cumulus cell-enclosed oocytes (CEO) maintained in meiotic arrest by dbcAMP or hypoxanthine, GVB was dose-dependently induced. Meiotic induction by AICA riboside in dbcAMP-supplemented medium was initiated within 3 h in DO and 4 h in CEO and was accompanied by increased AMPK activity in the oocyte. AICA riboside also triggered GVB when meiotic arrest was maintained with hypoxanthine, 8-AHA-cAMP, guanosine, or milrinone, but was ineffective in olomoucine- or roscovitine-arrested oocytes, indicating that it acts upstream of maturation-promoting factor. Adenosine monophosphate dose-dependently stimulated GVB in DO when meiotic arrest was maintained with dbcAMP or hypoxanthine. This effect was not mimicked by other monophosphate or adenosine nucleotides and was not affected by inhibitors of ectophosphatases. Combined treatment with adenosine and deoxycoformycin, an adenosine deaminase inhibitor, stimulated GVB in dbcAMP-arrested CEO, suggesting AMPK activation due to AMP accumulation. It is concluded that phosphodiesterase-generated AMP may serve as a transducer of the meiotic induction process through activation of AMPK.  相似文献   

19.
There are indications from genetic, biochemical and cell biological studies that protein kinase CK2 (formerly casein kinase II) has a variety of functions at different stages in the cell cycle. To further characterize CK2 and its potential roles during cell cycle progression, one of the objectives of this study was to systematically examine the expression of all three subunits of CK2 at different stages in the cell cycle. To achieve this objective, we examined levels of CK2, CK2 and CK2 on immunoblots as well as CK2 activity in samples prepared from: (i) elutriated populations of MANCA (Burkitt lymphoma) cells, (ii) serum-stimulated GL30-92/R (primary human fibroblasts) cells and (iii) drug-arrested chicken bursal lymphoma BK3A cells. On immunoblots, we observed a significant and co-ordinate increase in the expression of CK2 and CK2 following serum stimulation of quiescent human fibroblasts. By comparison, no major fluctuations in CK2 activity were detected during any other stages during the cell cycle. Furthermore, we did not observe any dramatic differences between the relative levels of CK2 to CK2 during different stages in the cell cycle. However, we observed a significant increase in the amount of CK2 relative to CK2 in cells arrested with nocodazole. We also examined the activity of CK2 in extracts or in immunoprecipitates prepared from drug-arrested cells. Of particular interest is the observation that the activity of CK2 is not changed in nocodazole-arrested cells. Since CK2 is maximally phosphorylated in these cells, this result suggests that the phosphorylation of CK2 by p34cdc2 does not affect the catalytic activity of CK2. However, the activity of CK2 was increased by incubation with p34cdc2 in vitro. Since this activation was independent of ATP we speculate that p34cdc2 may have an associated factor that stimulates CK2 activity. Collectively, the observations that relative levels of CK2 increase in mitotic cells, that CK2 and CK2 are phosphorylated in mitotic cells and that p34cdc2 affects CK2 activity in vitro suggest that CK2 does have regulatory functions associated with cell division.  相似文献   

20.
The total RNA content of mouse oocytes, as measured by ethidium bromide fluorescence, was found to decrease by 19% during meiotic maturation (ovulated eggs contain 19% less RNA than full-grown oocytes). Consistent with these results, prelabeled stable RNA of full-grown oocytes decreased by about 20% during in vitro maturation. Polyadenylated RNA represented 19% of total prelabeled RNA in full-grown oocytes and 10% in oocytes matured in vitro, confirming previous results on in vivo prepared material. To distinguish between deadenylation and degradation for one mRNA, the amount and state of adenylation of actin mRNA was examined using Northern blots of oocyte RNA probed with a nick-translated beta-actin cloned chicken cDNA. The results showed that the amount of actin mRNA remained similar during maturation, but its molecular weight decreased slightly. Experiments in which RNA was treated with oligo(dT) and RNase H demonstrated that the actin mRNA was deadenylated during maturation, when actin synthesis is known to decline. These results indicate that the previously defined loss of bulk RNA and changes in the state of adenylation of mRNA during the first 11/2 days of embryogenesis actually begin during the 12 hr of meiotic maturation preceding fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号