首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Methane (CH4) is a potent greenhouse gas (GHG), having a global warming potential 21 times that of carbon dioxide (CO2). Methane emissions from agriculture represent around 40% of the emissions produced by human-related activities, the single largest source being enteric fermentation, mainly in ruminant livestock. Technologies to reduce these emissions are lacking. Ruminant methane is formed by the action of methanogenic archaea typified by Methanobrevibacter ruminantium, which is present in ruminants fed a wide variety of diets worldwide. To gain more insight into the lifestyle of a rumen methanogen, and to identify genes and proteins that can be targeted to reduce methane production, we have sequenced the 2.93 Mb genome of M. ruminantium M1, the first rumen methanogen genome to be completed.

Methodology/Principal Findings

The M1 genome was sequenced, annotated and subjected to comparative genomic and metabolic pathway analyses. Conserved and methanogen-specific gene sets suitable as targets for vaccine development or chemogenomic-based inhibition of rumen methanogens were identified. The feasibility of using a synthetic peptide-directed vaccinology approach to target epitopes of methanogen surface proteins was demonstrated. A prophage genome was described and its lytic enzyme, endoisopeptidase PeiR, was shown to lyse M1 cells in pure culture. A predicted stimulation of M1 growth by alcohols was demonstrated and microarray analyses indicated up-regulation of methanogenesis genes during co-culture with a hydrogen (H2) producing rumen bacterium. We also report the discovery of non-ribosomal peptide synthetases in M. ruminantium M1, the first reported in archaeal species.

Conclusions/Significance

The M1 genome sequence provides new insights into the lifestyle and cellular processes of this important rumen methanogen. It also defines vaccine and chemogenomic targets for broad inhibition of rumen methanogens and represents a significant contribution to worldwide efforts to mitigate ruminant methane emissions and reduce production of anthropogenic greenhouse gases.  相似文献   

2.

Objective

Global health challenges include non-communicable disease burdens, ensuring food security in the context of rising food prices, and environmental constraints around food production, e.g., greenhouse gas [GHG] emissions. We therefore aimed to consider optimized solutions to the mix of food items in daily diets for a developed country population: New Zealand (NZ).

Methods

We conducted scenario development and linear programming to model 16 diets (some with uncertainty). Data inputs included nutrients in foods, food prices, food wastage and food-specific GHG emissions.

Findings

This study identified daily dietary patterns that met key nutrient requirements for as little as a median of NZ$ 3.17 per day (US$ 2.41/d) (95% simulation interval [SI] = NZ$ 2.86 to 3.50/d). Diets that included “more familiar meals” for New Zealanders, increased the cost. The optimized diets also had low GHG emission profiles compared with the estimate for the ‘typical NZ diet’ e.g., 1.62 kg CO2e/d for one scenario (95%SI = 1.39 to 1.85 kg CO2e) compared with 10.1 kg CO2e/d, respectively. All of the optimized low-cost and low-GHG dietary patterns had likely health advantages over the current NZ dietary pattern, i.e., lower cardiovascular disease and cancer risk.

Conclusions

We identified optimal foods and dietary patterns that would lower the risk of non-communicable diseases at low cost and with low greenhouse gas emission profiles. These results could help guide central and local government decisions around which foods to focus policies on. That is which foods are most suitable for: food taxes (additions and exemptions); healthy food vouchers and subsidies; and for increased use by public institutions involved in food preparation.  相似文献   

3.
Bufler G 《Annals of botany》2009,103(1):23-28

Background and Aims

Exogenous ethylene has recently gained commercial interest as a sprouting inhibitor of onion bulbs. The role of ethylene in dormancy and sprouting of onions, however, is not known.

Methods

A cultivar (Allium cepa ‘Copra’) with a true period of dormancy was used. Dormant and sprouting states of onion bulbs were treated with supposedly saturating doses of ethylene or with the ethylene-action inhibitor 1-methylcyclopropene (1-MCP). Initial sprouting was determined during storage at 18 °C by monitoring leaf blade elongation in a specific size class of leaf sheaths. Changes in ATP content and sucrose synthase activity in the sprout leaves, indicators of the sprouting state, were determined. CO2 and ethylene production of onion bulbs during storage were recorded.

Key results

Exogenous ethylene suppressed sprout growth of both dormant and already sprouting onion bulbs by inhibiting leaf blade elongation. In contrast to this growth-inhibiting effect, ethylene stimulated CO2 production by the bulbs about 2-fold. The duration of dormancy was not significantly affected by exogenous ethylene. However, treatment of dormant bulbs with 1-MCP caused premature sprouting.

Conclusions

Exogenous ethylene proved to be a powerful inhibitor of sprout growth in onion bulbs. The dormancy breaking effect of 1-MCP indicates a regulatory role of endogenous ethylene in onion bulb dormancy.Key words: Bulb dormancy, Allium cepa, onion, sprout growth, ethylene, CO2 production, respiration, 1-methylcyclopropene  相似文献   

4.

Background

Increasing atmospheric CO2 and nitrogen (N) deposition across the globe may affect ecosystem CO2 exchanges and ecosystem carbon cycles. Additionally, it remains unknown how increased N deposition and N addition will alter the effects of elevated CO2 on wetland ecosystem carbon fluxes.

Methodology/Principal Findings

Beginning in 2010, a paired, nested manipulative experimental design was used in a temperate wetland of northeastern China. The primary factor was elevated CO2, accomplished using Open Top Chambers, and N supplied as NH4NO3 was the secondary factor. Gross primary productivity (GPP) was higher than ecosystem respiration (ER), leading to net carbon uptake (measured by net ecosystem CO2 exchange, or NEE) in all four treatments over the growing season. However, their magnitude had interannual variations, which coincided with air temperature in the early growing season, with the soil temperature and with the vegetation cover. Elevated CO2 significantly enhanced GPP and ER but overall reduced NEE because the stimulation caused by the elevated CO2 had a greater impact on ER than on GPP. The addition of N stimulated ecosystem C fluxes in both years and ameliorated the negative impact of elevated CO2 on NEE.

Conclusion/Significance

In this ecosystem, future elevated CO2 may favor carbon sequestration when coupled with increasing nitrogen deposition.  相似文献   

5.
Han Q  Kabeya D  Hoch G 《Annals of botany》2011,107(8):1405-1411

Background and Aims

Masting, i.e. synchronous but highly variable interannual seed production, is a strong sink for carbon and nutrients. It may, therefore, compete with vegetative growth. It is currently unknown whether increased atmospheric CO2 concentrations will affect the carbon balance (or that of other nutrients) between reproduction and vegetative growth of forest species. In this study, reproduction and vegetative growth of shoots of mature beech (Fagus sylvatica) trees grown at ambient and elevated atmospheric CO2 concentrations were quantified. It was hypothesized that within a shoot, fruiting has a negative effect on vegetative growth, and that this effect is ameliorated at increased CO2 concentrations.

Methods

Reproduction and its competition with leaf and shoot production were examined during two masting events (in 2007 and 2009) in F. sylvatica trees that had been exposed to either ambient or elevated CO2 concentrations (530 µmol mol−1) for eight consecutive years, between 2000 and 2008.

Key Results

The number of leaves per shoot and the length of terminal shoots was smaller or shorter in the two masting years compared with the one non-masting year (2008) investigated, but they were unaffected by elevated CO2 concentrations. The dry mass of terminal shoots was approx. 2-fold lower in the masting year (2007) than in the non-masting year in trees growing at ambient CO2 concentrations, but this decline was not observed in trees exposed to elevated CO2 concentrations. In both the CO2 treatments, fruiting significantly decreased nitrogen concentration by 25 % in leaves and xylem tissue of 1- to 3-year-old branches in 2009.

Conclusions

Our findings indicate that there is competition for resources between reproduction and shoot growth. Elevated CO2 concentrations reduced this competition, indicating effects on the balance of resource allocation between reproduction and vegetative growth in shoots with rising atmospheric CO2 concentrations.  相似文献   

6.

Introduction

Below ground orientation in insects relies mainly on olfaction and taste. The economic impact of plant root feeding scarab beetle larvae gave rise to numerous phylogenetic and ecological studies. Detailed knowledge of the sensory capacities of these larvae is nevertheless lacking. Here, we present an atlas of the sensory organs on larval head appendages of Melolontha melolontha. Our ultrastructural and electrophysiological investigations allow annotation of functions to various sensory structures.

Results

Three out of 17 ascertained sensillum types have olfactory, and 7 gustatory function. These sensillum types are unevenly distributed between antennae and palps. The most prominent chemosensory organs are antennal pore plates that in total are innervated by approximately one thousand olfactory sensory neurons grouped into functional units of three-to-four. In contrast, only two olfactory sensory neurons innervate one sensillum basiconicum on each of the palps. Gustatory sensilla chaetica dominate the apices of all head appendages, while only the palps bear thermo-/hygroreceptors. Electrophysiological responses to CO2, an attractant for many root feeders, are exclusively observed in the antennae. Out of 54 relevant volatile compounds, various alcohols, acids, amines, esters, aldehydes, ketones and monoterpenes elicit responses in antennae and palps. All head appendages are characterized by distinct olfactory response profiles that are even enantiomer specific for some compounds.

Conclusions

Chemosensory capacities in M. melolontha larvae are as highly developed as in many adult insects. We interpret the functional sensory units underneath the antennal pore plates as cryptic sensilla placodea and suggest that these perceive a broad range of secondary plant metabolites together with CO2. Responses to olfactory stimulation of the labial and maxillary palps indicate that typical contact chemo-sensilla have a dual gustatory and olfactory function.  相似文献   

7.

Background and Aims

The inverse relationship between stomatal density (SD: number of stomata per mm2 leaf area) and atmospheric concentration of CO2 ([CO2]) permits the use of plants as proxies of palaeo-atmospheric CO2. Many stomatal reconstructions of palaeo-[CO2] are based upon multiple fossil species. However, it is unclear how plants respond to [CO2] across genus, family or ecotype in terms of SD or stomatal index (SI: ratio of stomata to epidermal cells). This study analysed the stomatal numbers of conifers from the ancient family Cupressaceae, in order to examine the nature of the SI–[CO2] relationship, and potential implications for stomatal reconstructions of palaeo-[CO2].

Methods

Stomatal frequency measurements were taken from historical herbarium specimens of Athrotaxis cupressoides, Tetraclinis articulata and four Callitris species, and live A. cupressoides grown under CO2-enrichment (370, 470, 570 and 670 p.p.m. CO2).

Key Results

T. articulata, C. columnaris and C. rhomboidea displayed significant reductions in SI with rising [CO2]; by contrast, A. cupressoides, C. preissii and C. oblonga show no response in SI. However, A. cupressoides does reduce SI to increases in [CO2] above current ambient (approx. 380 p.p.m. CO2). This dataset suggests that a shared consistent SI–[CO2] relationship is not apparent across the genus Callitris.

Conclusions

The present findings suggest that it is not possible to generalize how conifer species respond to fluctuations in [CO2] based upon taxonomic relatedness or habitat. This apparent lack of a consistent response, in conjunction with high variability in SI, indicates that reconstructions of absolute palaeo-[CO2] based at the genus level, or upon multiple species for discrete intervals of time are not as reliable as those based on a single or multiple temporally overlapping species.  相似文献   

8.

Background and Aims

Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status.

Methods

Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming.

Key results

In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility.

Conclusions

Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.  相似文献   

9.
10.

Background and Aims

Woodland spring ephemerals exhibit a relatively short epigeous growth period prior to canopy closure. However, it has been suggested that leaf senescence is induced by a reduction in the carbohydrate sink demand, rather than by changes in light availability. To ascertain whether a potentially higher net carbon (C) assimilation rate could shorten leaf lifespan due to an accelerated rate of storage, Erythronium americanum plants were grown under ambient (400 ppm) and elevated (1100 ppm) CO2 concentrations.

Methods

During this growth-chamber experiment, plant biomass, bulb starch concentration and cell size, leaf phenology, gas exchange rates and nutrient concentrations were monitored.

Key Results

Plants grown at 1100 ppm CO2 had greater net C assimilation rates than those grown at 400 ppm CO2. However, plant size, final bulb mass, bulb filling rate and timing of leaf senescence did not differ.

Conclusions

Erythronium americanum fixed more C under elevated than under ambient CO2 conditions, but produced plants of similar size. The similar bulb growth rates under both CO2 concentrations suggest that the bulb filling rate is dependant on bulb cell elongation rate, rather than on C availability. Elevated CO2 stimulated leaf and bulb respiratory rates; this might reduce feed-back inhibition of photosynthesis and avoid inducing premature leaf senescence.Key words: Source–sink relations, assimilation rates, growth rates, CO2 enrichment, respiration, spring ephemeral, leaf senescence, bulbous plant, carbohydrate storage, Erythronium americanum  相似文献   

11.

Background

Patients with systemic sclerosis (SSc) may develop exercise intolerance due to musculoskeletal involvement, restrictive lung disease, left ventricular dysfunction, or pulmonary vasculopathy (PV). The latter is particularly important since it may lead to lethal pulmonary arterial hypertension (PAH). We hypothesized that abnormalities during cardiopulmonary exercise testing (CPET) in patients with SSc can identify PV leading to overt PAH.

Methods

Thirty SSc patients from the Harbor-UCLA Rheumatology clinic, not clinically suspected of having significant pulmonary vascular disease, were referred for this prospective study. Resting pulmonary function and exercise gas exchange were assessed, including peakVO2, anaerobic threshold (AT), heart rate- VO2 relationship (O2-pulse), exercise breathing reserve and parameters of ventilation-perfusion mismatching, as evidenced by elevated ventilatory equivalent for CO2 (VE/VCO2) and reduced end-tidal pCO2 (PETCO2) at the AT.

Results

Gas exchange patterns were abnormal in 16 pts with specific cardiopulmonary disease physiology: Eleven patients had findings consistent with PV, while five had findings consistent with left-ventricular dysfunction (LVD). Although both groups had low peak VO2 and AT, a higher VE/VCO2 at AT and decreasing PETCO2 during early exercise distinguished PV from LVD.

Conclusions

Previously undiagnosed exercise impairments due to LVD or PV were common in our SSc patients. Cardiopulmonary exercise testing may help to differentiate and detect these disorders early in patients with SSc.  相似文献   

12.

Background and Aims

Elucidation of the mechanisms by which plants adapt to elevated CO2 is needed; however, most studies of the mechanisms investigated the response of plants adapted to current atmospheric CO2. The rapid respiration rate of cotton (Gossypium hirsutum) fruits (bolls) produces a concentrated CO2 microenvironment around the bolls and bracts. It has been observed that the intercellular CO2 concentration of a whole fruit (bract and boll) ranges from 500 to 1300 µmol mol−1 depending on the irradiance, even in ambient air. Arguably, this CO2 microenvironment has existed for at least 1·1 million years since the appearance of tetraploid cotton. Therefore, it was hypothesized that the mechanisms by which cotton bracts have adapted to elevated CO2 will indicate how plants will adapt to future increased atmospheric CO2 concentration. Specifically, it is hypothesized that with elevated CO2 the capacity to regenerate ribulose-1,5-bisphosphate (RuBP) will increase relative to RuBP carboxylation.

Methods

To test this hypothesis, the morphological and physiological traits of bracts and leaves of cotton were measured, including stomatal density, gas exchange and protein contents.

Key results

Compared with leaves, bracts showed significantly lower stomatal conductance which resulted in a significantly higher water use efficiency. Both gas exchange and protein content showed a significantly greater RuBP regeneration/RuBP carboxylation capacity ratio (Jmax/Vcmax) in bracts than in leaves.

Conclusions

These results agree with the theoretical prediction that adaptation of photosynthesis to elevated CO2 requires increased RuBP regeneration. Cotton bracts are readily available material for studying adaption to elevated CO2.  相似文献   

13.
Kumagai E  Araki T  Hamaoka N  Ueno O 《Annals of botany》2011,108(7):1381-1386

Background and Aims

Rice (Oryza sativa) plants lose significant amounts of volatile NH3 from their leaves, but it has not been shown that this is a consequence of photorespiration. Involvement of photorespiration in NH3 emission and the role of glutamine synthetase (GS) on NH3 recycling were investigated using two rice cultivars with different GS activities.

Methods

NH3 emission (AER), and gross photosynthesis (PG), transpiration (Tr) and stomatal conductance (gS) were measured on leaves of ‘Akenohoshi’, a cultivar with high GS activity, and ‘Kasalath’, a cultivar with low GS activity, under different light intensities (200, 500 and 1000 µmol m−2 s−1), leaf temperatures (27·5, 32·5 and 37·5 °C) and atmospheric O2 concentrations ([O2]: 2, 21 and 40 %, corresponding to 20, 210 and 400 mmol mol−1).

Key Results

An increase in [O2] increased AER in the two cultivars, accompanied by a decrease in PG due to enhanced photorespiration, but did not greatly influence Tr and gS. There were significant positive correlations between AER and photorespiration in both cultivars. Increasing light intensity increased AER, PG, Tr and gS in both cultivars, whereas increasing leaf temperature increased AER and Tr but slightly decreased PG and gS. ‘Kasalath’ (low GS activity) showed higher AER than ‘Akenohoshi’ (high GS activity) at high light intensity, leaf temperature and [O2].

Conclusions

Our results demonstrate that photorespiration is strongly involved in NH3 emission by rice leaves and suggest that differences in AER between cultivars result from their different GS activities, which would result in different capacities for reassimilation of photorespiratory NH3. The results also suggest that NH3 emission in rice leaves is not directly controlled by transpiration and stomatal conductance.  相似文献   

14.

Background and Aims

Submersed plants have different strategies to overcome inorganic carbon limitation. It is generally assumed that only small rosette species (isoetids) are able to utilize the high sediment CO2 availability. The present study examined to what extent five species of submersed freshwater plants with different morphology and growth characteristics (Lobelia dortmanna, Lilaeopsis macloviana, Ludwigia repens, Vallisneria americana and Hydrocotyle verticillata) are able to support photosynthesis supplied by uptake of CO2 from the sediment.

Methods

Gross photosynthesis was measured in two-compartment split chambers with low inorganic carbon availability in leaf compartments and variable CO2 availability (0 to >8 mmol L−1) in root compartments. Photosynthetic rates based on root-supplied CO2 were compared with maximum rates obtained at saturating leaf CO2 availability, and 14C experiments were conducted for two species to localize bottlenecks for utilization of sediment CO2.

Key Results

All species except Hydrocotyle were able to use sediment CO2, however, with variable efficiency, and with the isoetid, Lobelia, as clearly the most effective and the elodeid, Ludwigia, as the least efficient. At a water column CO2 concentration in equilibrium with air, Lobelia, Lilaeopsis and Vallisneria covered >75% of their CO2 requirements by sediment uptake, and sediment CO2 contributed substantially to photosynthesis at water CO2 concentrations up to 1000 µmol L−1. For all species except Ludwigia, the shoot to root ratio on an areal basis was the single factor best explaining variability in the importance of sediment CO2. For Ludwigia, diffusion barriers limited uptake or transport from roots to stems and transport from stems to leaves.

Conclusions

Submersed plants other than isoetids can utilize sediment CO2, and small and medium sized elodeids with high root to shoot area in particular may benefit substantially from uptake of sediment CO2 in low alkaline lakes.Key words: Submersed rooted plants, CO2 uptake, sediment CO2, Lobelia dortmanna, Lilaeopsis macloviana, Ludwigia repens, Vallisneria americana, Hydrocotyle verticillata  相似文献   

15.

Background

Anthropogenic disturbance of old-growth tropical forests increases the abundance of early successional tree species at the cost of late successional ones. Quantifying differences in terms of carbon allocation and the proportion of recently fixed carbon in soil CO2 efflux is crucial for addressing the carbon footprint of creeping degradation.

Methodology

We compared the carbon allocation pattern of the late successional gymnosperm Podocarpus falcatus (Thunb.) Mirb. and the early successional (gap filling) angiosperm Croton macrostachyus Hochst. es Del. in an Ethiopian Afromontane forest by whole tree 13CO2 pulse labeling. Over a one-year period we monitored the temporal resolution of the label in the foliage, the phloem sap, the arbuscular mycorrhiza, and in soil-derived CO2. Further, we quantified the overall losses of assimilated 13C with soil CO2 efflux.

Principal Findings

13C in leaves of C. macrostachyus declined more rapidly with a larger size of a fast pool (64% vs. 50% of the assimilated carbon), having a shorter mean residence time (14 h vs. 55 h) as in leaves of P. falcatus. Phloem sap velocity was about 4 times higher for C. macrostachyus. Likewise, the label appeared earlier in the arbuscular mycorrhiza of C. macrostachyus and in the soil CO2 efflux as in case of P. falcatus (24 h vs. 72 h). Within one year soil CO2 efflux amounted to a loss of 32% of assimilated carbon for the gap filling tree and to 15% for the late successional one.

Conclusions

Our results showed clear differences in carbon allocation patterns between tree species, although we caution that this experiment was unreplicated. A shift in tree species composition of tropical montane forests (e.g., by degradation) accelerates carbon allocation belowground and increases respiratory carbon losses by the autotrophic community. If ongoing disturbance keeps early successional species in dominance, the larger allocation to fast cycling compartments may deplete soil organic carbon in the long run.  相似文献   

16.

Background and Aims

The deployment of temporally separated carboxylation pathways for net CO2 uptake in CAM plants provides plasticity and thus uncertainty on how species with this photosynthetic pathway will respond to life in a higher-CO2 world. The present study examined how long-term exposure to elevated CO2 influences the relative contributions that C3 and C4 carboxylation make to net carbon gain and to establish how this impacts on the availability of carbohydrates for export and growth and on water use efficiency over the day/night cycle.

Methods

Integrated measurements of leaf gas exchange and diel metabolite dynamics (e.g. malate, soluble sugars, starch) were made in leaves of the CAM bromeliad Aechmea ‘Maya’ after exposure to 700 µmol mol−1 CO2 for 5 months.

Key Results

There was a 60 % increase in 24-h carbon gain under elevated CO2 due to a stimulation of daytime C3 and C4 carboxylation in phases II and IV where water use efficiency was comparable with that measured at night. The extra CO2 taken up under elevated CO2 was largely accumulated as hexose sugars during phase IV and net daytime export of carbohydrate was abolished. Under elevated CO2 there was no stimulation of dark carboxylation and nocturnal export and respiration appeared to be the stronger sinks for carbohydrate.

Conclusions

Despite the increased size of the soluble sugar storage pool under elevated CO2, there was no change in the net allocation of carbohydrates between provision of substrates for CAM and export/respiration in A. ‘Maya’. The data imply the existence of discrete pools of carbohydrate that provide substrate for CAM or sugars for export/respiration. The 2-fold increase in water-use efficiency could be a major physiological advantage to growth under elevated CO2 in this CAM bromeliad.Key words: Aechmea ‘Maya’, carbon budgets, elevated CO2, gas exchange, metabolite dynamics, PEPC, photosynthetic plasticity, Rubisco  相似文献   

17.

Background and Aims

Live imaging methods have become extremely important for the exploration of biological processes. In particular, non-invasive measurement techniques are key to unravelling organism–environment interactions in close-to-natural set-ups, e.g. in the highly heterogeneous and difficult-to-probe environment of plant roots: the rhizosphere. pH and CO2 concentration are the main drivers of rhizosphere processes. Being able to monitor these parameters at high spatio-temporal resolution is of utmost importance for relevant interpretation of the underlying processes, especially in the complex environment of non-sterile plant–soil systems. This study introduces the application of easy-to-use planar optode systems in different set-ups to quantify plant root–soil interactions.

Methods

pH- and recently developed CO2-sensors were applied to rhizobox systems to investigate roots with different functional traits, highlighting the potential of these tools. Continuous and highly resolved real-time measurements were made of the pH dynamics around Triticum turgidum durum (durum wheat) roots, Cicer arietinum (chickpea) roots and nodules, and CO2 dynamics in the rhizosphere of Viminaria juncea.

Key Results

Wheat root tips acidified slightly, while their root hair zone alkalized their rhizosphere by more than 1 pH unit and the effect of irrigation on soil pH could be visualized as well. Chickpea roots and nodules acidified the surrounding soil during N2 fixation and showed diurnal changes in acidification activity. A growing root of V. juncea exhibited a large zone of influence (mm) on soil CO2 content and therefore on its biogeochemical surrounding, all contributing to the extreme complexity of the root–soil interactions.

Conclusions

This technique provides a unique tool for future root research applications and overcomes limitations of previous systems by creating quantitative maps without, for example, interpolation and time delays between single data points.  相似文献   

18.

Background

Sponges have long been known to be ecologically important members of the benthic fauna on coral reefs. Recently, it has been shown that sponges are also important contributors to the nitrogen biogeochemistry of coral reefs. The studies that have been done show that most sponges are net sources of dissolved inorganic nitrogen (DIN; NH4 + and NO3 ) and that nitrification, mediated by their symbiotic prokaryotes, is the primary process involved in supplying DIN to adjacent reefs.

Methodology/Principal Findings

A natural experiment was conducted with the Caribbean sponge Xestospongia muta from three different locations (Florida Keys, USA; Lee Stocking Island, Bahamas and Little Cayman, Cayman Islands). The DIN fluxes of sponges were studied using nutrient analysis, stable isotope ratios, and isotope tracer experiments. Results showed that the fluxes of DIN were variable between locations and that X. muta can be either a source or sink of DIN. Stable isotope values of sponge and symbiotic bacterial fractions indicate that the prokaryotic community is capable of taking up both NH4 + and NO3 while the differences in δ 15N between the sponge and bacterial fractions from the NH4 + tracer experiment suggest that there is translocation of labeled N from the symbiotic bacteria to the host.

Conclusions/Significance

Nitrogen cycling in X. muta appears to be more complex than previous studies have shown and our results suggest that anaerobic processes such as denitrification or anammox occur in these sponges in addition to aerobic nitrification. Furthermore, the metabolism of this sponge and its prokaryotic symbionts may have a significant impact on the nitrogen biogeochemistry on Caribbean coral reefs by releasing large amounts of DIN, including higher NH4 + concentrations that previously reported.  相似文献   

19.

Background

Globally plants are the primary sink of atmospheric CO2, but are also the major contributor of a large spectrum of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene) and other biogenic volatile organic compounds (BVOC). The prediction of plant carbon (C) uptake and atmospheric oxidation capacity are crucial to define the trajectory and consequences of global environmental changes. To achieve this, the biosynthesis of BVOC and the dynamics of C allocation and translocation in both plants and ecosystems are important.

Methodology

We combined tunable diode laser absorption spectrometry (TDLAS) and proton transfer reaction mass spectrometry (PTR-MS) for studying isoprene biosynthesis and following C fluxes within grey poplar (Populus x canescens) saplings. This was achieved by feeding either 13CO2 to leaves or 13C-glucose to shoots via xylem uptake. The translocation of 13CO2 from the source to other plant parts could be traced by 13C-labeled isoprene and respiratory 13CO2 emission.

Principal Finding

In intact plants, assimilated 13CO2 was rapidly translocated via the phloem to the roots within 1 hour, with an average phloem transport velocity of 20.3±2.5 cm h−1. 13C label was stored in the roots and partially reallocated to the plants'' apical part one day after labeling, particularly in the absence of photosynthesis. The daily C loss as BVOC ranged between 1.6% in mature leaves and 7.0% in young leaves. Non-isoprene BVOC accounted under light conditions for half of the BVOC C loss in young leaves and one-third in mature leaves. The C loss as isoprene originated mainly (76–78%) from recently fixed CO2, to a minor extent from xylem-transported sugars (7–11%) and from photosynthetic intermediates with slower turnover rates (8–11%).

Conclusion

We quantified the plants'' C loss as respiratory CO2 and BVOC emissions, allowing in tandem with metabolic analysis to deepen our understanding of ecosystem C flux.  相似文献   

20.

Background and Aims

Global climate models predict decreases in leaf stomatal conductance and transpiration due to increases in atmospheric CO2. The consequences of these reductions are increases in soil moisture availability and continental scale run-off at decadal time-scales. Thus, a theory explaining the differential sensitivity of stomata to changing atmospheric CO2 and other environmental conditions must be identified. Here, these responses are investigated using optimality theory applied to stomatal conductance.

Methods

An analytical model for stomatal conductance is proposed based on: (a) Fickian mass transfer of CO2 and H2O through stomata; (b) a biochemical photosynthesis model that relates intercellular CO2 to net photosynthesis; and (c) a stomatal model based on optimization for maximizing carbon gains when water losses represent a cost. Comparisons between the optimization-based model and empirical relationships widely used in climate models were made using an extensive gas exchange dataset collected in a maturing pine (Pinus taeda) forest under ambient and enriched atmospheric CO2.

Key Results and Conclusion

In this interpretation, it is proposed that an individual leaf optimally and autonomously regulates stomatal opening on short-term (approx. 10-min time-scale) rather than on daily or longer time-scales. The derived equations are analytical with explicit expressions for conductance, photosynthesis and intercellular CO2, thereby making the approach useful for climate models. Using a gas exchange dataset collected in a pine forest, it is shown that (a) the cost of unit water loss λ (a measure of marginal water-use efficiency) increases with atmospheric CO2; (b) the new formulation correctly predicts the condition under which CO2-enriched atmosphere will cause increasing assimilation and decreasing stomatal conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号